首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 680 毫秒
1.
To improve our understanding of the mechanism of chilling injuryin chill-sensitive callus (Cornus stolontfera), early changesin cell permeability and respiratory activity were studied.Partial leakage of amino acids and an abrupt increase in permeationand oxidation of added dopamine were characteristic of chilledcallus in the late stage of chilling at 0?C (48 hr), when mostof the callus sustained severe injury. However, little or nochange in cell permeability was observed in the early stageof chilling (within 24 hr), when calli retained their viabilityfor growth after transfer to a warm temperature. These resultssuggest that changes in the cell membranes per se are by nomeans the primary step in cell injury. Temporary depressionof respiratory activity was detected soon after chilling for12 hr, but activity appeared to return to the original levelon further chilling up to 24 hr. An irreversible dysfunction,however, occurred in the respiratory system on prolonged chillingup to 48 hr. This implies that irreversible impairment of mitochondrialfunctions may not be involved in the early stage of the cellinjury. A possible relationship between these observed changesand ultrastructural changes in chilled cells is discussed. 1Contribution No. 2153 from the Institute of Low TemperatureScience. (Received June 6, 1979; )  相似文献   

2.
Yoshida S 《Plant physiology》1994,104(4):1131-1138
Cold-induced changes in vivo in the cytoplasmic pH of suspension-cultured cells of mung bean (Vigna radiata [L.] Wilczek) were investigated by fluorescence-ratio imaging cryomicroscopy with special reference to the variations in the chilling sensitivity of cells during the growth cycle. Because of the preferential localization of the fluorophore in the cytoplasm under specified conditions and the ideal response of fluorescence to pH, fluorescein diacetate allows measurements to be made of temporal changes in cytoplasmic pH at low temperature. A remarkable difference was demonstrated in the cold-induced changes in cytoplasmic pH between cells at the early and late stages of exponential growth. The cells at the early stage of exponential growth were most sensitive to chilling, and the cytoplasmic pH decreased dramatically within a short period of incubation at 0[deg]C, decreasing from 7.4 to 6.8 after 4 h and to 6.3 after 18 h. The cells at the late stage of exponential growth were chilling tolerant, and no significant decrease in the cytoplasmic pH was observed during the incubation at 0[deg]C for 24 h or even longer. From the results presented here, it appears that cold-induced cytoplasmic acidosis is characteristic of chilling-sensitive mung bean suspension-cultured cells.  相似文献   

3.
By feeding radioisotopic precursors of RNA ([5-3H]uracil and[5-3H]uridine) to cells of Chlorella ellipsoidea at variousstages in the cell cycle effected by autotrophic synchronousculture, we examined synthetic rates of the chloroplast andthe cytoplasmic ribosomal ribonucleic acids (chl-rRNA and cyt-rRNA,respectively). The net incorporation of the precursors intochl-rRNA was higher than that into cyt-rRNA in the early stagesof the cell cycle, and vice versa in the late stages. The specificactivity of chl-rRNA was extremely high, and this phenomenonwas likely to be intrinsic to small cells at the start of thecell cycle under autotrophic conditions, namely, cell-cyclestagespecific. We conclude that algal cells grown autotrophicallysynthesize chl-rRNA at a distinctly higher rate than cyt-rRNAin the early stages of the cell cycle. (Received July 21, 1978; )  相似文献   

4.
Changes in the contents of major endogenous plant hormones intobacco crown gall cells, namely IAA and ribosyl-trans-zeatin,during cell growth were examined using HPLC and 14C-labeledplant hormones. The content of IAA was high at the early logarithmicstage, while that of ribosyl-trans-zeatin was high at the middlelogarithmic stage. This suggests that cell growth is affectedfirst by IAA, then by ribosyl-trans-zeatin. 3 Present address: Department of Agricultural Chemistry, TottoriUniversity, Koyama, Tottori 680, Japan (Received July 13, 1981; Accepted September 11, 1981)  相似文献   

5.
We have developed a cell suspension culture from alligator weed(Alternanthera philoxeroides [Mart.] Griseb), a C3 member ofthe Amaranthaceae. Intact plants of alligator weed can growat 400 mol m–3 NaCl. Growth of alligator weed suspensionswas compared to growth of tobacco (Nicotiana tabacum L. cv.Wisconsin 38) suspensions after subculture to 200 mol m–3NaCl. Fresh weight and cell density of salt-treated alligatorweed suspensions more than doubled by 7 d after subculture,but the fresh weight of salt-treated tobacco suspensions didnot double during the 21 d experiment. Correspondingly, cellviability dropped from about 90% to 77% in alligator weed andto 41% in tobacco, at 1 d after subculture to 200 mol m–3NaCl. The symplastic volume of alligator weed cells declined36% by 2 h after subculture to 200 mol m–3 NaCl, but cellcontents became iso-osmotic with the media at this point. Between2 h and 6 h there was a further decrease in osmotic potential,an increase in turgor potential and a partial recovery of symplasticvolume. Turgor potential was similar to that in control cellsby 24 h, indicating significant osmotic adjustment. Turgor potentialsremained similar in both treatments from 24 h through 21 d butthe average symplastic volume of salt-treated cells was 11 %less than in control cells. Therefore, alligator weed suspensioncells exhibit a rapid recovery of water balance and cell growthafter an abrupt and substantial increase in salinity. Key words: Cell culture, growth, osmotic adjustment, salinity, turgor potential  相似文献   

6.
Tolerance to NaCl was studied in cell suspension cultures ofKosteletzkya virginica (L.) Presl. (Malvaceae), a dicotyledonoushalophyte that grows in tidal marshes of the eastern UnitedStates. Growth of salinized cultures was significantly inhibitedat high (255 mol m–3 NaCl), but not at lower externalsalinities. Adjustment of cell suspensions to Nacl was rapid,with the duration of the normal growth cycle unaffected by salinity.Maximum biomass was attained when cultures were exposed to NaClduring early log growth. Patterns of inorganic ion accumulationreflected the utilization of both Na+ and K+ as osmotica, withNa+ content substantially increasing when cells were grown atan external salinity sufficient to reduce growth. K+ uptakeselectivity was high and Na+/K+ ratios were low in salt-treatedcultures even though K+ content was somewhat lower comparedto unsalinized cultures. Free proline and microsomal lipid contentincreased in salt-treated cell cultures. Key words: Kosteletzkya virginica, halophyte, salt tolerance, cell suspension culture  相似文献   

7.
The calanoid copepod, Eudiaplomus graciloides, was reared fromegg to adult on uni-algal diets (0.1. 0.5 and 2.5 mg dry wt1–1) using the green alga, Chlamydomonas reinhardtii,as food, or on a mixed diet consisting of Lake Esrom water filteredthrough a plankton net with pore size 45 µm and supplementedwith C. reinhardtii (2.5 mg dry wt 1–1). On the mixeddiet at 21.0°C growth in body dry wt (W, µg dry wt)was exponential, and the growth constants were 0.21 day–1in the early to mid juvenile stage (N1 - C4) and 0.11 day–1in the late juvenile to early adult stage (C4-A). At 14.5°Cthe corresponding growth rate constants were 0.10 and 0.08 day–1.Similar growth rates were found at uni-algal concentrationsof 0.5 and 2.5 mg dry wt I–1, and it was argued that thethreshold concentration for growth in Eudiaptomus was closeto 0.1 mg dry wt I–1. The clearance (C, ml h–1)of copepodites was measured on the uni-algal diets. The constantsof the regression (C = aWb) were: a = 0.125, b = 0.858 (2000C. reinhardtii ml–1), a = 0.068, b = 0.849 (10 000), a= 0.028, b = 0.875 (50 000). Ingestion rates were calculatedfrom the clearances and the average algal concentrations. Atthe three food levels the average daily rations were 30, 67and 125% of body dry wt. The respiration rate (R, nl O2 h–1)was measured in individuals reared on the mixed diet. The constantsof the regression (R = aWb) were: a = 4.82, b = 1.07 (nauplii,14.5°C), a = 4.17, b = 0.904 (copepodites and adults, 14.5°C),a = 6.87, b = 0.757 (copepodites and adults, 21.0°C). Nosignificant difference in the respiration rate of copepoditesreared on uni-algal diets and the mixed diet could be demonstrated.Energy budgets were calculated. The assimilation efficiencyand the gross growth efficiency of copepodites decreased markedlywith increasing food concentration, the net growth efficiencyvaried from an average of 0.44 at the lowest algal concentrationto 0.60 on the mixed diet. The results are discussed in relationto previous findings with both freshwater and marine copepods.  相似文献   

8.
We have assessed the effect of various medium supplements inpromoting the ability of maize (Zea mays L.) inbred FR27rhmsuspension cultures to grow following a period of 4 °C chillingstress. Following a 4 week exposure to 4 °C in culture mediumwithout proline, no cell growth occurred upon subsequent incubationat 28°C for 2 weeks. This inhibition was reversed when 3to 48 mol m–3 proline or 0.1 mol m–3 putrescineor 0.01 mol m–3 spermidine were present in the mediumduring the chilling stress. On the other hand, suspensions weremade more sensitive to 4°C by blocking polyamine biosynthesiswith 1.0 mol m–3 methylglyoxal bis (guanylhydrazone) (MGBG)or a combination of 1.0 mol m–3 difluoromethylornithine(DFMO) and 1.0 mol m–3 difluoromethylarginine (DFMA).The addition of 10 mol m–3 putrescine to the suspensioncontaining DFMO and DFMA prevented the increased chilling sensitivity.Electrolyte leakage studies conducted to assess membrane integrityafter 4 weeks at 4°C and a 2 week regrowth period showedthat cells treated with no polyamines (control), 0.01 mol m–3spermidine, 1.0 mol m–3 putrescine, or 1.0 mol m–3MGBG lost 43, 32, 14, and 100% of the total electrolyte pool,respectively. These results suggest that proline and polyaminesare beneficial for inducing chilling tolerance in FR27rhm suspension. Key words: Proline, polyamine, chilling stress  相似文献   

9.
In mung bean (Vigna radiata [L.] Wilczek) suspension-culturedcells, which are extremely chilling-sensitive at the early stageof exponential growth, cold-induced acidification of the cytoplasmhas been shown to be closely correlated with the cold-inducedinactivation of the vacuolar H+-ATPase [Yoshida (1994) PlantPhysiol. 104: 1131]. To gain more insight into the mechanismof the cold-induced acidification of the cytoplasm in thesesuspension-cultured cells, we focused in the present study onchanges in the vacuolar pH during cold incubation. The vacuolarpH was measured by fluorescence-ratio imaging cryomicroscopy,with CDCF-DA [5-(and 6-)carboxy-2'-7'-dichlorofluorescein diacetate]as a pH-sensitive probe. During cold incubation of the CDCF-loadedprotoplasts from cells at the early stage of exponential growth,the vacuolar pH shifted toward alkaline values with time, increasingfrom 5.1 to 5.7 over the course of 8 hours. The increase invacuolar pH was closely correlated with the acidification ofcytoplasm. The cold-induced acidification of the cytoplasm appearedto be less dependent on the pH of the external medium. Fromthe results, it appears that the cold-induced acidificationof the cytoplasm probably reflects, to a considerable extent,the passive release of protons or proton equivalents from vacuolesas a consequence of the cold-induced inhibition of the ATP-driventransport of protons across vacuolar membranes. 1Contribution no. 3814 from the Institute of Low TemperatureScience, Hokkaido University.  相似文献   

10.
The carbon metabolism in cell walls of Chlorella ellipsoideawas studied by following 14C incorporation into cell wall constituentsin photosynthesizing, synchronously growing cells. The rateof incorporation was higher at an early growth phase of thecell cycle. The 14C was incorporated into both the major cellwall constituents, hemicellulose and ‘rigid wall’,and the radioactivity in the latter was distributed into itstwo components, glucosamine and amino acids. In pulse-chaseexperiments, the 14C fixed photosynthetically in the precedingcell cycle was rapidly transferred into the cell wall constituentsat the early growth phase of the ongoing cell cycle, and thereafterwas gradually released from the cell walls, although the totalamount of 14C in the cells remained constant. It was concludedthat the cell wall constituents are turned over during the growthphase of the algal cell cycle, and that the cell wall metabolismin the ongoing cell cycle is closely connected with the carbonmetabolism in the preceding cell cycle. (Received February 3, 1982; Accepted June 21, 1982)  相似文献   

11.
Both the restoration and deterioration of ultrastructures wereobserved during therewarming of cultured cells of Cornus stoloniferain which chilling at 0?C had caused an apparent change in themorphology of the organelles. Complete restoration of the ultrastructures,moderately altered by the 12-hr chilling, took place within12 hr of wanning at 26?C. Even in cells chilled for 24 hr, severelyaltered ultrastructures were partially or completely repairedin more than fifty percent of the treated cells. Some cellschilled for 24 hr, however, displayed further deteriorationof their ultrastructures during rewarming. Restoration of therough endoplasmic reticulum and the development of polysomesin recovering cells were characteristic of the early stage ofrewarming. Rupture of the tonoplast was sometimes observed duringrewarming of cells chilled for 24 hr. A possible role for therough endoplasmic reticulum and for the integrity of the tonoplastin cell recovery during the chill-warm sequence is discussed. 1Contribution No. 2026 from the Institute of Low TemperatureScience, Hokkaido University. 2This work was supported in part by Grant 248004 from the Ministryof Education. (Received November 6, 1978; )  相似文献   

12.
The sensitivity of twelve strains of Saccharomyces cerevisiaeto Cd2+ was examined in correlation with the uptake of Cd2+.Strains of S. cerevisiae were grouped into three categoriesdepending on the sensitivity of cells grown on agar-plates containingvarious concentrations of Cd2+. 1) The sensitive group did notgrow in 0.1 mM Cd2+. 2) The sub-tolerant group was capable ofgrowth at 0.3 min Cd2+, but not at 0.4 mM Cd2+. 3) The tolerantgroup was capable of growth at 0.4 mM Cd2+ or higher. In thesestrain groups the increase in sensitivity to Cd2+ was associatedwith an increase in the activity of Cd2+ absorption. 1 This study is dedicated to the late president J. Ashida ofEhime University. (Received November 25, 1982; Accepted February 14, 1983)  相似文献   

13.
Molecular Characterization of the waxy Locus of Rice (Oryza sativa)   总被引:10,自引:0,他引:10  
  相似文献   

14.
Temperature dependences of chlorophyll fluorescence quenchingcoefficients were studied in the cultivated tomato (Lycopersiconesculentum) and three lines of the chilling-tolerant L.peruvianumfrom different altitudes, i.e. LA 1373 (20 m a.s.l.), LA 2157(1,650 m a.s.l.) and LA 385 (2,400 m a.s.l.). At actinic lightintensity near light saturation of photosynthesis (370 µEm–2 s7minus;1), photochemical quenching (qP) increasedwith increasing temperature between 5 and 30°C. The temperature,at which qP reached the numerical value 0.5 [T (qP=0.5)] decreasedby 2.5–4.5°C after a chilling treatment of 14 daysat 10°C in L. peruvianum, indicating acclimation of thephotosynthetic dark reactions in this species. The final T (qP=0.5)attained after chilling could be arranged in the order L.esculentum>LA1373>LA 2157>LA 385. The fast relaxing non-photochemicalquenching (qN) component (qf, consisting mainly of energy-dependentquenching, qE) exhibited minima near the optimum temperaturefor photosynthesis. These minima shifted to lower temperaturesupon chilling in L. peruvianum. Photoinhibitory quenching (ql)was unaffected by chilling in the high altitude lines, but-increasedstrongly in LA 1373 and L. esculentum. Under low actinic light(40 µE m–2 s–1), temperature dependences ofqP and qN were nearly identical in L. esculentum and LA 385and revealed abrupt changes at approx. 8°C. It is concludedthat qP and ql, measured after defined chilling treatments,are valuable screening parameters for chilling tolerance inearly growth stages of Lycopersicon plants. (Received November 2, 1993; Accepted February 28, 1994)  相似文献   

15.
The distribution and seasonal dynamics of cyst populations ofthe spring bloom dinoflagellate Scrippsiella hangoei were studiedin surface sediments on the southwest coast of Finland, BalticSea. In situ germination was assessed by monitoring the fractionof empty cysts and chlorophyll a fluorescence in cyst populationsat different coastal sites throughout the annual cycle. Scrippsiellahangoei resting cysts were widely distributed in the study areaand occurred in exceptionally large numbers (magnitudes of 104–106cysts cm–3) at all sampling locations between the innermostparts of the coastal archipelago and the open Gulf of Finland.The decreases in cyst number in winter and the increases occurringin late spring reflected the dynamics of germination and encystmentof the species. Chlorophyll fluorescence appeared in mid-winterin ~40% of cysts from well-aerated basins and 6–15% ofcysts from temporarily anoxic sediments. A generally low increasein the proportion of empty cysts indicated that only a partof the potentially germinable cysts actually germinates. Giventhe high cyst concentrations in the sediments, the potentialfor germination is considerable, despite the environmentallyand physiologically determined losses. In contrast, the sizeof the vegetative inoculum is very low, indicating that thesurvival of germlings is problematic under harsh winter conditions.This is an unusual life cycle strategy; however, the early releaseof cells into the water column provides a high probability forsuccessful bloom initiation under the unpredictable meteorologicalconditions in winter and early spring, which often lead to thesudden onset of favourable growth conditions.  相似文献   

16.
In situ growth and development of Neocalanus flemingeri/plumchrusstage C1–C4 copepodites were estimated by both the artificial-cohortand the single-stage incubation methods in March, April andMay of 2001–2005 at 5–6°C. Results from thesetwo methods were comparable and consistent. In the field, C1–C4stage durations ranged from 7 to >100 days, dependent ontemperature and chlorophyll a (Chl a) concentration. Averagestage durations were 12.4–14.1 days, yielding an averageof 56 days to reach C5, but under optimal conditions stage durationswere closer to 10 days, shortening the time to reach C5 (fromC1) to 46 days. Generally, growth rates decreased with increasingstage, ranging from 0.28 day–1 to close to zero but weretypically between 0.20 and 0.05 day–1, averaging 0.110± 0.006 day–1 (mean ± SE) for single-stageand 0.107 ± 0.005 day–1 (mean ± SE) forartificial-cohort methods. Growth was well described by equationsof Michaelis–Menten form, with maximum growth rates (Gmax)of 0.17–0.18 day–1 and half saturation Chl a concentrations(Kchl) of 0.45–0.46 mg m–3 for combined C1–3,while Gmax dropped to 0.08–0.09 day–1 but Kchl remainedat 0.38–0.93 mg m–3 for C4. In this study, in situgrowth of N. flemingeri/plumchrus was frequently food limitedto some degree, particularly during March. A comparison withglobal models of copepod growth rates suggests that these modelsstill require considerable refinement. We suggest that the artificial-cohortmethod is the most practical approach to generating the multispeciesdata required to address these deficiencies.  相似文献   

17.
Seeni  S.; Gnanam  A. 《Plant & cell physiology》1983,24(6):1033-1041
Photomixotrophic cell suspension culture was established fromthe leaf derived callus cells of Gisekia pharnaceoides L., aC4 dicotyledonous weed. The late log phase cells possessed shade-typecharacters such as low chlorophyll a/b ratio, less pronouncedO2 evolution and CO2 fixation, saturation of photosyntheticCO2 fixation at low intensity. The chloroplasts from these cellscontained granal stacking with high degree of a very few granawhich are characterized by their wide and high degree of stackings. The predominant labelling of 3-phosphoglyceric acid and sugarphosphates (40% of the total 14C incorporated) during 5 s exposureto 14CO2 in light and subsequent decrease in percentage of 14Cin these compounds with increase in exposure time indicatedthe operation of the C3 pathway in these cells. The simultaneoussynthesis of malate (23% of the total 14C incorporated) is relatedto the much pronounced glycolytic and tricarboxylic acid cycleactivities in these cells. The initial proliferation of callimainly from the zones of vascular supplies in the leaf, highstarch content of the cells, presence of large starch grainsin all the chloroplasts, activities of Calvin cycle enzymes,heavy labelling of C3 type intermediates and less labellingof aspartate as early photosynthates and rapid accumulationof radioactivity into starch during 14CO2 assimilation indicatedthat most of the cells in photomixotrophic culture were derivedfrom bundle sheath cells or the leaf cells of Gisekia changetheir function under culture conditions. 1Present address: Tropical Botanic Garden and Research Institute,Navaranga Road, Trivandrum 695 011, India. (Received January 29, 1982; Accepted June 4, 1983)  相似文献   

18.
Monitoring of respiratory and organic losses from carbon assimilationfor the diatom Thalassiosira pseudonana shows very slight (about5%) total carbon losses in continuous culture. Although correlationbetween batch and continuous culture cellular chemistry wasless than ideal, batch culture exponential phase cells showedcarbon metabolism similar to that for the continuous culture.In both cases, growth rates were in excess of 1.5 divisionsd–1 and total carbon losses in the batch exponential phasewere similar (<10%) to those in the continuous culture. Estimatesof growth rates from C-14 uptake and particulate carbon matchedthose from changes in cell numbers in the batch culture andthat from the dilution rate in the continuous culture. In batchculture, immediately after starting the culture and in stationaryphase, carbon losses from respiration, organic excretion, andcellular degradation were large (>50%). To understand phytoplanktonphysiology in nature, it is necessary to find what effects growthrate and population density have on carbon losses and to ascertainwhether or not steady state conditions really pertain to theocean.  相似文献   

19.
In the developing anther, archesporial cells that proliferateby mitotic division are converted into meiotic cells duringthe premeiotic interphase. Experiments with explanted microsporocytesof Lilium and Trillium were made to obtain evidence for theconversion of mitotic to meiotic cells during the premeioticperiod. Explanted premeiotic cells were cultured through thedivision cycle at relatively high division frequencies and showeda variety of division types with respect to chromosomal events.The type of division depended on the premeiotic stage at whichthe cells were explanted. Cells in the G1, S and early G2 phasesunderwent mitotic division and formed a diad or binucleate monad.Cells explanted at the late G2 phase were cultured throughoutthe normal meiotic cycle, which resulted in typical tetrad configuration. In microsporocytes explanted during the main part of the G2interval, centromere behavior was meiotic, but chromosome pairingand chiasma formation were disturbed. Thus, she G2 intervalwas shown to be critical for the commitment of mitotic cellsto meiotic division. Detailed analysis showed that the intracellularchanges that commit the cells to meiosis begin shortly aftercompletion of premeiotic DNA synthesis and that these changesare progressive and cumulative. (Received February 2, 1982; Accepted May 24, 1982)  相似文献   

20.
Mung bean (Vigna radiata L. Wilcz. cv. Berken) seedlings wereraised hydroponically in 0, 5 and 15 mol m–3 choline.Fourteen-day-old plants were chilled at 5°C (under lightconditions) for 24 h and then returned to warm conditions fora further 24 h. Primary leaf lamina tissue was used for thedetermination of phospholipid, mole ratio of sterol to phospholipid(ST/PL), sterol composition, and ethylene-forming enzyme (EFE)activity for the various choline-temperature treatments employed.Chilling caused an irreversible loss of lipid in the absence,of choline. Differential loss of lipid resulted in an increasein ST/PL and a decline in the mole ratio of sitosterol to stigmasterol(S/S). There was no recovery of EFE activity following chillingin the absence of choline. Choline (5 and 15 mol m–3)enhanced phospholipid and sterol levels prior to chilling andmaintained lipid levels throughout the chill-warm cycle, withoutany significant change in ST/PL. At 5.0 mol m–3 choline,the chilling-induced decline in S/S was reduced, while at 15mol m–3 S/S increased following chilling. Choline treatment,though reducing EFE activity prior to chilling, allowed recoveryof EFE activity following transfer of plants from chilling towarm conditions. Key words: Chill sensitivity, choline, phospholipid, sterol ethylene forming enzyme, Vigna radiata  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号