首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on K+ permeability of rat gastric microsomes   总被引:2,自引:0,他引:2  
A population of gastric membrane vesicles of high K+ permeability and of lower density than endoplasmic tubulovesicles containing (H+-K+)-ATPase was detected in gastric mucosal microsomes from the rat fasted overnight. The K+-transport activity as measured with 86RbCl uptake had a Km for Rb+ of 0.58 +/- 0.11 mM and a Vmax of 13.7 +/- 1.9 nmol/min X mg of protein. The 86Rb uptake was reduced by 40% upon substituting Cl- with SO2-4 and inhibited noncompetitively by ATP and vanadate with a Ki of 3 and 30 microM, respectively; vanadate also inhibited rat gastric (H+-K+)-ATPase but with a Ki of 0.03 microM. Carbachol or histamine stimulation decreased the population of the K+-permeable light membrane vesicles, at the same time increased K+-transport activity in the heavy, presumably apical membranes of gastric parietal cells, and enabled the heavy microsomes to accumulate H+ ions in the presence of ATP and KCl without valinomycin. The secretagogue-induced shift of K+ permeability was blocked by cimetidine, a H2-receptor antagonist. Four characteristics of the K+ permeability as measured with 86RbCl were common in the resting light and the carbachol-stimulated heavy microsomes; (a) Km for +Rb, (b) anion sensitivity (Cl- greater than SO2-4), (c) potency of various divalent cations (Hg2+, Cu2+, Cd2+, and Zn2+) to inhibit Rb+ uptake, and (d) inhibitory effect of ATP, although the nucleotide sensitivity was latent in the stimulated heavy microsomes. The Vmax for 86RbCl uptake was about 10 times greater in the resting light than the stimulated heavy microsomes. These observations led us to propose that secretagogue stimulation induces the insertion of not only the tubulovesicles containing (H+-K+)-ATPase, but also the light membrane vesicles containing KCl transporter into the heavy apical membranes of gastric parietal cells.  相似文献   

2.
Melittin is a 26-amino acid amphipathic polypeptide toxin from bee venom which forms anion-selective ion channels in bilayers and biological membranes under the influence of membrane potential. Melittin has been shown to interact with a number of membrane proteins. We found that melittin inhibited K+-stimulated ATP hydrolysis by the (H+ + K+) ATPase in parietal cell apical membrane vesicles derived from histamine-stimulated rabbit gastric mucosa with a KIapp of 0.5 micron. Melittin also inhibited K+-stimulated p-nitrophenyl hydrolysis activity which is associated with the gastric (H+ + K+) ATPase in a dose-dependent manner with a KIapp of 0.95 micron. ATP-driven, K+-dependent H+ transport was inhibited over this same concentration range, even in the absence of a membrane potential. Melittin did not appear to increase the H+ leak from vesicle with preformed H+ gradients when the H+ pump was arrested by Mg2+ chelation, but all possible membrane perturbation effects were difficult to rule out. However, the data suggest that melittin exerts its inhibitory effect through interaction with the (H+ + K+) ATPase. In order to determine whether direct interactions between the (H+ + K+) ATPase and melittin occurred, a radioactive derivative of melittin, [125I]azidosalicylyl melittin, was prepared and photoreacted with sealed rabbit gastric membranes and highly purified hog gastric membrane containing the (H+ + K+) ATPase. In the purified hog preparation only a 95,000-Da band, the (H+ + K+) ATPase was labeled, while in the rabbit preparation a 95,000-Da band and one other membrane protein of 70,000 Da were labeled with this reagent. Label incorporation into the (H+ + K+) ATPase and the 70,000-Da band was greatly reduced by addition of excess unlabeled melittin, suggesting specificity of the interaction. Label incorporation occurred in the absence of ATP or added salts and was not reduced by SCH28080 (a K+ site inhibitor) suggesting that the melittin binding site was distinct from the luminal K+ site of action of SCH28080.  相似文献   

3.
Bovine thyroid tissue exhibited cAMP-dependent and Ca2+-dependent protein kinase activities as well as a basal (cAMP- and Ca2+-independent) one, and phosphoprotein phosphatase activity. Although the former two protein kinase activities were not clearly demonstrated using endogenous protein as substrate, they were clearly shown in soluble, particulate and plasma membrane fractions using exogenous histones as substrate. The highest specific activities were in the plasma membrane. The apparent Km values of cAMP and Ca2+ for the membrane-bound protein kinase were 5 . 10(-8) M and 8.3 . 10(-4) M in the presence of 1 Mm EGTA), respectively. The apparent Km values of Mg2+ were 7.10-4M (without (in the cAMP and Ca2+), 5 . 10(-4) M (with cAMP) and 1.3 . 10(-3) M (with Ca2+), and those of ATP were 3.5 . 10(-5)M (with or without cAMP) and 8.5 . 10(-5) M (with Ca2+). The Ca2+-dependent protein kinase could be dissociated from the membrane by EGTA-washing. The enzyme activity so released was further activated by added phospholipid (phosphatidylserine/1,3-diolein), but not by calmodulin. Phosphoprotein phosphatase activity was also clearly demonstrated in all of the fractions using 32P-labeled mixed histones as substrate. The activity was not modified by either cAMP or Ca2+, but was stimulated by a rather broad range (5-25 mM) of Mg2+ and Mn2+. NaCl and substrate concentrations also influenced the activity. Pyrophosphate, ATP, inorganic phosphate and NaF inhibited the activity in a dose-dependent manner. Trifluoperazine, chlorpromazine, dibucaine and Triton X-100 (above 0.05%, w/v) specifically inhibited the Ca2+-dependent protein kinase in plasma membranes. Repetitive phosphorylation of intrinsic and extrinsic proteins by the membrane-bound enzyme activities clearly showed an important co-ordination of them at the step of protein phosphorylation. These findings suggest that these enzyme activities in plasma membranes may contribute to regulation of thyroid function in response to external stimuli.  相似文献   

4.
Separation of the gradient-purified gastric microsome into two membrane subfractions of distinct enzymatic and phospholipid composition has been achieved by mild SDS (0.033% w/v) treatment followed by sucrose gradient centrifugation of the pig and rabbit gastric microsomes. While the high-density membranes had all of the (H+,K+)-ATPase and K+-pNPPase activities and revealed a single major 100-kDa band on SDS-PAGE, the low-density membranes contained all of the 5'-nucleotidase and nearly all of the Mg2+-ATPase. In the present study, the low-density subfraction has been characterized to be derived from the apical membranes and the high-density one from the intracellular tubulovesicular membranes of the parietal cells. Such characterization was based primarily on sole dependency of the apical plasma membranes on the endogenous activator for (H+,K+)-ATPase activity, differential sensitivity of the activator (AF)-dependent and -independent (H+,K+)-ATPase on micromolar vanadate and Ca2+, specific vitamin B12 binding ability of the apical plasmalemma, phospholipid and protein profiles of the two membrane subfractions, and other parameters. The AF, mentioned previously, has recently been implicated as a cytosolic regulator of the gastric (H+,K+)-ATPase [Bandopadhyay et al. (1987) J. Biol. Chem. 262, 5664-5670]. Two different forms (i.e., AF-dependent and -independent forms) of the (H+,K+)-ATPase are suggested to be present in the tubulovesicles on the basis of differential vanadate sensitivity while the AF-dependent form alone is present in the apical membranes. The data have been discussed in terms of stimulation-induced membrane transformation characteristic of the H+-secreting epithelia including the acid-secreting cells of the stomach.  相似文献   

5.
Gastric heavy microsomal membranes highly enriched in (H+-K+)-ATPase were obtained from cimetidine- or carbachol-treated rats through 2H2O and Percoll gradient centrifugations. Both the resting (cimetidine-treated) and the stimulated (carbachol-treated) heavy membranes which presumably represent the apical membrane of gastric parietal cells were enriched with the polypeptides of 81,000 and 45,000 besides that of 93,000 representing (H+-K+)-ATPase. No apparent differences could be detected between the resting and the stimulated heavy membranes in their polypeptide profiles or their specific activity of (H+-K+)-ATPase. Nevertheless, the level of 86RbCl uptake was greater in the stimulated than the resting heavy microsomal membrane vesicles. The light gastric microsomes which abound in intracellular tubulovesicles containing reserve (H+-K+)-ATPase as isolated from cimetidine-treated rats were similarly purified with respect to (H+-K+)-ATPase. The purified light gastric membranes were largely devoid of the polypeptides of 81,000 and 45,000 found in the heavy gastric membranes. These observations further support the current hypothesis that secretagogues bring about changes in the environment of (H+-K+)-ATPase and induce KCl permeability in the apical membrane of the parietal cells, although at present we have been unable to identify the polypeptide(s) responsible for the KCl pathway.  相似文献   

6.
Gastric vesicles purified from acid-secreting rabbit stomach display K(+) permeability manifested by the valinomycin-independent proton pumping of H(+)-K(+)-ATPase as monitored by acridine orange quenching. This apparent K(+) permeability is attenuated by the treatment of the membrane with 5 mM Mg(2+), and this phenomenon has been attributed to membrane-bound phosphoprotein phosphatase. However, with the exception of the nonspecific inhibitor pyrophosphate, protein phosphatase inhibitors failed to inhibit the loss of K(+) permeability. Preincubation of the membrane with neomycin, a phospholipase C inhibitor, surrogated the effect of Mg(2+), whereas another inhibitor, U-73122, did not. Phosphatidylinositol 4,5-bisphosphate (PIP(2)) restored the attenuated K(+) permeability by treatment with either Mg(2+) or neomycin. Furthermore, either phosphatidylinositol bound to phosphatidylinositol transfer protein or phosphatidylinositol 4,5,6-trisphosphate (PIP(3)) surrogated the effect of PIP(2). Mg(2+) and neomycin reduced K(+) permeability in the membrane as determined by Rb(+) influx and K(+)-dependent H(+) diffusion. Treatment with Mg(2+) reduced the contents of PIP(2) and PIP(3) in the membrane. These results suggest that PIP(2) and/or PIP(3) maintain K(+) permeability, which is essential for proton pumping in the apical membrane of the secreting parietal cell.  相似文献   

7.
Gastric K+-stimulated p-nitrophenylphosphatase cytochemistry   总被引:1,自引:0,他引:1  
K Fujimoto  K S Ogawa  K Ogawa 《Histochemistry》1986,84(4-6):600-608
A cytochemical study of gastric K+-stimulated p-nitrophenylphosphatase (K-NPPase) activity, corresponding to a K+-stimulated phosphoprotein phosphatase of H-K-ATPase system, has been made by a new cytochemical method. Sections of fixed guinea pig gastric mucosa in a mixture of 2% paraformaldehyde and 0.25% glutaraldehyde, were incubated with the incubation medium (1.0 M glycine-0.1 M KOH buffer, pH 9.0, 2.5 ml; 1.1 M KCl, 0.5 ml; 10 mM lead citrate dissolved in 50 mM KOH, 4 ml; levamisole, 6.0 mg; dimethyl sulfoxide, 2.0 ml; 0.1 M p-nitrophenylphosphate (Mg-salt), 1.0 ml; ouabain, 73.0 mg) for 30 min at room temperature. Under a light microscope the specific gastric K-NPPase reaction was distributed only in the parietal cells of the fundic glands. The electron microscopic cytochemistry showed that the gastric K-NPPase activity was localized on the membrane lining the apical surfaces, secretory canaliculi and tubulovesicles. On the other hand, ouabain-sensitive K-NPPase activity (Na-K-ATPase) was demonstrated to localize only in the basolateral membrane of parietal cells with Mayahara's method. These findings support the interrelationships between the apical surface membrane, secretory canalicular membrane and tubulovesicles, and the functional differentiation of the membrane between the secretory membrane and basolateral membrane.  相似文献   

8.
Sonic hedgehog (Shh) is found within gastric parietal cells and processed from a 45-kDa to a 19-kDa bioactive protein by an acid- and protease-dependent mechanism. To investigate whether Shh is associated with the parietal cell membrane compartment that becomes exposed to both acid and proteolytic enzymes during acid secretion, the cellular location of Shh within resting and stimulated gastric parietal cells was examined. Immunofluorescence microscopy of rabbit stomach sections showed that Shh colocalized predominantly with parietal and pit, not chief/zymogen or neck, cell markers. In resting and histamine-stimulated rabbit gastric glands Shh was expressed only in parietal cells close to H+-K+-ATPase-containing tubulovesicular and secretory membranes with some colocalizing with gamma-actin at the basolateral membrane. Gastric gland microsomal membranes were prepared by differential and sucrose gradient centrifugation and immunoisolation with an anti-H+-K+-ATPase-alpha subunit antibody. The 45- and 19-kDa Shh proteins were detected by immunoblot in immunopurified H+-K+-ATPase-containing membranes from resting and stimulated gastric glands, respectively. Incubating glands with a high KCl concentration removed Shh from the membranes. Histamine stimulated 19-kDa Shh secretion from gastric glands into the medium. In human gastric cancer 23132/87 cells cultured on permeable membranes, histamine increased 19-kDa Shh secretion into both apical and basolateral media. These findings show that Shh is a peripheral protein associated with resting and stimulated H+-K+-ATPase-expressing membranes. In addition, Shh appears to be expressed at or close to the basolateral membrane of parietal cells.  相似文献   

9.
The present work compares the effects of several ligands (phosphatase substrates, MgCl2, RbCl and inorganic phosphate) and temperature on the phosphatase activity and the E2(Rb) occluded conformation of Na+/K+-ATPase. Cooling from 37 degrees C to 20 degrees C and 0 degrees C (hydrolysis experiments) or from 20 degrees C to 0 degrees C (occlusion experiments) had the following consequences: (i) dramatically reduced the Vmax for p-nitrophenyl phosphate and acetyl phosphate hydrolysis but it produced little or no changes in the Km for the substrates; (ii) led to a 5-fold drop in the Km for the inorganic phosphate-induced di-occlusion of E2(Rb); (iii) reduced the K0.5 and curve sigmoidicity of the Rb-stimulated hydrolysis of p-nitrophenyl phosphate and acetyl phosphate and the Rb-promoted E2(Rb) formation. At 20 degrees C, in the presence of 1 mM RbCl and no Mg2+, acetyl phosphate did not affect E2(Rb); with 3 mM MgCl2, acetyl phosphate stimulated a release of Rb from E2(Rb) both in the presence and absence of RbCl in the incubation mixture. As a function of acetyl phosphate concentration the Km for iRb release was indistinguishable from the Km found for stimulation of hydrolysis and enzyme phosphorylation under identical experimental conditions; in addition, the extrapolated di-occluded fraction corresponding to maximal hydrolysis was not different from 100%. These results indicate that although E2(K) might be an intermediary in the phosphatase reaction, the most abundant enzyme conformation during phosphatase turnover is E2 which has no K+ occluded in it. The ligand interactions associated to phosphatase activity do not support an equivalence of this reaction with the dephosphorylation step in the Na+ + K+-dependent ATP hydrolysis; on the other hand, there are similarities with the reversible binding of inorganic phosphate in the presence of Mg2+ and K+ ions.  相似文献   

10.
Gastric mucosal homogenates from hog were fractionated by differential and density gradient centrifugation and free-flow electrophoresis. The two major membrane fractions (FI and FII) thus obtained are distinct both enzymically and in terms of transport reactivity. This heterogenicity extends to their antigenic activity. Purified antibodies which were raised against the K+-ATPase-containing H+ transport fraction FI were of two types: inhibitory and non-inhibitory. Inhibitory antibodies reduced the K+-ATPase activity by approximately 80% and the K+-p-nitro-phenylphosphatase activity by approximately 40% in a concentration-dependent manner, while the small Mg++-dependent component of the enzyme activity was unaffected. Antibodies inhibiting the K+-ATPase also inhibited H+ transport. These antibodies did not cross-react with the other major membrane fraction isolated by free- flow electrophoresis, FII, and gave a single band on rocket immunoelectrophoresis. Antibodies against this FII fraction also did not react with the K+-ATPase and were heterogeneous, giving at least four bands with rocket immunoelectrophoresis and inhibiting both the 5'- nucleotidase and Mg++-ATPase of this fraction. Immunofluorescent staining of tissue sections showed that the FI was derived from the parietal cell of gastric tissue and was localized to the supranuclear area of the cell. Staining of isolated rat gastric cell suspensions by FI antibodies confirmed the selectivity of the antibody and showed a polar, plasma membrane localization. FII antibodies also largely stained the parietal cells in tissue sections. In the 16 hog tissues tested, FI antibodies cross-reacted only with gastric fundus, thyroid and weakly with thymus. Immunoelectronmicroscopy showed that FI antibodies reacted strongly with the secretory membrane at the apical cell surface of the parietal cells and at the secretory canaliculi, weakly with the apical surface of the zymogen cell, and not with the basal-lateral surface of the cells. Thus, the protontranslocating ATPase is localized in the parietal cells and in the region postulated to be the site of acid secretion.  相似文献   

11.
Recent studies have suggested that the colonic H+,K+-ATPase (HKalpha2) can secrete either Na+ or H+ in exchange for K+. If correct, this view would indicate that the transporter could function as either a Na+ or a H+ pump. To investigate this possibility a series of experiments was performed using apical membranes from rat colon which were enriched in colonic H+,K+-ATPase protein. An antibody specific for HKalpha2 was employed to determine whether HKalpha2 functions under physiological conditions as a Na+-dependent or Na+-independent K+-ATPase in this same membrane fraction. K+-ATPase activity was measured as [gamma-32P]ATP hydrolysis. The Na+-dependent K+-ATPase accounted for approximately 80% of overall K+-ATPase activity and was characterized by insensitivity to Sch-28080 but partial sensitivity to ouabain. The Na+-independent K+-ATPase activity was insensitive to both Sch-28080 and ouabain. Both types of K+-ATPase activity substituted NH4+ for K+ in a similar manner. Furthermore, our results demonstrate that when incubated with native distal colon membranes, the blocking antibody inhibited dramatically Na+-dependent K+-ATPase activity. Therefore, these data demonstrate that HKalpha2 can function in native distal colon apical membranes as a Na+-dependent K+-ATPase. Elucidation of the role of the pump as a transporter of Na+ versus H+ or NH4+ versus K+ in vivo will require additional studies.  相似文献   

12.
High-pressure freezing (HPF) is currently the most reliable method to obtain an adequately frozen sample for high-resolution morphological evaluation. Here we applied the HPF technique to isolated rabbit gastric glands to reveal structural evidence that may be correlated with functional activity of gastric parietal cells. This approach provided well-preserved fine structure and excellent antigenicity of several parietal cell proteins. Microtubules were abundant in the cytoplasm and frequently appeared to be associating with tubulovesicles. Interestingly, many electron-dense coated vesicles were apparent around the intracellular canaliculi (IC) of resting parietal cells, consistent with active membrane retrieval from the apical membranes. Immunolabeling of H+/K+-ATPase was evident on the endocytic components (e.g., multivesicular bodies) and tubulovesicles. After histamine stimulation, the parietal cells characteristically showed expanded IC membranes with varied features of their apical microvilli. The labeling density of H+/K+-ATPase was four-fold higher on the IC membrane of stimulated parietal cells than on that of resting parietal cells. Immunolabeling of ezrin was clearly identified on the IC and basolateral membranes of parietal cells, corresponding to their F-actin-rich sites. The present findings provide a new insight into the correlation of cell structure and function in gastric parietal cells.  相似文献   

13.
Ion transporters play a central role in gastric acid secretion. To determine whether some of these transporters are necessary for the normal ultrastructure of secretory membranes in gastric parietal cells, mice lacking transporters for H+, K+, Cl-, and Na+ were examined for alterations in volume density (Vd) of basolateral, apical, tubulovesicular and canalicular membranes, microvillar dimensions, membrane flexibility, and ultrastructure. In mice lacking Na+/H+ exchanger 1 (NHE1) or the Na+-K+-2Cl- cotransporter (NKCC1), the ultrastructure and Vd of secretory membranes and the secretory canalicular to tubulovesicular membrane ratio (SC/TV), a morphological correlate of secretory activity, were similar to those of wild-type mice. In mice lacking Na+/H+ exchanger 2 (NHE2) or gastric H+, K+ -ATPase alpha- or beta-subunits, the SC/TV ratio and Vd of secretory membranes were decreased, though canaliculi were often dilated. In H+, K+ -ATPase-deficient parietal cells, canalicular folds were decreased, normally abundant tubulovesicles were replaced with a few rigid round vesicles, and microvilli were sparse, stiff and short, in contrast to the long and flexible microvilli in wild-type cells. In addition, microvilli of the H+, K+ -ATPase-deficient parietal cells had centrally bundled F-actin filaments, unlike the microvilli of wild-type cells, in which actin filaments were peripherally positioned concentric to the plasmalemma. Data showed that the absence of H+, K+ -ATPase produced fundamental changes in parietal cell membrane ultrastructure, suggesting that the pump provides an essential link between the membranes and F-actin, critical to the gross architecture and suppleness of the secretory membranes.  相似文献   

14.
We have examined histamine- or carbachol-induced changes in rat gastric membranes enriched in K+-stimulated ATPase. Stimulation of secretion by both secretagogues in vivo produced a class of microsomal membranes which exhibited valinomycin-independent, KCl-dependent H+ transport. In contrast, membrane vesicles isolated from cimetidine inhibited resting mucosa exhibited largely the ionophore-dependent H+ transport. In addition, only in the carbachol-stimulated membranes a portion of the ionophore-independent H+ transport was refractory to cimetidine pretreatment. The gastric microsomal membranes were resolved into light and heavy fractions by centrifugation over isotonic 2H2O media. The ionophore-independent H+ transport was almost exclusively associated with the heavy microsomal fraction while the ionophore-dependent H+ transport was detected in the light fraction. Also, these fractions were considerably different from each other in their appearance in electron micrographs and SDS gel electrophoresis patterns. Secretagogue stimulation increased the population of the heavy microsomal membrane vesicles exhibiting the valinomycin-independent, K+-dependent H+ transport and their overall content of K+-stimulated ATPase. Cimetidine treatment, on the other hand, increased the ATPase activity associated with the light microsomes, and produced the heavy microsomal membranes showing only a marginal degree of the ionophore independent H+ accumulation, even though they were very similar to the carbachol-stimulated heavy membranes in the specific activity of K+-stimulated ATPase. SDS gel patterns and appearance in electron micrograph. These observations suggest that activation of secretion involves at least two distinctive events; transformation of the light to the heavy gastric membranes containing a K+-dependent H+ pump and an increased KCl permeability in the latter.  相似文献   

15.
Solubilization of active (H+ + K+)-ATPase from gastric membrane   总被引:2,自引:0,他引:2  
(H+ + K+)-ATPase-enriched membranes were prepared from hog gastric mucosa by sucrose gradient centrifugation. These membranes contained Mg2+-ATPase and p-nitrophenylphosphatase activities (68 +/- 9 mumol Pi and 2.9 +/- 0.6 mumol p-nitrophenol/mg protein per h) which were insensitive to ouabain and markedly stimulated by 20 mM KCl (respectively, 2.2- and 14.8-fold). Furthermore, the membranes autophosphorylated in the absence of K+ (up to 0.69 +/- 0.09 nmol Pi incorporated/mg protein) and dephosphorylated by 85% in the presence of this ion. Membrane proteins were extracted by 1-2% (w/v) n-octylglucoside into a soluble form, i.e., which did not sediment in a 100 000 X g X 1 h centrifugation. This soluble form precipitated upon further dilution in detergent-free buffer. Extracted ATPase represented 32% (soluble form) and 68% (precipitated) of native enzyme and it displayed the same characteristic properties in terms of K+-stimulated ATPase and p-nitrophenylphosphatase activities and K+-sensitive phosphorylation: Mg2+-ATPase (mumol Pi/mg protein per h) 32 +/- 9 (basal) and 86 +/- 20 (K+-stimulated); Mg2+-p-nitrophenylphosphatase (mumol p-nitrophenol/mg protein per h) 2.6 +/- 0.5 (basal) and 22.2 +/- 3.2 (K+-stimulated); Mg2+-phosphorylation (nmol Pi/mg protein) 0.214 +/- 0.041 (basal) and 0.057 +/- 0.004 (in the presence of K+). In glycerol gradient centrifugation, extracted enzyme equilibrated as a single peak corresponding to an apparent 390 000 molecular weight. These findings provide the first evidence for the solubilization of (H+ + K+)-ATPase in a still active structure.  相似文献   

16.
K+- and ATP-dependent H+-accumulation in rat heavy gastric membrane vesicles enriched with (H+-K+)-ATPase was markedly stimulated by amphiphiles like lysophosphatidylcholine and Zwittergent 3-14 at concentrations of 10(-5) M. Their stimulatory effect was dependent on K+-concentration in the medium and was abolished by SCH 28,080, a specific inhibitor of (H+-K+)-ATPase. Lysophosphatidylcholine at the optimal dose (3 X 10(-5) M) showed dual effects on K+-dependent membrane functions; it stimulated the rate of K+-uptake by nearly 60%, but partially inhibited SCH 28,080-sensitive and K+-dependent ATP-hydrolysis (about 20% reduction). These data indicate that H+-pumping through (H+-K+)-ATPase in the inside-out gastric membrane vesicles was facilitated by the stimulatory effect of lysophosphatidylcholine on membrane K+-transport in spite of its partial inhibition of ATP-hydrolysis. It appears that the rate limiting step for operation of the ATPase is the availability of K+ ions in the luminal side of the pump. We propose that ionic amphiphiles may modulate K+-transport in rat heavy gastric membranes through specific interactions with the putative K+-transporter.  相似文献   

17.
Interaction of fluorescein isothiocyanate with the (H+ + K+)-ATPase   总被引:4,自引:0,他引:4  
Fluorescein isothiocyanate was used to covalently label the gastric (H+ + K+)-ATPase. FITC treatment of the enzyme inhibited the ATPase activity while largely sparing partial reactions such as the associated p-nitrophenylphosphatase activity. ATP protected against inhibition suggesting the ligand binds at or near an ATP binding site. At 100% inhibition the stoichiometry of binding was 1.5 nmol FITC per mg Lowry protein a value corresponding to maximal phosphoenzyme formation. Binding occurred largely to a peptide of 6.2 isoelectric point, although minor labelling of a peptide of pI 5.6 was also noted. Fluorescence was quenched by K+, Rb+ and Tl+ in a dose-dependent manner, and the K0.5 values of 0.28, 0.83 and 0.025 mM correspond rather well to the values required for dephosphorylation at a luminal site. Vanadate, a known inhibitor of the gastric ATPase produced a slow Mg2+-dependent fluorescent quench. Ca2+ reversed the K+-dependent loss of fluorescence and inhibited it when added prior to K+. This may relate to the slow phosphorylation in the presence of ATP found when Ca2+ was substituted for Mg2+ and the absence of K+-dependent dephosphorylation. The results with FITC-modified gastric ATPase provide evidence for a conformational change with K+ binding to the enzyme.  相似文献   

18.
During ATP hydrolysis the K+-translocating Kdp-ATPase from Escherichia coli forms a phosphorylated intermediate as part of the catalytic cycle. The influence of effectors (K+, Na+, Mg2+, ATP, ADP) and inhibitors (vanadate, N-ethylmaleimide, bafilomycin A1) on the phosphointermediate level and on the ATPase activity was analyzed in purified wild-type enzyme (apparent Km = 10 microM) and a KdpA mutant ATPase exhibiting a lower affinity for K+ (Km = 6 mM). Based on these data we propose a minimum reaction scheme consisting of (i) a Mg2+-dependent protein kinase, (ii) a Mg2+-dependent and K+-stimulated phosphoprotein phosphatase, and (iii) a K+-independent basal phosphoprotein phosphatase. The findings of a K+-uncoupled basal activity, inhibition by high K+ concentrations, lower ATP saturation values for the phosphorylation than for the overall ATPase reaction, and presumed reversibility of the phosphoprotein formation by excess ADP indicated similarities in fundamental principles of the reaction cycle between the Kdp-ATPase and eukaryotic E1E2-ATPases. The phosphoprotein was tentatively characterized as an acylphosphate on the basis of its alkali-lability and its sensitivity to hydroxylamine. The KdpB polypeptide was identified as the phosphorylated subunit after electrophoretic separation at pH 2.4, 4 degrees C of cytoplasmic membranes or of purified ATPase labeled with [gamma-32P]ATP.  相似文献   

19.
In experiments performed at 37 degrees C, Ca2+ reversibly inhibits the Na+-and (Na+ + K+)-ATPase activities and the K+-dependent phosphatase activity of (Na+ + K+)-ATPase. With 3 mM ATP, the Na+-ATPase was less sensitive to CaCl2 than the (Na+ + K+)-ATPase activity. With 0.02 mM ATP, the Na+-ATPase and the (Na+ + K+)-ATPase activities were similarly inhibited by CaCl2. The K0.5 for Ca2+ as (Na+ + K+)-ATPase inhibitor depended on the total MgCl2 and ATP concentrations. This Ca2+ inhibition could be a consequence of Ca2+-Mg2+ competition, Ca . ATP-Mg . ATP competition or a combination of both mechanisms. In the presence of Na+ and Mg2+, Ca2+ inhibited the K+-dependent dephosphorylation of the phosphoenzyme formed from ATP, had no effect on the dephosphorylation in the absence of K+ and inhibited the rephosphorylation of the enzyme. In addition, the steady-state levels of phosphoenzyme were reduced in the presence both of NaCl and of NaCl plus KCl. With 3 mM ATP, Ca2+ alone sustained no more than 2% of the (Na+ + K+)-ATPase activity and about 23% of the Na+-ATPase activity observed with Mg2+ and no Ca2+. With 0.003 mM ATP, Ca2+ was able to maintain about 40% of the (Na+ + K+)-ATPase activity and 27% of the Na+-ATPase activity seen in the presence of Mg2+ alone. However, the E2(K)-E1K conformational change did not seem to be affected. Ca2+ inhibition of the K+-dependent rho-nitrophenylphosphatase activity of the (Na+ + K+)-ATPase followed competition kinetics between Ca2+ and Mg2+. In the presence of 10 mM NaCl and 0.75 mM KCl, the fractional inhibition of the K+-dependent rho-nitrophenylphosphatase activity as a function of Ca2+ concentration was the same with and without ATP, suggesting that Ca2+ indeed plays the important role in this process. In the absence of Mg2+, Ca2+ was unable to sustain any detectable ouabain-sensitive phosphatase activity, either with rho-nitrophenylphosphate or with acetyl phosphate as substrate.  相似文献   

20.
Ba2+ at low concentrations (1 mM or lower) stimulates the basal and K+-stimulated para-nitrophenyl phosphatase activity associated with the purified microsomal fractions from the oxyntic cells of bullfrog gastric mucosa. However, at higher concentrations Ba2+ acts as a competitive inhibitor of the K+-stimulated phosphatase. Ba2+ alone, in absence of any Mg2+, cannot maintain the enzyme activity; hence Ba2+ can only influence or modulate the Mg2+-dependent phosphatase. The effects are unique for Ba2+ because all other divalent cations such as Ca2+ and Zn2+ act as inhibitors of this enzyme under similar conditions. The data offer a possible biochemical basis for the known pharmacological effects of Ba2+ in gastric acid secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号