首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
As a cost-effective, clinician-friendly gait assessment tool, the Kinect v2 sensor may be effective for assessing lower extremity joint kinematics. This study aims to examine the validity of time series kinematical data as measured by the Kinect v2 on a flatland for gait assessment. In this study, 51 healthy subjects walked on a flatland while kinematic data were extracted concurrently using the Kinect and Vicon systems. The kinematic outcomes comprised the hip and knee joint angles. Parallel translation of Kinect data obtained throughout the gait cycle was performed to minimize the differences between the Kinect and Vicon data. The ensemble curves of the hip and knee joint angles were compared to investigate whether the Kinect sensor can consistently and accurately assess lower extremity joint motion throughout the gait cycle. Relative consistency was assessed using Pearson correlation coefficients. Joint angles measured by the Kinect v2 followed the trend of the trajectories made by the Vicon data in both the hip and knee joints in the sagittal plane. The trajectories of the hip and knee joint angles in the frontal plane differed between the Kinect and Vicon data. We observed moderate to high correlation coefficients of 20%–60% of the gait cycle, and the largest difference between Kinect and Vicon data was 4.2°. Kinect v2 time series kinematical data obtained on the flatland are validated if the appropriate correction procedures are performed. Future studies are warranted to examine the reproducibility and systematic bias of the Kinect v2.  相似文献   

2.
    
Accurate movement analysis systems are prohibitive in cost and size to be accessible to the general population, while commercially available, affordable systems lack the accuracy needed for clinical relevance. To address these limitations, we developed a Depth Camera Movement Assessment System (DCMAS) featuring an affordable, widely available depth camera (e.g. Microsoft Kinect). After examining 3D position data for markers adhered to participants and a flat surface, captured with both DCMAS and the industry standard Vicon system, we demonstrated DCMAS obtained measurements comparable, within soft tissue artifact, to the Vicon system, paving the way for a breakthrough technology in preventative medicine.  相似文献   

3.
    
Post-stroke individuals often exhibit abnormal kinematics, including increased pelvic obliquity and hip abduction coupled with reduced knee flexion. Prior examinations suggest these behaviors are expressions of abnormal cross-planar coupling of muscle activity. However, few studies have detailed the impact of gait-retraining paradigms on three-dimensional joint kinematics. In this study, a cross-tilt walking surface was examined as a novel gait-retraining construct. We hypothesized that relative to baseline walking kinematics, exposure to cross-tilt would generate significant changes in subsequent flat-walking joint kinematics during affected limb swing. Twelve post-stroke participants walked on a motorized treadmill platform during a flat-walking condition and during a 10-degree cross-tilt with affected limb up-slope, increasing toe clearance demand. Individuals completed 15 min of cross-tilt walking with intermittent flat-walking catch trials and a final washout period (5 min). For flat-walking conditions, we examined changes in pelvic obliquity, hip abduction/adduction and knee flexion kinematics at the spatiotemporal events of swing initiation and toe-off, and the kinematic event of maximum angle during swing. Pelvic obliquity significantly reduced at swing initiation and maximum obliquity in the final catch trial and late washout. Knee flexion significantly increased at swing initiation, toe-off, and maximum flexion across catch trials and late washout. Hip abduction/adduction was not significantly influenced following cross-tilt walking. Significant decrease in the rectus femoris and medial hamstrings muscle activity across catch trials and late washout was observed. Exploiting the abnormal features of post-stroke gait during retraining yielded desirable changes in muscular and kinematic patterns post-training.  相似文献   

4.
    
Participation in running events has increased recently, with a concomitant increase in the rate of running related injuries (RRI). Mechanical overload is thought to be a primary cause of RRI, it is often detected using motion analysis to examine running mechanics during either overground or treadmill running. In treadmill running, no clear consensus for the number of strides required to establish stable kinematic data exists. The aim of this study was to establish the number of strides needed for stable data when analysing gait kinematics in the stance phase of treadmill running. Twenty healthy, masters age group, club runners completed a high intensity interval training run (HIIT) and an energy-expenditure matched medium intensity continuous run (MICR). Thirty consecutive strides at start and end of each run were identified. Sequential averaging was employed to determine the number of strides required to establish a stable value. No significant differences existed in the number of strides required to achieve stable values. Twenty consecutive strides are required to be 95% confident stable values exist for maximum angle, angle at initial foot contact, and range of motion at the ankle, knee, and hip joints variables at the ankle, knee, and hip joints, in all three planes of motion, and spatiotemporal regardless of running speed and time of capture.  相似文献   

5.
    
Different studies have analyzed the potential of the off-the-shelf Microsoft Kinect, in its different versions, to estimate spatiotemporal gait parameters as a portable markerless low-cost alternative to laboratory grade systems. However, variability in populations, measures, and methodologies prevents accurate comparison of the results. The objective of this study was to determine and compare the reliability of the existing Kinect-based methods to estimate spatiotemporal gait parameters in healthy and post-stroke adults. Forty-five healthy individuals and thirty-eight stroke survivors participated in this study. Participants walked five meters at a comfortable speed and their spatiotemporal gait parameters were estimated from the data retrieved by a Kinect v2, using the most common methods in the literature, and by visual inspection of the videotaped performance. Errors between both estimations were computed. For both healthy and post-stroke participants, highest accuracy was obtained when using the speed of the ankles to estimate gait speed (3.6–5.5 cm/s), stride length (2.5–5.5 cm), and stride time (about 45 ms), and when using the distance between the sacrum and the ankles and toes to estimate double support time (about 65 ms) and swing time (60–90 ms). Although the accuracy of these methods is limited, these measures could occasionally complement traditional tools.  相似文献   

6.
    
During gait, a failure to acknowledge the low-frequency component of a segmental acceleration signal will result in an overestimation of impact-related shock and may lead to inappropriately drawn conclusions. The present study was undertaken to investigate the significance of this low-frequency component in two distinctly different modalities of gait: barefoot (BF) and shod (SHOD) walking. Twenty-seven participants performed five walking trials at self-selected speed in each condition. Peak positive accelerations (PPA) at the shank and spine were first derived from the time-domain signal. The raw acceleration signals were then resolved in the frequency-domain and the active (low-frequency) and impact-related components of the power spectrum density (PSD) were quantified. PPA was significantly higher at the shank (P < 0.0001) and spine (P = 0.0007) in the BF condition. In contrast, no significant differences were apparent between conditions for shank (P = 0.979) or spine (P = 0.178) impact-related PSD when the low-frequency component was considered. This disparity between approaches was due to a significantly higher active PSD in both signals in the BF condition (P < 0.0001; P = 0.008, respectively), due to kinematic differences between conditions (P < 0.05). These results indicate that the amplitude of the low-frequency component of an acceleration signal during gait is dependent on knee and ankle joint coordination behaviour, and highlight that impact-related shock is more accurately quantified in the frequency-domain following subtraction of this component.  相似文献   

7.
    
The foot progression angle (FPA) influences knee loading during gait, but its determinants are unclear. The purpose of this study was to compare FPA between males and females and also examine the association between lower extremity kinematics during gait, hip strength, and the FPA. 25 males and 25 females completed 5 gait trials while FPA and frontal and transverse plane hip and knee angles were calculated from the dominant limb during the foot flat portion of stance. Hip extensor/flexor, abductor/adductor, and internal/external rotator strength were evaluated using maximum voluntary isometric contractions. One-way MANOVAs compared gait and strength outcomes. Stepwise regression assessed the association between FPA, and MVIC and kinematics after accounting for speed in males and females. There was no difference in FPA between sexes (p > 0.05), but females had greater frontal and transverse plane hip angles compared with males (all p < 0.05). Greater hip abduction (p = 0.02) strength was associated with greater FPA, but only in males. In males, greater hip abductor strength may contribute to a more neutral position of the foot during gait, which could help maintain an equal knee loading distribution. Our results suggest that there are sex specific control strategies to achieve a similar FPA during gait.  相似文献   

8.
    
A new summary index for kinetic gait data is proposed (Gait Kinetic Index - GKI), BASED on six kinetic selected variables: hip, knee and ankle moments and powers on the sagittal plane. This method was applied on a control group (CG) of 18 subjects and on 57 patients with diplegic Cerebral Palsy (CP). CP showed statistical different GKI value in comparison with CG. The same is for the sub GKI with the exclusion of GKI Knee Power. The GKI seems to be a promising tool useful to measure extensively the gait pathology taking into consideration kinetic aspects of gait pattern.  相似文献   

9.
    
Walking is the most common form of human locomotion. From a motor control perspective, human bipedalism makes the task of walking extremely complex. For parts of the step cycle, there is only one foot on the ground, so both balance and propulsion are required in order for the movement to proceed smoothly. One condition known to compound the difficulty of walking is the use of high heeled shoes, which alter the natural position of the foot–ankle complex, and thereby produce a chain reaction of (mostly negative) effects that travels up the lower limb at least as far as the spine. This review summarises recent studies that have examined acute and chronic effects of high heels on balance and locomotion in young, otherwise healthy women. Controversial issues, common study limitations and directions for future research are also addressed in detail.  相似文献   

10.
    
Recent advancements in low-cost depth cameras may provide a clinically accessible alternative to conventional three-dimensional (3D) multi-camera motion capture systems for gait analysis. However, there remains a lack of information on the validity of clinically relevant running gait parameters such as vertical oscillation (VO). The purpose of this study was to assess the validity of measures of VO during running gait using raw depth data, in comparison to a 3D multi-camera motion capture system. Sixteen healthy adults ran on a treadmill at a standard speed of 2.7 m/s. The VO of their running gait was simultaneously collected from raw depth data (Microsoft Kinect v2) and 3D marker data (Vicon multi-camera motion capture system). The agreement between the VO measures obtained from the two systems was assessed using a Bland-Altman plot with 95% limits of agreement (LOA), a Pearson’s correlation coefficient (r), and a Lin’s concordance correlation coefficient (rc). The depth data from the Kinect v2 demonstrated excellent results across all measures of validity (r = 0.97; rc = 0.97; 95% LOA = −8.0 mm – 8.7 mm), with an average absolute error and percent error of 3.7 (2.1) mm and 4.0 (2.0)%, respectively. The findings of this study have demonstrated the ability of a low cost depth camera and a novel tracking method to accurately measure VO in running gait.  相似文献   

11.
As 3-dimensional (3D) motion-capture for clinical gait analysis continues to evolve, new methods must be developed to improve the detection of gait cycle events based on kinematic data. Recently, the application of principal component analysis (PCA) to gait data has shown promise in detecting important biomechanical features. Therefore, the purpose of this study was to define a new foot strike detection method for a continuum of striking techniques, by applying PCA to joint angle waveforms. In accordance with Newtonian mechanics, it was hypothesized that transient features in the sagittal-plane accelerations of the lower extremity would be linked with the impulsive application of force to the foot at foot strike. Kinematic and kinetic data from treadmill running were selected for 154 subjects, from a database of gait biomechanics. Ankle, knee and hip sagittal plane angular acceleration kinematic curves were chained together to form a row input to a PCA matrix. A linear polynomial was calculated based on PCA scores, and a 10-fold cross-validation was performed to evaluate prediction accuracy against gold-standard foot strike as determined by a 10 N rise in the vertical ground reaction force. Results show 89–94% of all predicted foot strikes were within 4 frames (20 ms) of the gold standard with the largest error being 28 ms. It is concluded that this new foot strike detection is an improvement on existing methods and can be applied regardless of whether the runner exhibits a rearfoot, midfoot, or forefoot strike pattern.  相似文献   

12.
    
While differences in joint kinematics and kinetics between control subjects and patients before and after total hip arthroplasty (THA) has often been studied, inter-joint coordination has not been fully characterized. We hypothesized that in patients undergoing THA, inter-joint coordination (i) is different from control subjects before surgery, (ii) changes from pre-operative to post-operative, and (iii) remains different from control subjects after surgery. Seventy-eight subjects underwent gait analysis before and ∼1 year after primary unilateral THA. 109 control subjects were age, sex, and BMI matched to the THA group. We selected a representative trial at each subjects’ self-selected walking speed from a motion analysis data repository. To assess kinematic coordination, we constructed sagittal plane hip-knee angle cyclograms, and calculated total, stance, and swing phase plot area (deg2). To assess kinetic coordination, we calculated the support moment (MS, %wt 1 ht), the time-integral of support moment (MS impulse, %wt 1 ht 1 t), and the relative contribution of each joint to MS impulse (%Hip, %Knee, %Ankle). We used t-tests to compare groups. Total and swing-phase cyclogram area was smaller preoperatively, but improved to control values after THA. Swing-phase area was smaller than control values after THA. MS impulse was larger in THA subjects than controls both before and after surgery. While, the relative contribution of the hip to MS impulse was not different from control values, the contributions of the knee and ankle were smaller. Inter-joint coordination, as measured by hip-knee angle cyclograms and MS impulse, may be used to distinguish differences in gait mechanics between osteoarthritis and THA. Future work focusing on coordination among joints may be needed to fully restore gait function.  相似文献   

13.
Locomotor features shared by arboreal marsupials and primates are frequently cited as a functional complex that evolved in the context of a “fine branch niche.” Adaptation to a fine branch niche cannot be understood without considering that small and large arboreal mammals may differ in their biomechanical response to a given branch size. We tested the effects of substrate diameter and orientation on quadrupedal kinematics in a small arboreal marsupial (the sugar glider, Petaurus breviceps). P. breviceps individuals were filmed moving across a flat horizontal surface and on horizontal, inclining and declining poles of diameter 2.5, 1.0, and 0.5 cm. Gait frequencies, limb phases, speeds and duty factors were compared across substrate conditions. P. breviceps had a clear preference for lateral sequence/diagonal couplets gaits, regardless of substrate type, diameter or orientation. Limb phase was significantly influenced by substrate type (higher limb phases on poles vs. the flat surface) and by orientation (higher limb phases on inclined vs. horizontal poles), but was not influenced by pole diameter. Speed was lowest on declines, and duty factors (at a given speed) were highest on the flat board, smallest pole, and on declines. P. breviceps exhibited some parallels, but also some departures from the characteristic patterns of other arboreal marsupials and primates. Notably, limb phase values, on average, remained lower in P. breviceps than those recorded for primates or other arboreal marsupials. We suggest that arboreal mammals of different body sizes may use dissimilar, but apparently equally successful strategies for navigating a “fine branch niche.”  相似文献   

14.
    
The increased use of gait analysis has raised the need for a better understanding of how walking speed and demographic variations influence asymptomatic gait. Previous analyses mainly reported relationships between subsets of gait features and demographic measures, rendering it difficult to assess whether gait features are affected by walking speed or other demographic measures. The purpose of this study was to conduct a comprehensive analysis of the kinematic and kinetic profiles during ambulation that tests for the effect of walking speed in parallel to the effects of age, sex, and body mass index. This was accomplished by recruiting a population of 121 asymptomatic subjects and analyzing characteristic 3-dimensional kinematic and kinetic features at the ankle, knee, hip, and pelvis during walking trials at slow, normal, and fast speeds. Mixed effects linear regression models were used to identify how each of 78 discrete gait features is affected by variations in walking speed, age, sex, and body mass index. As expected, nearly every feature was associated with variations in walking speed. Several features were also affected by variations in demographic measures, including age affecting sagittal-plane knee kinematics, body mass index affecting sagittal-plane pelvis and hip kinematics, body mass index affecting frontal-plane knee kinematics and kinetics, and sex affecting frontal-plane kinematics at the pelvis, hip, and knee. These results could aid in the design of future studies, as well as clarify how walking speed, age, sex, and body mass index may act as potential confounders in studies with small populations or in populations with insufficient demographic variations for thorough statistical analyses.  相似文献   

15.
    
BackgroundThe aim of this study was to determine whether changes in synergies relate to changes in gait while walking on a treadmill at multiple speeds and slopes. The hypothesis was that significant changes in movement pattern would not be accompanied by significant changes in synergies, suggesting that synergies are not dependent on the mechanical constraints but are instead neurological in origin.MethodsSixteen typically developing children walked on a treadmill for nine combinations (stages) of different speeds and slopes while simultaneously collecting kinematics, kinetics, and surface electromyography (EMG) data. The kinematics for each stride were summarized using a modified version of the Gait Deviation Index that only includes the sagittal plane. The kinetics for each stride were summarized using a modified version of the Gait Deviation Index – Kinetic which includes sagittal plane moments and powers. Within each synergy group, the correlations of the synergies were calculated between the treadmill stages.ResultsWhile kinematics and kinetics were significantly altered at the highest slope compared to level ground when walking on a treadmill, synergies were similar across stages.ConclusionsThe high correlations between synergies across stages indicate that neuromuscular control strategies do not change as children walk at different speeds and slopes on a treadmill. However, the multiple significant differences in kinematics and kinetics between stages indicate real differences in movement pattern. This supports the theory that synergies are neurological in origin and not simply a response to the biomechanical task constraints.  相似文献   

16.
    
The relations between kinematic abnormalities and post traumatic osteoarthritis have not yet been clearly elucidated. This study was conducted to determine the finite helical axes parameters and the tibiofemoral translation vector in the knee joints of two surgically induced injury sheep models: anterior cruciate ligament and medial collateral ligament transection (ACL/MCL Tx) (n = 5) and lateral meniscectomy (n = 5). We hypothesized that morphological damage in the experimental joints would be correlated to alterations in these kinematic variables. There was no strong evidence that morphological damage to the joints 20 weeks post ACL/MCL transection or meniscectomy was correlated with alterations in the finite helical axes variables. Nevertheless, significant correlations were found between the morphological damage to the joints and the magnitude of the change in the translation vectors after ACL/MCL transection (significant correlations (p = 0.005) during stance and trends (p < 0.1) at all points analyzed during swing). It can be concluded that: (1) osteoarthritic-like morphological damage after ACL/MCL transection is more critically correlated to the absolute tibiofemoral translational change and (2) alterations in analyzed kinematic variables cannot solely define osteoarthritis risk after meniscal injuries. From a clinical perspective, our results suggest that the magnitude of the change in the translation vector, which is independent of the coordinate system and combines the effects of the three translational degrees of freedom, i.e. medial–lateral, anterior-posterior and inferior-superior, would be an osteoarthritis risk factor after ligament injury, and requires validation in humans.  相似文献   

17.
    
PurposeBiomechanical impairments are not apparent during walking in people with Joint Hypermobility Syndrome (JHS). This research explored biomechanical alterations during a higher intensity task, vertical jumping.Materials and methodsThis cross-sectional study compared a JHS group (n = 29) to a healthy control group (n = 30). Joint kinematics and kinetics were recorded using a Qualisys motion capture system synchronized with a Kistler platform. Independent sample t-tests and standardised mean differences (SMD) were used for statistical analysis.ResultsNo significant statistical or clinical differences were found between groups in joint kinematics and jump height (p ≥ 0.01). Sagittal hip and knee peak power generation were statistically lower in the JHS group during the compression phase (p ≤ 0.01), but not clinically relevant (SMD < 0.5). Clinically relevant reductions were found in the JHS group knee and ankle peak moments during the compression phase, and hip and knee peak power generation during the push phase (SMD ≥ 0.5), although these were not statistically significant (p ≥ 0.01).ConclusionThe JHS group achieved a similar jump height but with some biomechanical alterations. Further understanding of the joint biomechanical behavior could help to optimize management strategies for JHS, potentially focusing on neuromuscular control and strength/power training.  相似文献   

18.
Motion capture is usually performed on only a few steps of over-ground locomotion, limited by the finite sensing volume of most capture systems. This makes it difficult to evaluate walking over longer distances, or in a natural environment outside the laboratory. Here we show that motion capture may be performed relative to a mobile platform, such as a wheeled cart that is moved with the walking subject. To determine the person’s absolute displacement in space, the cart’s own motion must be localized. We present three localization methods and evaluate their performance. The first detects cart motion solely from the relative motion of the subject’s feet during walking. The others use sensed motion of the cart’s wheels to perform odometry, with and without an additional gyroscope to enhance sensitivity to turning about the vertical axis. We show that such methods are practical to implement, and with present-day sensors can yield accuracy of better than 1% over arbitrary distances.  相似文献   

19.
    
Slips, trips, and falls are some of the most substantial and prevalent causes of occupational injuries and fatalities, and these events may contribute to low-back problems. We quantified lumbar kinematics (i.e., lumbar angles relative to pelvis) and kinetics during unexpected slip and trip perturbations, and during normal walking, among 12 participants (6F, 6 M). Individual anthropometry, lumbar muscle geometry, and lumbar angles, along with electromyography from 14 lumbar muscles were used as input to a 3D, dynamic, EMG-based model of the lumbar spine. Results indicated that, in comparison with values during normal walking, lumbar range of motion, lumbosacral (L5/S1) loads, and lumbar muscle activations were all significantly higher during the slip and trip events. Maximum L5/S1 compression forces exceeded 2700 N during slip and trip events, compared with ∼ 1100 N during normal walking. Mean values of L5/S1 anteroposterior (930 N), and lateral (800 N) shear forces were also substantially larger than the shear force during the normal walking (230 N). These observed levels of L5/S1 reaction forces, along with high levels of bilateral lumbar muscle activities, suggest the potential for overexertion injuries and tissue damage during unexpected slip and trip events, which could contribute to low back injuries. Outcomes of this study may facilitate the identification and control of specific mechanisms involved with low back disorders consequent to slips or trips.  相似文献   

20.
    
The presence of multiple foot types has been used to explain the variability of foot structure observed among healthy adults. These foot types were determined by specific static morphologic features and included rectus (well aligned hindfoot/forefoot), planus (low arched), and cavus (high arched) foot types. Unique biomechanical characteristics of these foot types have been identified but reported differences in segmental foot kinematics among them has been inconsistent due to differences in neutral referencing and evaluation of only select discrete variables. This study used the radiographically-indexed Milwaukee Foot Model to evaluate differences in segmental foot kinematics among healthy adults with rectus, planus, and cavus feet based on the true bony alignment between segments. Based on the definitions of the individual foot types and due to conflicting results in previous literature, the primary study outcome was peak coronal hindfoot position during stance phase. Additionally, locally weighted regression smoothing with alpha-adjusted serial t-test analysis (LAAST) was used to compare these foot types across the entire gait cycle. Average peak hindfoot inversion was −1.6° ± 5.1°, 6.7° ± 3.5°, and 13.6° ± 4.6°, for the Planus, Rectus, and Cavus Groups, respectively. There were significant differences among all comparisons. Differences were observed between the Rectus and Planus Groups and Cavus and Planus Groups throughout the gait cycle. Additionally, the Planus Group had a premature peak velocity toward coronal varus and early transition toward valgus, likely due to a deficient windlass mechanism. This assessment of kinematic data across the gait cycle can help understand differences in dynamic foot function among foot types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号