首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Increases of functional T-type calcium channel (T-channel) expression have been associated with cellular proliferation although evidence for this remains controversial. In the present study, we have used a variety of cellular, molecular and electrophysiological techniques to test the hypothesis that T-type channels play a causal role in the signaling pathway leading to proliferation. The results showed that stable over-expression of alpha1G T-channel subunit in HEK-293 cells conferred a significant growth advantage. Thus, cell population doubling time was reduced to 13.7 +/- 0.3 h in alpha1G transfectants, compared to control cultures (22.1 +/- 1.1 h) and flow cytometry analysis showed that this was due to a reduction in the number of alpha1G transfectants residing in the G0/G1 phases of the cell cycle compared to controls. The selective T-type calcium channel blocker, mibefradil, induced a dose-dependent inhibition of proliferation in alpha1G tansfectants. Furthermore, the Western blotting results proved that the level of protein expression of CDK2, cyclin A and cyclin E was high in alpha1G transfectants compared to control cultures. Our results demonstrate that the T-type calcium channel provides a significant growth advantage to HEK-293 cells that might occur via effects on the G1/S cell cycle mechanism.  相似文献   

2.
Mutations in P/Q-type calcium channels generate common phenotypes in mice and humans, which are characterized by ataxia, paroxysmal dyskinesia, and absence seizures. Subsequent functional changes of T-type calcium channels in thalamus are observed in P/Q-type calcium channel mutant mice and these changes play important roles in generation of absence seizures. However, the changes in T-type calcium channel function and/or expression in the cerebellum, which may be related to movement disorders, are still unknown. The leaner mouse exhibits severe ataxia, paroxysmal dyskinesia, and absence epilepsy due to a P/Q-type calcium channel mutation. We investigated changes in T-type calcium channel expression in the leaner mouse thalamus and cerebellum using quantitative real-time polymerase chain reaction (qRT-PCR) and quantitative in situ hybridization histochemistry (ISHH). qRT-PCR analysis showed no change in T-type calcium channel alpha 1G subunit (Cav3.1) expression in the leaner thalamus, but a significant decrease in alpha 1G expression in the whole leaner mouse cerebellum. Interestingly, quantitative ISHH revealed differential changes in alpha 1G expression in the leaner cerebellum, where the granule cell layer showed decreased alpha 1G expression while Purkinje cells showed increased alpha 1G expression. To confirm these observations, the granule cell layer and the Purkinje cell layer were laser capture microdissected separately, then analyzed with qRT-PCR. Similar to the observation obtained by ISHH, the leaner granule cell layer showed decreased alpha 1G expression and the leaner Purkinje cell layer showed increased alpha 1G expression. These results suggest that differential expression of T-type calcium channels in the leaner cerebellum may be involved in the observed movement disorders.  相似文献   

3.
T-type calcium channels and tumor proliferation   总被引:10,自引:0,他引:10  
Panner A  Wurster RD 《Cell calcium》2006,40(2):253-259
The role of T-type Ca2+ channels in proliferation of tumor cells is reviewed. Intracellular Ca2+ is important in controlling proliferation as evidenced by pulses, or oscillations, of intracellular Ca2+ which occur in a cell cycle-dependent manner in many tumor cells. Voltage-gated calcium channels, such as the T-type Ca2+ channel, are well suited to participate in such oscillations due to their unique activation/inactivation properties. Expression of the T-type Ca2+ channels has been reported in numerous types of tumors, and has been shown to be cell cycle-dependent. Overexpression of the alpha1 subunit of T-type Ca2+ channels in human astrocytoma, neuroblastoma and renal tumor cell lines enhanced proliferation of these cells. In contrast, targeting of the alpha1 subunit of the T-type calcium channel via siRNA decreased proliferation of these cells. A Ca2+ oscillatory model is proposed involving potassium channels, Ca2+ stores and Ca2+ exchangers/transporters. A review of T-type channel blockers is presented, with a focus on mibefradil-induced inhibition of proliferation. The development of newer blockers with higher selectivity and less potential side effects are discussed. The conclusion reached is that calcium channel blockers serve as a potential therapeutic approach for tumors whose proliferation depends on T-type calcium channel expression.  相似文献   

4.
Tumor necrosis factor receptor-associated factor 6 (TRAF6), which plays an important role in inflammation and immune response, is an essential adaptor protein for the NF-κB (nuclear factor κB) signaling pathway. Recent studies have shown that TRAF6 played an important role in tumorigenesis and invasion by suppressing NF-κB activation. However, up to now, the biologic role of TRAF6 in glioma has still remained unknown. To address the expression of TRAF6 in glioma cells, four glioma cell lines (U251, U-87MG, LN-18, and U373) and a non-cancerous human glial cell line SVG p12 were used to explore the protein expression of TRAF6 by Western blot. Our results indicated that TRAF6 expression was upregulated in human glioma cell lines, especially in metastatic cell lines. To investigate the role of TRAF6 in cell proliferation, apoptosis, invasion, and migration of glioma, we generated human glioma U-87MG cell lines in which TRAF6 was either overexpressed or depleted. Subsequently, the effects of TRAF6 on cell viability, cell cycle distribution, apoptosis, invasion, and migration in U-87MG cells were determined with 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide (MTT) assay, flow cytometry analysis, transwell invasion assay, and wound-healing assay. The results showed that knockdown of TRAF6 could decrease cell viability, suppress cell proliferation, invasion and migration, and promote cell apoptosis, whereas overexpression of TRAF6 displayed the opposite effects. In addition, the effects of TRAF6 on the expression of phosphor-NF-κB (p-p65), cyclin D1, caspase 3, and MMP-9 were also probed. Knockdown of TRAF6 could lower the expression of p-p65, cyclin D1, and MMP-9, and raise the expression of caspase 3. All these results suggested that TRAF6 might be involved in the potentiation of growth, proliferation, invasion, and migration of U-87MG cell, as well as inhibition of apoptosis of U-87MG cell by abrogating activation of NF-κB.  相似文献   

5.
The dual-specificity tyrosine-regulated kinases DYRK1A and DYRK1B play a key role in controlling the quiescence-proliferation switch in cancer cells. Serum reduction of U87MG 2D cultures or multi-cellular tumour spheroids induced a quiescent like state characterized by increased DYRK1B and p27, and decreased pRb and cyclin D1. VER-239353 is a potent, selective inhibitor of the DYRK1A and DYRK1B kinases identified through fragment and structure-guided drug discovery. Inhibition of DYRK1A/B by VER-239353 in quiescent U87MG cells increased pRb, DYRK1B and cyclin D1 but also increased the cell cycle inhibitors p21 and p27. This resulted in exit from G0 but subsequent arrest in G1. DYRK1A/B inhibition reduced the proliferation of U87MG cells in 2D and 3D culture with greater effects observed under reduced serum conditions. Paradoxically, the induced re-expression of cell cycle proteins by DYRK1A/B inhibition further inhibited cell proliferation. Cell growth arrest induced in quiescent cells by DYRK1A/B inhibition was reversible through the addition of growth-promoting factors. DYRK inhibition-induced DNA damage and synergized with a CHK1 inhibitor in the U87MG spheroids. In vivo, DYRK1A/B inhibition-induced tumour stasis in a U87MG tumour xenograft model. These results suggest that further evaluation of VER-239353 as a treatment for glioblastoma is therefore warranted.  相似文献   

6.
Aldosterone regulation of T-type calcium channels   总被引:1,自引:0,他引:1  
Voltage-operated calcium channels play a crucial role in signal transduction in many excitable and non-excitable cell types. While a rapid modulation of their activity by hormone-activated kinases and/or G proteins has been recognized for a long time, a sustained control of their expression level has been only recently demonstrated. In adrenal H295R cells, for example, aldosterone treatment selectively increased low threshold T-type calcium current density without affecting L-type currents. Antagonizing the mineralocorticoid receptor (MR) with spironolactone prevented aldosterone action on T-type currents. By RT-PCR, we detected in these cells the presence of two different isoforms of L-type channels, alpha(1)C and alpha(1)D, and one isoform of T channel, alpha(1)H. A second T channel isoform (alpha(1)G) was also observed under particular culture conditions. Quantification of the specific messenger RNA by real time RT-PCR allowed us to show a 40% increase of the alpha1H messenger levels upon aldosterone treatment (alpha(1)G was insensitive), a response that was also completely prevented by spironolactone. Because T-type, but not L-type channel activity is linked to steroidogenesis, this modulation represents a positive, intracrine feed back mechanism exerted by aldosterone on its own production.Aldosterone has been also implicated in the pathogenesis and progression of ventricular hypertrophy and heart failure independently of its action on arterial blood pressure. We have observed that, in rat neonatal cardiomyocytes, aldosterone increases (by two-fold) L-type calcium current amplitude in ventricular but not in atrial cells. No significant effect of aldosterone could be detected on T-type currents, that were much smaller than L-type currents in these cells. However, aldosterone exerted opposite effects on T channel isoform expression, increasing alpha(1)H and decreasing alpha(1)G. Although the functional role of T channels is still poorly defined in ventricular cardiomyocytes, an overexpression of alpha(1)H could be partially responsible for the arrhythmias linked to hyperaldosteronism.Finally, T channels also appear to be involved in the neuroendocrine differentiation of prostate epithelial cells, a poor prognosis in prostate cancer. We have shown that the only calcium channel expressed in the prostatic LNCaP cells is the alpha(1)H isoform and that induction of cell differentiation with cAMP leads to a concomitant increase in both T-type current and alpha(1)H mRNA. In spite of the presence of MR in these cells, aldosterone only modestly increased alpha(1)H mRNA levels. A functional role for these channels was suggested by the observation that low nickel concentrations prevent neuritic process outgrowth.In conclusion, it appears that T-type calcium channel expression vary in different patho-physiological conditions and that aldosterone, in several cell types, is able to modulate this expression.  相似文献   

7.
8.
Lu F  Chen H  Zhou C  Liu S  Guo M  Chen P  Zhuang H  Xie D  Wu S 《Cell calcium》2008,43(1):49-58
In the present study the role of T-type Ca(2+) channels in cancer cell proliferation was examined. Seventeen human esophageal cancer cell lines were screened for T-type channels using RT-PCR and voltage-clamp recordings. mRNAs for all three T-type channel alpha(1)-subunits (alpha(1G), alpha(1H), and alpha(1I)) were detected in all 17 cell lines: either alpha(1H) alone, alpha(1H) and alpha(1G), or all three T-type alpha(1)-subunits. Eleven cell lines were further subjected to voltage-clamp recordings: one, i.e. the TE8 cell line, was found to exhibit a typical T-type current while others exhibited a minimal or no T-type current. Cell proliferation assays were performed in the presence or absence of T-type channel blocker mibefradil in KYSE150, KYSE180 and TE1 cells expressing mRNA for T-type channel alpha(1)-subunits but lacking T-type current, and TE8 cells exhibiting T-type current. Only TE8 cell proliferation was reduced by mibefradil. Silencing the alpha(1G)-gene that encodes functional T-type Ca(2+) channels in TE8 cells with type-specific shRNA transduction also significantly decreased TE8 cell proliferation. The reduction of cell proliferation in TE8 cells was found to be associated with an up-regulation of p21(CIP1). Moreover, p53 silencing nearly abolished the up-regulation of p21(CIP1) resulting from mibefradil T-type channel blockade. Together, these findings suggest a functional role of T-type channels in certain esophageal carcinomas, and that inhibition of T-type channels reduces cell proliferation via a p53-dependent p21(CIP1) pathway.  相似文献   

9.
Cucurbitacin E (CuE), an active compound of the cucurbitacin family, possesses a variety of pharmacological functions and chemotherapy potential. Cucurbitacin E exhibits inhibitory effects in several types of cancer; however, its anticancer effects on brain cancer remain obscure and require further interpretation. In this study, efforts were initiated to inspect whether CuE can contribute to anti‐proliferation in human brain malignant glioma GBM 8401 cells and glioblastoma‐astrocytoma U‐87‐MG cells. An MTT assay measured CuE's inhibitory effect on the growth of glioblastomas (GBMs). A flow cytometry approach was used for the assessment of DNA content and cell cycle analysis. DNA damage 45β (GADD45β) gene expression and CDC2/cyclin‐B1 disassociation were investigated by quantitative real‐time PCR and Western blot analysis. Based on our results, CuE showed growth‐inhibiting effects on GBM 8401 and U‐87‐MG cells. Moreover, GADD45β caused the accumulation of CuE‐treated G2/M‐phase cells. The disassociation of the CDC2/cyclin‐B1 complex demonstrated the known effects of CuE against GBM 8401 and U‐87‐MG cancer cells. Additionally, CuE may also exert antitumour activities in established brain cancer cells. In conclusion, CuE inhibited cell proliferation and induced mitosis delay in cancer cells, suggesting its potential applicability as an antitumour agent.  相似文献   

10.
11.
In this study, we have investigated the role of a glioma-specific cation channel assembled from subunits of the Deg/epithelial sodium channel (ENaC) superfamily, in the regulation of migration and cell cycle progression in glioma cells. Channel inhibition by psalmotoxin-1 (PcTX-1) significantly inhibited migration and proliferation of D54-MG glioma cells. Both PcTX-1 and benzamil, an amiloride analog, caused cell cycle arrest of D54-MG cells in G(0)/G(1) phases (by 30 and 40%, respectively) and reduced cell accumulation in S and G(2)/M phases after 24 h of incubation. Both PcTX-1 and benzamil up-regulated expression of cyclin-dependent kinase inhibitor proteins p21(Cip1) and p27(Kip1). Similar results were obtained in U87MG and primary glioblastoma multiforme cells maintained in primary culture and following knockdown of one of the component subunits, ASIC1. In contrast, knocking down δENaC, which is not a component of the glioma cation channel complex, had no effect on cyclin-dependent kinase inhibitor expression. Phosphorylation of ERK1/2 was also inhibited by PcTX-1, benzamil, and knockdown of ASIC1 but not δENaC in D54MG cells. Our data suggest that a specific cation conductance composed of acid-sensing ion channels and ENaC subunits regulates migration and cell cycle progression in gliomas.  相似文献   

12.
The regulation of GTP-binding proteins (G proteins) was examined during the course of differentiation of neuroblastoma N1E-115 cells. N1E-115 cell membranes possess three Bordetella pertussis toxin (PTX) substrates assigned to alpha-subunits (G alpha) of Go (a G protein of unknown function) and "Gi (a G protein inhibitory to adenylate cyclase)-like" proteins and one substrate of Vibrio cholerae toxin corresponding to an alpha-subunit of Gs (a G protein stimulatory to adenylate cyclase). In undifferentiated cells, only one form of Go alpha was found, having a pI of 5.8 Go alpha content increased by approximately twofold from the undifferentiated state to 96 h of cell differentiation. This is mainly due to the appearance of another Go alpha form having a pI of 5.55. Both Go alpha isoforms have similar sizes on sodium dodecyl sulfate-polyacrylamide gels, are recognized by polyclonal antibodies to bovine brain Go alpha, are ADP-ribosylated by PTX, and are covalently myristylated in whole N1E-115 cells. In addition, immunofluorescent staining of N1E-115 cells with Go alpha antibodies revealed that association of Go alpha with the plasma membrane appears to coincide with the expression of the most acidic isoform and morphological cell differentiation. In contrast, the levels of both Gi alpha and Gs alpha did not significantly change, whereas that of the common beta-subunit increased by approximately 30% over the same period. These results demonstrate specific regulation of the expression of Go alpha during neuronal differentiation.  相似文献   

13.
Muscarinic receptors, expressed in several primary and metastatic tumours, appear to be implicated in their growth and propagation. In this work we have demonstrated that M2 muscarinic receptors are expressed in glioblastoma human specimens and in glioblastoma cell lines. Moreover, we have characterized the effects of the M2 agonist arecaidine on cell growth and survival both in two different glioblastoma cell lines (U251MG and U87MG) and in primary cultures obtained from different human biopsies. Cell growth analysis has demonstrated that the M2 agonist arecaidine strongly decreased cell proliferation in both glioma cell lines and primary cultures. This effect was dose and time dependent. FACS analysis has confirmed cell cycle arrest at G1/S and at G2/M phase in U87 cells and U251 respectively. Cell viability analysis has also shown that arecaidine induced severe apoptosis, especially in U251 cells. Chemosensitivity assays have, moreover, shown arecaidine and temozolomide similar effects on glioma cell lines, although IC50 value for arecaidine was significantly lower than temozolomide. In conclusion, we report for the first time that M2 receptor activation has a relevant role in the inhibition of glioma cell growth and survival, suggesting that M2 may be a new interesting therapeutic target to investigate for glioblastoma therapy.  相似文献   

14.
Chronic membrane depolarization results in an increase in muscarinic acetylcholine receptor (mAChR) number in N1E-115 neuroblastoma cells. Because the mAChR interacts with the guanine nucleotide binding regulatory (G) proteins, Gi and Go, the effect of chronic membrane depolarization on the levels of subunits of these G proteins was examined. Quantitation of G protein subunit levels was performed using affinity-purified, monospecific antibodies in a quantitative immunoblot assay. Incubation with 50 microM veratridine (VTN), an activator of voltage-sensitive Na+ channels, induced a 48 +/- 15% increase in the level of the alpha subunit of Go. The effect of VTN was blocked by tetrodotoxin. On removal of VTN, the level of Go alpha decreased to control levels within 24 h. The levels of the alpha subunit of Gi and the common beta subunit were not affected by VTN treatment. These results show that in N1E-115 cells, the level of the alpha subunit of Go is regulated in a manner similar to the level of mAChR in response to chronic membrane depolarization.  相似文献   

15.
We have cloned and expressed a human alpha(1I) subunit that encodes a subtype of T-type calcium channels. The predicted protein is 95% homologous to its rat counterpart but has a distinct COOH-terminal region. Its mRNA is detected almost exclusively in the human brain, as well as in adrenal and thyroid glands. Calcium currents generated by the functional expression of human alpha(1I) and alpha(1G) subunits in HEK-293 cells were compared. The alpha(1I) current activated and inactivated approximately 10 mV more positively. Activation and inactivation kinetics were up to six times slower, while deactivation kinetics was faster and showed little voltage dependence. A slower recovery from inactivation, a lower sensitivity to Ni(2+) ions (IC(50) approximately 180 micrometer), and a larger channel conductance (approximately 11 picosiemens) were the other discriminative features of the alpha(1I) current. These data demonstrate that the alpha(1I) subunit encodes T-type Ca(2+) channels functionally distinct from those generated by the human alpha(1G) or alpha(1H) subunits and point out that human and rat alpha(1I) subunits have species-specific properties not only in their primary sequence, but also in their expression profile and electrophysiological behavior.  相似文献   

16.
We have previously reported that As(2)O(3) affected cell cycle progression and cyclins D1 and B1 expression in two glioma cell lines differing in p53 status (U87MG-wt; T98G-mutated). In the present study, we further demonstrated that As(2)O(3) affected proliferation, viability and apoptosis of the two cell lines in a dose- and time-dependent manner, and T98G cells were more sensitive than U87MG cells to As(2)O(3) -induced apoptosis and inhibition of proliferation and viability. We further investigated the expression profiles of genes related with apoptosis and cell cycle in the two cell lines with a human cDNA-microarray (SuperArray) spotted with 267 genes of apoptosis and cell cycle. Thirty five genes were upregulated and 15 genes downregulated at least 2-fold by As(2)O(3) in U87-MG cells; whereas, 38 genes were upregulated and 21 genes downregulated at least 2-fold in T98G cells by As(2)O(3). After As(2)O(3) treatment, p53 expression was upregulated 56.5-fold in T98G cells, but only 6.0-fold in U87MG cells. The results indicate that As(2)O(3) suppresses the growth of U87MG cells mainly by regulating expression of genes of cell cycle arrest, stress and toxicity; whereas As(2)O(3) affects T98G cells mainly by regulating expression of genes belonging to Bcl-2, tumor necrotic factor receptor and ligand families. The data may be helpful for optimizing As(2)O(3) as an anti-cancer drug in the treatment of gliomas.  相似文献   

17.
Macrophage colony stimulating factor (MCSF) regulates growth, proliferation and differentiation of haematopoietic cell lineages. Many cancers are known to secrete high level of MCSF, which recruit macrophages into the tumour micro-environment, supporting tumour growth. Herein, we report the cloning of MCSF and subsequent generation of U87MG expressing MCSF stable cell line (U87-MCSF). Cytotoxicity of anti-cancer drug 5-fluorouracil (5-FU) was evaluated on both U87MG and U87-MCSF cells. Interestingly, the proliferation of U87-MCSF cells was less (p<0.001) than that of U87MG cells alone, after treatment with 5-FU. Significant decrease in expression levels of cyclin E and A2 quantified by real time PCR analysis corroborated the reduced proliferation of 5-FU treated U87-MCSF cells. However, JC-1 staining did not reveal any apoptosis upon 5-FU treatment. Notch-1 upregulation induced a possible epithelial-mesenchymal transition in U87-MCSF cells, which accounted for an increase in the proportion of CD24high/CD44less cancer stem cells in U87-MCSF cells after 5-FU treatment. The elevated resistance of U87-MCSF cells towards 5-FU was due to the increase in the expressions (10.2 and 6 fold) of ABCB1 and mdm2, respectively. Furthermore, increase in expressions of ABCG1, mdm2 and CD24 was also observed in U87MG cells after prolonged incubation with 5-FU. Our studies provided mechanistic insights into drug resistance of U87MG cells and also described the pivotal role played by MCSF in augmenting the resistance of U87MG cells to 5-FU.  相似文献   

18.
Low-Voltage-Activated (“T-Type”) Calcium Channels in Review   总被引:7,自引:0,他引:7  
The past 5 years has witnessed an advance in our understanding of alpha1G (Cav3.1), alpha1H (Cav3.2), and alpha11 (Car3.3), the pore-forming subunits of T-type or low-voltage-activated calcium channels (LVAs). LVAs differ in their localization and molecular, biophysical, and biochemical properties, but all conduct a transient calcium current in a variety of cells. T-type currents mediate a number of physiological functions in developing and mature cells, and are implicated in neural and cardiovascular diseases. Hampered by a lack of selective antagonists, characterization of T-type channels has come from recombinant channel studies and use of pharmacological and electrophysiological methods to isolate endogenous T-type currents. The surprising heterogeneity in T-type currents likely results from differences in LVA molecular composition, temporal and spatial localization, and association with modulatory molecules. A fundamental knowledge of LVA biochemical properties, including the molecular composition of endogenous LVAs and spatial and temporal characterization of protein expression, is necessary to elucidate mechanisms for regulation of expression and function in normal and diseased cells.  相似文献   

19.
20.
Increased expression of low voltage-activated, T-type Ca(2+) channels has been correlated with a variety of cellular events including cell proliferation and cell cycle kinetics. The recent cloning of three genes encoding T-type alpha(1) subunits, alpha(1G), alpha(1H) and alpha(1I), now allows direct assessment of their involvement in mediating cellular proliferation. By overexpressing the human alpha(1G) and alpha(1H) subunits in human embryonic kidney (HEK-293) cells, we describe here that, although T-type channels mediate increases in intracellular Ca(2+) concentrations, there is no significant change in bromodeoxyuridine incorporation and flow cytometric analysis. These results demonstrate that expressions of T-type Ca(2+) channels are not sufficient to modulate cellular proliferation of HEK-293 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号