首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of thyroid hormone (L-3, 3', 5-triiodothyronine, T3) on Kupffer cell function was studied in the isolated perfused rat liver by colloidal carbon infusion. Rates of carbon uptake were determined from the influent minus effluent concentration difference and the flow rate, and the respective carbon-induced respiratory activity was calculated by integration of the area under the O2 curves during carbon infusion. In the concentration range of 0.2 to 2.0 mg of carbon/ml, livers from euthyroid rats exhibited a sigmoidal-type kinetics of carbon uptake, with a Vmax of 4.8 mg/g liver/min and a concentration of 0.82 mg/ml for half-maximal rate; carbon-induced O2 uptake presented a hyperbolic-type kinetics, with a Vmax of 4.57 μmol of O2/g liver and a Km of 0.74 mg of carbon/ml, which significantly correlates with the carbon uptake rates. Light-microscopy showed that carbon was taken up exclusively by non-parenchymal cells, predominantly by Kupffer cells. Thyroid calorigenesis was found in parallel with increased rates of hepatic O2 consumption and thiobarbituric acid reactive substances (TBARS) formation, glutathione (GSH) depletion, and higher sinusoidal lactate dehydrogenase (LDH) efflux compared to control values. In the concentration range of 0.25 to 0.75 mg/ml, carbon infusion did not modify liver LDH efflux in control rats, while it was significantly enhanced in T3-treated animals. In this latter group, higher carbon concentrations (1 and 1.3 mg/ml) led to loss of viability of the liver. At 0.25 to 0.75 mg of carbon/ml, both the rates of carbon uptake and the associated carbon-induced respiratory activities were significantly increased by T3 treatment, effects that were abolished by pretreatment of the rats with gadolinium chloride (GdCl3). In addition, GdCl3 decreased by 50% the changes induced by T3 in hepatic GSH content and TBARS formation. It is concluded that hyperthyroidism enhances Kupffer cell function, correlated with the increased number of liver macrophages observed histologically, which may represent an alternate source of reactive O2 species to that induced in parenchymal cells, thus contributing to the enhanced oxidative stress status developed.  相似文献   

2.
3.
Upon injection of chylomicrons into rats, chylomicron remnants are predominantly taken up by parenchymal cells, with a limited contribution (8.6% of the injected dose) by Kupffer cells. In vitro storage of partially processed chylomicron remnants for only 24 h leads, after in vivo injection, to an avid recognition by Kupffer cells (uptake up to 80% of the total liver-associated radioactivity). Lactoferrin greatly reduces the liver uptake of chylomicron remnants, which appears to be the consequence of a specific inhibition of the uptake by parenchymal cells. Kupffer-cell uptake is not influenced by lactoferrin. In vitro studies with isolated parenchymal and Kupffer cells show that both contain a specific recognition site for chylomicron remnants. The Kupffer-cell recognition site differs in several ways from the recognition site on parenchymal cells as follows. (a) The maximum level of binding is 3.7-fold higher/mg cell protein than with parenchymal cells. (b) Binding of chylomicron remnants is partially dependent on the presence of calcium, while binding to parenchymal cells is not. (c) beta-Migrating very-low-density lipoprotein is a less effective competitor for chylomicron-remnant binding to Kupffer cells compared to parenchymal cells. (d) Lactoferrin leaves Kupffer-cell binding uninfluenced, while it greatly reduces binding of chylomicron remnants to parenchymal cells. The properties of chylomicron-remnant recognition by parenchymal cells are consistent with apolipoprotein E being the determinant for recognition. It can be concluded that the chylomicron-remnant recognition site on Kupffer cells possesses properties which are distinct from the recognition site on parenchymal cells. It might be suggested that partially processed chylomicron remnants are specifically sensitive to a modification, which induces an avid interaction with the Kupffer cells. The recognition site for (modified) chylomicron remnants on Kupffer cells might function as a protection system against the occurrence of these potential atherogenic chylomicron-remnant particles in the blood.  相似文献   

4.
5.
6.
The rate of Cd accumulation by adult rat liver parenchymal cells in serum free primary culture in the presence of 100 μM CdCl2 was 10 times greater than that by non-parenchymal Kupffer cells. Addition of the monothiol chelating agents, cysteine and penicillamine, decreased Cd uptake in both cell types, the effect becoming more pronounced as the monothiol concentration was increased from 0.1 to 1.0 mM. These monothiols thus appear to reduce the availability of Cd for transport across the cell membrane. In contrast 1–10 molar excesses of the dithiol agents 2,3-dimercaptopropanol (BAL) or dithiothreitol (DTT) stimulated to variable extents the rate of Cd accumulation 2–10-fold in parenchymal cells and by over 100-fold in Kupffer cells. Supplementation of the media with 3% serum had little effect on the Cd accumulation in the presence of monothiols but substantially depressed Cd uptake in the presence of dithiols. Intravenous injection of Cd (0.05 mg/kg CdCl2) with up to a 10-fold molar excess of cysteine or penicillamine had little effect on the hepatocellular Cd distribution. However Cd uptake by non-parenchymal cells was increased markedly by the simultaneous administration of BAL or DTT in 2 or 10 molar excess. Evidence is provided that these results may be partially explained by the endocytosis, particularly in Kupffer cells, of colloidal complexes of Cd which are formed with the dithiols but not the monothiols. These observations demonstrate that the physicochemical form of Cd determines its hepatocellular distribution which may be an important factor in the manifestation of Cd toxicity after thiol treatment.  相似文献   

7.
1. Hepatic uptake of low-density lipoprotein (LDL) in parenchymal cells and non-parenchymal cells was studied in control-fed and cholesterol-fed rabbits after intravenous injection of radioiodinated native LDL (125I-TC-LDL) and methylated LDL (131I-TC-MetLDL). 2. LDL was taken up by rabbit liver parenchymal cells, as well as by endothelial and Kupffer cells. Parenchymal cells, however, were responsible for 92% of the hepatic LDL uptake. 3. Of LDL in the hepatocytes, 89% was taken up via the B,E receptor, whereas 16% and 32% of the uptake of LDL in liver endothelial cells and Kupffer cells, respectively, was B,E receptor-dependent. 4. Cholesterol feeding markedly reduced B,E receptor-mediated uptake of LDL in parenchymal liver cells and in Kupffer cells, to 19% and 29% of controls, respectively. Total uptake of LDL in liver endothelial cells was increased about 2-fold. This increased uptake is probably mediated via the scavenger receptor. The B,E receptor-independent association of LDL with parenchymal cells was not affected by the cholesterol feeding. 5. It is concluded that the B,E receptor is located in parenchymal as well as in the non-parenchymal rabbit liver cells, and that this receptor is down-regulated by cholesterol feeding. Parenchymal cells are the main site of hepatic uptake of LDL, both under normal conditions and when the number of B,E receptors is down-regulated by cholesterol feeding. In addition, LDL is taken up by B,E receptor-independent mechanism(s) in rabbit liver parenchymal, endothelial and Kupffer cells. The non-parenchymal liver cells may play a quantitatively important role when the concentration of circulating LDL is maintained at a high level in plasma, being responsible for 26% of hepatic uptake of LDL in cholesterol-fed rabbits as compared with 8% in control-fed rabbits. The proportion of hepatic LDL uptake in endothelial cells was greater than 5-fold higher in the diet-induced hypercholesterolaemic rabbits than in controls.  相似文献   

8.
We investigated the intrahepatic distribution of small unilamellar liposomes injected intravenously into rats at a dose of 0.10 mmol of lipid per kg body weight. Sonicated liposomes consisting of cholesterol/sphingomyelin (1:1), (A); cholesterol/egg phosphatidylcholine (1:1), (B); cholesterol/sphingomyelin/phosphatidylserine (5:4:1), (C) or cholesterol/egg-phosphatidylcholine/phosphatidylserine (5:4:1), (D) were labeled by encapsulation of [3H]inulin. The observed differences in rate of blood elimination and hepatic accumulation (A much less than B approximately equal to C less than D) confirmed earlier observations and reflected the rates of uptake of the four liposome formulations by isolated liver macrophages in monolayer culture. Fractionation of the liver into a parenchymal and a non-parenchymal cell fraction revealed that 80-90% of the slowly clearing type-A liposomes were taken up by the parenchymal cells while of the more rapidly eliminated type-B liposomes even more than 95% was associated with the parenchymal cells. Incorporation of phosphatidylserine into the sphingomyelin-based liposomes caused a significant increase in hepatocyte uptake but a much more substantial increase in non-parenchymal cell uptake, resulting in a major shift of the intrahepatic distribution towards the non-parenchymal cell fraction. For the phosphatidylcholine-based liposomes incorporation of phosphatidylserine did not increase the already high uptake by the parenchymal cells while uptake by the non-parenchymal cells was only moderately elevated; this resulted in only a small shift in distribution towards the non-parenchymal cells. The phosphatidylserine-induced increase in liposome uptake by non-parenchymal liver cells was paralleled by an increase in uptake by the spleen. Fractionation of the non-parenchymal liver cells in a Kupffer cell fraction and an endothelial cell fraction showed that even for the slowly eliminated liposomes of type A endothelial cells do not participate to a measurable extent in the elimination process, thus excluding involvement of fluid-phase pinocytosis in the uptake process.  相似文献   

9.
Uridine catabolism in Kupffer cells, endothelial cells, and hepatocytes   总被引:1,自引:0,他引:1  
Kupffer cells, endothelial cells, and hepatocytes were separated by centrifugal elutriation. The rate of uracil formation from [2-14C]uridine, the first step in uridine catabolism, was monitored in suspensions of the three different liver cell types. Kupffer cells demonstrated the highest rate of uridine phosphorolysis. 15 min after the addition of the nucleoside the label in uracil amounted to 51%, 13%, and 19% of total radioactivity in the medium of Kupffer cells, endothelial cells, and hepatocytes, respectively. If corrected for Kupffer cell contamination, hepatocyte suspensions demonstrated similar activities as endothelial cells. In contrast to non-parenchymal cells, hepatocytes continuously cleared uracil from the incubation medium. The lack of uracil consumption by Kupffer cells and endothelial cells points to uracil as the end-product of uridine catabolism in these cells. Kupffer cells and endothelial cells did not produce radioactive CO2 upon incubation in the presence of [2-14C]uridine. Hepatocytes, however, were able to degrade uridine into CO2, beta-alanine, and ammonia as demonstrated by active formation of volatile radioactivity from the labeled nucleoside. There was almost no detectable formation of thymine from thymidine or of cytosine, uracil, or uridine from cytidine by any of the different cell types tested. These results are in line with low thymidine phosphorolysis and cytidine deamination in rat liver. Our studies suggest a co-operation of Kupffer cells, endothelial cells, and hepatocytes in the breakdown of uridine from portal vein blood with uridine phosphorolysis predominantly occurring in Kupffer cells and with uracil catabolism restricted to parenchymal liver cells.  相似文献   

10.
Cadmium metabolism by rat liver endothelial and Kupffer cells.   总被引:1,自引:0,他引:1  
The metabolism of cadmium was investigated in Wistar-rat liver non-parenchymal cells. Kupffer and endothelial cells, the major cell populations lining the sinusoidal tracts, were isolated by collagenase dispersion and purified by centrifugal elutriation. At 20 h after subcutaneous injection of the metal salt (1.5 mg of Cd/kg body weight), endothelial cells accumulated 2-fold higher concentrations of Cd than did Kupffer or parenchymal cells. Most of the Cd in non-parenchymal cells was associated with cytosolic metallothionein (MT), the low-Mr heavy-metal-binding protein(s). When MT was quantified in cytosols from cells isolated from control rats by a 203Hg competitive-binding assay, low levels were found to be present in Kupffer, endothelial and parenchymal cells. Cd injection significantly increased MT levels in all three cell types. The induction of MT synthesis was investigated in vitro by using primary monolayer cultures. The incorporation of [35S]cysteine into MT increased 47% over constitutive levels in endothelial-cell cultures after the addition of 0.8 microM-Cd2+ to the medium for 10 h. MT synthesis in Kupffer cells was not observed. The lack of MT synthesis by monolayer cultures of Kupffer cells in vitro was associated with a decreased capacity of these cells to accumulate heavy metals from the extracellular medium. This apparent decreased ability to transport metals did not reflect a general defect in either cellular function or metabolic activity, since isolated Kupffer cells incorporated [3H]leucine into protein at rates comparable with those shown by liver parenchymal cells and readily phagocytosed particles.  相似文献   

11.
In order to assess the relative importance of the receptor for low-density lipoprotein (LDL) (apo-B,E receptor) in the various liver cell types for the catabolism of lipoproteins in vivo, human LDL was labelled with [14C]sucrose. Up to 4.5h after intravenous injection, [14C]sucrose becomes associated with liver almost linearly with time. During this time the liver is responsible for 70-80% of the removal of LDL from blood. A comparison of the uptake of [14C]sucrose-labelled LDL and reductive-methylated [14C]sucrose-labelled LDL ([14C]sucrose-labelled Me-LDL) by the liver shows that methylation leads to a 65% decrease of the LDL uptake. This indicated that 65% of the LDL uptake by liver is mediated by a specific apo-B,E receptor. Parenchymal and non-parenchymal liver cells were isolated at various times after intravenous injection of [14C]sucrose-labelled LDL and [14C]sucrose-labelled Me-LDL. Non-parenchymal liver cells accumulate at least 60 times as much [14C]sucrose-labelled LDL than do parenchymal cells accumulate at least 60 times as much [14C]sucrose-labelled LDL than do parenchymal cells when expressed per mg of cell protein. This factor is independent of the time after injection of LDL. Taking into account the relative protein contribution of the various liver cell types to the total liver, it can be calculated that non-parenchymal cells are responsible for 71% of the total liver uptake of [14C]sucrose-labelled LDL. A comparison of the cellular uptake of [14C]sucrose-labelled LDL and [14C]sucrose-labelled Me-LDL after 4.5h circulation indicates that 79% of the uptake of LDL by non-parenchymal cells is receptor-dependent. With parenchymal cells no significant difference in uptake between [14C]sucrose-labelled LDL and [14C]sucrose-labelled Me-LDL was found. A further separation of the nonparenchymal cells into Kupffer and endothelial cells by centrifugal elutriation shows that within the non-parenchymal-cell preparation solely the Kupffer cells are responsible for the receptor-dependent uptake of LDL. It is concluded that in rats the Kupffer cell is the main cell type responsible for the receptor-dependent catabolism of lipoproteins containing only apolipoprotein B.  相似文献   

12.
1. The plasma clearance of intravenously injected 125I-labelled mitochondrial malate dehydrogenase (half-life 7 min) was not influenced by previous injection of suramin and/or leupeptin (inhibitors of intralysosomal proteolysis). 2. Pretreatment with both inhibitors considerably delayed degradation of endocytosed enzyme in liver, spleen, bone marrow and kidneys. 3. The tissue distribution of radioactivity was determined at 30 min after injection, when only 3% of the dose was left in plasma. All injected radioactivity was still present in the carcass. The major part of the injected dose was found in liver (49%), spleen (5%), kidneys (13%) and bone, including marrow (11%). 4. Liver cells were isolated 15 min after injection of labelled enzyme. We found that Kupffer cells and parenchymal cells had endocytosed the enzyme at rates corresponding to 9530 and 156 ml of plasma/day per g of cell protein respectively. Endothelial cells do not significantly contribute to uptake of the enzyme. 5. Uptake by Kupffer cells was saturable, whereas uptake by parenchymal cells was not. This suggests that these cell types endocytose the enzyme via different receptors. 6. Previous injection of carbon particles greatly decreased uptake of the enzyme by liver, spleen and bone marrow.  相似文献   

13.
Receptor-dependent uptake mechanisms for low-density lipoprotein (LDL) were studied in rabbit liver parenchymal and non-parenchymal cells. Hybridization studies with a cDNA probe revealed that mRNA for the apo (apolipoprotein) B,E receptor was present in endothelial and Kupffer cells as well as in parenchymal cells. By ligand-blotting experiments we showed that apo B,E-receptor protein was present in both parenchymal and non-parenchymal cells. Studies of binding of homologous LDL in cultured rabbit parenchymal cells suggested that about 63% of the specific LDL binding was mediated via the apo B,E receptor. Approx. 47% of the specific LDL binding was dependent on Ca2+, suggesting that specific Ca2+-dependent as well as Ca2+-independent LDL-binding sites exist in liver parenchymal cells. Methylated LDL bound to the parenchymal cells in a saturable manner. Taken together, our results showed that apo B,E receptors are present in rabbit liver endothelial and Kupffer cells as well as in the parenchymal cells, and that an additional saturable binding activity for LDL may exist on rabbit liver parenchymal cells. This binding activity was not inhibited by EGTA or reductive methylation of lysine residues in apo B. LDL degradation in parenchymal cells was mainly mediated via the apo B,E receptor.  相似文献   

14.
Two, twenty-four and 48 h after hydrocortisone treatment in a dose of 125 mg/kg bw the blood clearance rate for colloidal carbon particles in rats turned to be 2, 2.1. and 1.6 times less whereas that for 51Cr-SRBC in CBA mice 2.1, 2.2 and 1.7 times less as compared to untreated controls. Within 24 and 72 h after hormone injection the efficacy of red blood cell uptake by Kupffer cells decreased 1.35 and 1.8 times whereas the similar uptake by lung or spleen macrophages changed but insignificantly and that by bone marrow cells was even greater than in controls. Toward the 5th day after zymosan treatment the uptake capacity of Kupffer cells was the greatest whereas the plasma 11-OHCS content was 1.3-fold less versus the control values.  相似文献   

15.
The effect of cortisone acetate on the hepatic uptake of Triton WR-1339 was studied in adrenalectomized rats. The hormone was found to retard the uptake of Triton in the liver, and at the same time reduce the plasma clearance of this compound. The inhibitory effect of the hormone on endocytosis was seen in purified preparations of both Kupffer cells and parenchymal cells. Triton renders the liver lysosomes progressively lighter. The change in equilibrium density (in sucrose gradients) was found to occur more rapidly in hormone-treated animals. The possibility that cortisone reduces the number and increases the size of the lysosomes is discussed. Our data indicate that the uptake of Triton in non-parenchymal (Kupffer) cells represents about 20% of the total hepatic uptake.  相似文献   

16.
Kupffer cells in primary culture bind and endocytose rapidly added rat liver mitochondria. Using phase contrast microscopy various stages of the uptake and digestion of these organelles were documented. Activities of mitochondrial enzymes within the Kupffer cells increased during the early phase of phagocytosis; they later declined, reaching the endogenous level of the Kupffer cell mitochondria after 3 to 4 h. The uptake was enhanced in the presence of heparin or rat serum, while iodoacetate, cytochalasin B or anti-fibronectin antisera were inhibitory. The transient presence of enzymatically active hepatocyte mitochondria renders Kupffer cells capable of producing urea. This mechanism partially explains earlier observations of urea formation in non-parenchymal rat liver cells.  相似文献   

17.
Intravenously administered gadolinium chloride caused only a slight decrease in the rate of elimination of small unilamellar liposomes from the blood and had no influence on the total hepatic uptake of these vesicles, but did alter their intrahepatic distribution substantially. Uptake by the non-parenchymal cells was substantially decreased, whereas uptake by the parenchymal cells showed a concomitant increase. Our earlier observations (Roerdink et al. (1981) Biochim. Biophys. Acta 677, 79-89) on the effect of lanthanides on the in vivo distribution of multilamellar liposomes have been extended, in that we demonstrate, in addition to the drop in elimination rate from the blood and in the over-all hepatic uptake, a shift of liposome distribution within the Kupffer cell population. While the larger Kupffer cells, which normally take up a major fraction of an injected liposome dose, were strongly inhibited in liposome uptake, the more numerous small macrophages showed a 3-4-fold increase in uptake.  相似文献   

18.
Although the mechanisms of cirrhosis-induced portal hypertension have been studied extensively, the role of thromboxane A(2) (TXA(2)) in the development of portal hypertension has never been explicitly explored. In the present study, we sought to determine the role of TXA(2) in bile duct ligation (BDL)-induced portal hypertension in Sprague-Dawley rats. After 1 wk of BDL or sham operation, the liver was isolated and perfused with Krebs-Henseleit bicarbonate buffer at a constant flow rate. After 30 min of nonrecirculating perfusion, the buffer was recirculated in a total volume of 100 ml. The perfusate was sampled for the enzyme immunoassay of thromboxane B(2) (TXB(2)), the stable metabolite of TXA(2). Although recirculation of the buffer caused no significant change in sham-operated rats, it resulted in a marked increase in portal pressure in BDL rats. The increase in portal pressure was found concomitantly with a significant increase of TXB(2) in the perfusate (sham vs. BDL after 30 min of recirculating perfusion: 1,420 +/- 803 vs. 10,210 +/- 2,950 pg/ml; P < 0.05). Perfusion with a buffer containing indomethacin or gadolinium chloride for inhibition of cyclooxygenase (COX) or Kupffer cells, respectively, substantially blocked the recirculation-induced increases in both portal pressure and TXB(2) release in BDL group. Hepatic detection of COX gene expression by RT-PCR revealed that COX-2 but not COX-1 was upregulated following BDL, and this upregulation was confirmed at the protein level by Western blot analysis. In conclusion, these results clearly demonstrate that increased hepatic TXA(2) release into the portal circulation contributes to the increased portal resistance in BDL-induced liver injury, suggesting a role of TXA(2) in liver fibrosis-induced portal hypertension. Furthermore, the Kupffer cell is likely the source of increased TXA(2), which is associated with upregulation of the COX-2 enzyme.  相似文献   

19.
The influence of aging on the respiratory activity of stimulated Kupffer cells was investigated in the isolated perfused mouse liver in relation to colloidal carbon phagocytosis, and the content of glutathione (GSH) and protein carbonyls as parameters related to oxidative stress. Livers from aged (22 months) mice exhibited significant 35% and 65% decreases in the carbon uptake and in the carbon-induced O2 consumption compared to young (3 months) animals, respectively, with a concomitant 46% diminution in the carbon-induced O2 consumption/carbon uptake ratio. Hepatic GSH depletion was observed in aged mice compared to young animals, whereas protein oxidation was enhanced. It is concluded that aging leads to an impairment in the functional capacity of Kupffer cells reflected by a substantial reduction in their respiratory burst activity, lessened endocytic capacity and enhanced oxidative stress, that may contribute to increased susceptibility of the liver to noxious challenges.  相似文献   

20.
The uptake and metabolism of chylomicron-remnant lipids by individual liver cell types was examined by incubating remnants with monolayer cultures of hepatocytes, Kupffer cells, and endothelial cells from rat liver. Remnants were prepared in vitro from radiolabelled mesenteric-lymph chylomicra, utilizing either purified lipoprotein lipase from bovine milk, or plasma isolated from heparinized rats. The resulting particles contained [3H]phosphatidylcholine and cholesterol, and [14C]oleate in the acylglycerol, phospholipid, fatty-acid and cholesterol-ester fractions. The capacities of the three cell types for uptake of both [3H]lipids and [14C]lipids were determined to be, on a per-cell basis, in the order: Kupffer greater than hepatocytes greater than endothelial. The relative proportions of [3H]phospholipid and total [3H]cholesterol taken up by hepatocytes and non-parenchymal cells remained constant with time. The uptake of [14C]oleoyl lipids by all three cell types was slightly greater than that of the total [3H]cholesterol and [3H]phospholipid components. There was evidence of cholesterol-ester hydrolysis and turnover of [14C]oleate in the phospholipid fraction in hepatocytes and Kupffer cells, but not endothelial cells, over the first 2 h. With both remnant preparations, these observations indicate that significant differences exist between the three major liver cell types with respect to the uptake and metabolism of remnant lipid components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号