首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Shell morphology has played an important role in the differentiation of mollusc species. However, extensive morphological variation and the lack of readily available diagnostic characters often lead to confusion and controversy in taxonomy of closely related species, such as the genus Trochulus. Two nominal species Trochulus striolatus and T. montanus show only subtle differences in their reproductive systems and are indistinguishable on the basis of sole conchological traits. Therefore, we performed molecular and morphological analyses to establish robust species limits among the taxa. The canonical discriminant analysis (CDA) of shell characters confirmed strong similarity between the species. It also revealed high intraspecific variability of the shell morphology, which allowed the distinguishing of some populations as two extremely distinct forms, while simultaneously making it difficult to discriminate between the two species. Analysis of the genital morphology indicated that differences were continuous and practically negligible among the species. In contrast, phylogenetic analyses based on newly obtained 114 Trochulus sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene and 55 homologues retrieved from the GenBank database showed clear genetic divergence between T. striolatus and T. montanus. Moreover, they revealed a close relationship between some T. montanus, some T. caelatus and T. clandestinus samples, which formed a monophyletic group. Some of their haplotypes were even identical. It suggested that their recent common origin or recurrent gene flow occurred between these populations. However, T. sericeus sequences were split into independent diverged lineages, which were separated by many unidentified Trochulus species. It suggested that this taxon may represent a paraphyletic species complex.  相似文献   

2.
Delimitation of species is often complicated by discordance of morphological and genetic data. This may be caused by the existence of cryptic or polymorphic species. The latter case is particularly true for certain snail species showing an exceptionally high intraspecific genetic diversity. The present investigation deals with the Trochulus hispidus complex, which has a complicated taxonomy. Our analyses of the COI sequence revealed that individuals showing a T. hispidus phenotype are distributed in nine highly differentiated mitochondrial clades (showing p‐distances up to 19%). The results of a parallel morphometric investigation did not reveal any differentiation between these clades, although the overall variability is quite high. The phylogenetic analyses based on 12S, 16S and COI sequences show that the T. hispidus complex is paraphyletic with respect to several other morphologically well‐defined Trochulus species (T. clandestinus, T. villosus, T. villosulus and T. striolatus) which form well‐supported monophyletic groups. The nc marker sequence (5.8SITS228S) shows only a clear separation of T. o. oreinos and T. o. scheerpeltzi, and a weakly supported separation of T. clandestinus, whereas all other species and the clades of the T. hispidus complex appear within one homogeneous group. The paraphyly of the T. hispidus complex reflects its complicated history, which was probably driven by geographic isolation in different glacial refugia and budding speciation. At our present state of knowledge, it cannot be excluded that several cryptic species are embedded within the T. hispidus complex. However, the lack of morphological differentiation of the T. hispidus mitochondrial clades does not provide any hints in this direction. Thus, we currently do not recommend any taxonomic changes. The results of the current investigation exemplify the limitations of barcoding attempts in highly diverse species such as T. hispidus.  相似文献   

3.
Freshwater mollusk shell morphology exhibits clinal variation along a stream continuum that has been termed the Law of Stream Distribution. We analyzed phylogenetic relationships and morphological similarity of two freshwater mussels (Bivalvia: Unionidae), Obovaria jacksoniana and Villosa arkansasensis, throughout their ranges. The objectives were to investigate phylogenetic structure and evolutionary divergence of O. jacksoniana and V. arkansasensis and morphological similarity between the two species. Our analyses were the first explicit tests of phenotypic plasticity in shell morphologies using a combination of genetics and morphometrics. We conducted phylogenetic analyses of mitochondrial DNA (1416 bp; two genes) and morphometric analyses for 135 individuals of O. jacksoniana and V. arkansasensis from 12 streams. We examined correlations among genetic, morphological, and spatial distances using Mantel tests. Molecular phylogenetic analyses revealed a monophyletic relationship between O. jacksoniana and V. arkansasensis. Within this O. jacksoniana/V. arkansasensis complex, five distinct clades corresponding to drainage patterns showed high genetic divergence. Morphometric analysis revealed relative differences in shell morphologies between the two currently recognized species. We conclude that morphological differences between the two species are caused by ecophenotypic plasticity. A series of Mantel tests showed regional and local genetic isolation by distance. We observed clear positive correlations between morphological and geographic distances within a single drainage. We did not observe correlations between genetic and morphological distances. Phylogenetic analyses suggest O. jacksoniana and V. arkansasensis are synonomous and most closely related to a clade composed of Oretusa, Osubrotunda, and Ounicolor. Therefore, the synonomous O. jacksoniana and V. arkansasensis should be recognized as Obovaria arkansasensis (Lea 1862) n. comb. Phylogenetic analyses also showed relative genetic isolation among drainages, suggesting no current gene flow. Further investigation of in‐progress speciation and/or cryptic species within O. arkansasensis is warranted followed by appropriate revision of conservation management designations.  相似文献   

4.
Phenotypic plasticity has been hypothesized to play a central role in the evolution of phenotypic diversity across species (West‐Eberhard 2003 ). Through ‘genetic assimilation’, phenotypes that are initially environmentally induced within species become genetically fixed over evolutionary time. While genetic assimilation has been shown to occur in both the laboratory and the field (Waddington 1953 ; Aubret & Shine 2009 ), it remains to be shown whether it can account for broad patterns of phenotypic diversity across entire adaptive radiations. Furthermore, our ignorance of the underlying molecular mechanisms has hampered our ability to incorporate phenotypic plasticity into models of evolutionary processes. In this issue of Molecular Ecology, Parsons et al. ( 2016 ) take a significant step in filling these conceptual gaps making use of cichlid fishes as a powerful study system. Cichlid jaw and skull morphology show adaptive, plastic changes in response to early dietary experiences (Fig. 1). In this research, Parsons et al. ( 2016 ) first show that the direction of phenotypic plasticity aligns with the major axis of phenotypic divergence across species. They then dissect the underlying genetic architecture of this plasticity, showing that it is specific to the developmental environment and implicating the patched locus in genetic assimilation (i.e. a reduction in the environmental sensitivity of that locus in the derived species).  相似文献   

5.
The taxonomic status of Trochulus phorochaetius and its phylogenetic relationships to Trochulus plebeius and Trochulus hispidus were evaluated based on molecular, morphological, and genital anatomy data. The canonical discriminant analysis (CDA) of shell morphology allowed the clear differentiation between these three nominal species, whereas the genitalia revealed their high similarity. Analyses of cytochrome c oxidase subunit I (COI) sequences were not always congruent with the differentiation between these three species by shell characters. None of them formed a monophyletic group covering all its sequences. Instead, many sequences obtained from individuals classified to the same morphospecies, and/or usually collected from the same region or country, created highly supported separate clades and delimited clusters. Three distinct clades containing sequences of two morphospecies originating from the same country were identified in molecular phylogenetic and species delimitation studies: (1) T. plebeius + T. hispidus from Great Britain; (2) T. plebeius + T. hispidus from Poland; and (3) T. phorochaetius + T. hispidus from France. In the latter case some of the sequences were even identical. Their genetic similarity could indicate the ability to hybridize, which may be evidenced by the lack of major differences in their reproductive system. The assignment of distinctive morphospecies, and thus existing taxonomic names, to genetically defined evolutionary lineages is premature and arbitrary to some extent at this stage. © 2013 The Linnean Society of London  相似文献   

6.
Ecomorphological theory indicates that different ecological requirements lead to different organismal designs. Given that species with equal requirements could not coexist, traits leading to more efficient use of resources may be selected to avoid competition among closely related syntopic species, generating specialized ecomorphs. We compared habitat use, diet, thermal biology and morphology among the syntopic Tropidurus semitaeniatus, T. helenae and T. hispidus in the Caatinga of Northeastern Brazil. Tropidurus semitaeniatus and T. helenae are flattened lizards specialized to rocks and rock crevices, whereas T. hispidus has a robust body and generalist habits. We aimed to test the hypothesis that morphological modifications observed in the flattened ecomorphs are related to modifications in diet and habitat use. Also, we hypothesized that specialization to habitat induces morphological modifications, which in turn may constrain lizard performance. Flattened species differed in habitat use, morphology and prey size when compared with the generalist ecomorph. Morphological modifications were related to specializations to rocky habitats and constrained the variety of prey items consumed. This phenotype also reduced their reproductive output when compared with a robust, generalist ecomorph.  相似文献   

7.

Background  

Costly structures need to represent an adaptive advantage in order to be maintained over evolutionary times. Contrary to many other conspicuous shell ornamentations of gastropods, the haired shells of several Stylommatophoran land snails still lack a convincing adaptive explanation. In the present study, we analysed the correlation between the presence/absence of hairs and habitat conditions in the genus Trochulus in a Bayesian framework of character evolution.  相似文献   

8.
The taxonomy of many species is still based solely on phenotypic traits, which is often a pitfall for the understanding of evolutionary processes and historical biogeographic patterns, especially between closely related species due to either phenotypic conservatism or plasticity. Two widely distributed Neotropical leaf frogs from the Phyllomedusa burmeisteri species group (P. burmeisteri and Phyllomedusa bahiana) constitute a paramount example of closely related species with relatively unstable taxonomic history due to a large phenotypic variation. Herein, we analysed ~260 individuals from 57 localities distributed across the range of the two species to contrast individual phenotypic with an integrative phylogenetic and phylogeographic multilocus approach. We aim to clarify species limits, investigate potential undocumented diversity and examine to what extent taxonomic uncertainties could lead to misleading hypotheses on phylogeographic and interspecific hybridization patterns. Our molecular analysis supports the recognition of the two currently defined species, providing evidences for one novel and highly divergent evolutionary unit within the range of P. burmeisteri, which encompasses its type locality (Rio de Janeiro city). Spatial patterns of genetic and the colour of the hidden areas of the thigh was not congruent, varying considerably both within and between populations of both species. Genetic data showed signs of admixture between both species but do not corroborate the previously inferred wide area of introgression based on the distribution of the intermediate phenotype. Our results suggest that phenotypic variation can result from local adaptations, geographic isolation and/or evolutionary processes and, thus, cannot be used to reliably diagnose P. burmeisteri and P. bahiana. Globally, this study underscores the need of a geographical broad sampling of widespread species and the combination of molecular and phenotypic data to delineate species limits and phylogeographic patterns in species with complex taxonomy.  相似文献   

9.
10.
Until recently, an enormous effort was needed to apply genomic tools to ecological investigations, especially when striving to uncover the functional mechanisms of phenotypic plasticity and the genetic basis of evolutionary adaptation within natural populations. This present study aimed to develop a genomic resource for an organism ideally suited for functional ecology and evolutionary research. Over 760 unique DNA fragments containing microsatellite loci were isolated and characterized from Daphnia to provide more than 500 molecular markers for constructing a genetic map and for localizing chromosomal regions containing genes of ecological importance via quantitative trait locus analyses. Although primarily developed to genotype members of the Daphnia pulex species complex, a significant fraction of these markers is potentially valuable for population genetics and recombination mapping of distantly related species. Over 60% of markers tested in cross‐specific amplifications are possibly conserved within the subgenus Daphnia, whereas 48 and 18% of tested primers are found to amplify subgenus Hyalodaphnia and subgenus Ctenodaphnia DNA, which represents ~140 and 200 million years of evolutionary preservation.  相似文献   

11.
The abundance and distribution of species can be ascribed to both environmental heterogeneity and stress tolerance, with the latter measure sometimes associated with phenotypic plasticity. Although phenotypic plasticity varies predictably in response to common forms of stress, we lack a mechanistic understanding of the response of species to high saline‐sodic soils. We compared the phenotypic plasticity of three pairs of high and low saline‐sodic tolerant congeners from the families Poaceae (Leymus chinensis versus L. secalinus), Fabaceae (Lespedeza davurica versus L. bicolor) and Asteraceae (Artemisia mongolica versus A. sieversiana) in a controlled pot experiment in the Songnen grassland, China. The low tolerant species, L. secalinus and A. sieversiana exhibited higher plasticity in response to soil salinity and sodicity than their paired congeners. Highly tolerant species, L. chinensis and A. mongolica, had higher values for several important morphological traits, such as shoot length and total biomass under the high saline‐sodic soil treatment than their paired congeners. In contrast, congeners from the family Fabaceae, L. davurica and L. bicolor, did not exhibit significantly different plasticity in response to soil salinity and sodicity. All species held a constant reproductive effort in response to saline‐sodic soil stress. The different responses between low and high tolerant species offer an explanation for the distribution patterns of these species in the Songnen grassland. Highly tolerant species showed less morphological plasticity over a range of saline‐sodic conditions than their paired congeners, which may manifest as an inability to compete with co‐occurring species in locations where saline‐sodic soils are absent.  相似文献   

12.
13.
Untangling the relationships between morphology and phylogeny is key to building a reliable taxonomy, but is especially challenging for protists, where the existence of cryptic or pseudocryptic species makes finding relevant discriminant traits difficult. Here we use Hyalosphenia papilio (a testate amoeba) as a model species to investigate the contribution of phylogeny and phenotypic plasticity in its morphology. We study the response of H. papilio morphology (shape and pores number) to environmental variables in (i) a manipulative experiment with controlled conditions (water level), (ii) an observational study of a within‐site natural ecological gradient (water level), and (iii) an observational study across 37 European peatlands (climate). We showed that H. papilio morphology is correlated to environmental conditions (climate and water depth) as well as geography, while no relationship between morphology and phylogeny was brought to light. The relative contribution of genetic inheritance and phenotypic plasticity in shaping morphology varies depending on the taxonomic group and the trait under consideration. Thus, our data call for a reassessment of taxonomy based on morphology alone. This clearly calls for a substantial increase in taxonomic research on these globally still under‐studied organisms leading to a reassessment of estimates of global microbial eukaryotic diversity.  相似文献   

14.
Organisms featuring wide trait variability and occurring in a wide range of habitats, such as the ovoviviparous New Zealand freshwater snail Potamopyrgus antipodarum, are ideal models to study adaptation. Since the mid‐19th century, P. antipodarum, characterized by extremely variable shell morphology, has successfully invaded aquatic areas on four continents. Because these obligately and wholly asexual invasive populations harbor low genetic diversity compared to mixed sexual/asexual populations in the native range, we hypothesized that (1) this phenotypic variation in the invasive range might be adaptive with respect to colonization of novel habitats, and (2) that at least some of the variation might be caused by phenotypic plasticity. We surveyed 425 snails from 21 localities across northwest Europe to attempt to disentangle genetic and environmental effects on shell morphology. We analyzed brood size as proxy for fitness and shell geometric morphometrics, while controlling for genetic background. Our survey revealed 10 SNP genotypes nested into two mtDNA haplotypes and indicated that mainly lineage drove variation in shell shape but not size. Physicochemical parameters affected both shell shape and size and the interaction of these traits with brood size. In particular, stronger stream flow rates were associated with larger shells. Our measurements of brood size suggested that relatively larger slender snails with relatively large apertures were better adapted to strong flow than counterparts with broader shells and relatively small apertures. In conclusion, the apparent potential to modify shell morphology plays likely a key role in the invasive success of P. antipodarum; the two main components of shell morphology, namely shape and size, being differentially controlled, the former mainly genetically and the latter predominantly by phenotypic plasticity.  相似文献   

15.
We evaluated the relationship between Celeus undatus and Celeus grammicus, with the objective of clarifying their evolutionary history. We analysed fragments of the mitochondrial and nuclear genes of 57 specimens. For comparative purposes, we inspected the plumage patterns of 77 skins. Our findings highlight the absence of reciprocal monophyly between the two taxa, given their reduced genetic divergence, and the lack of any clear separation of the two forms in the haplotype networks. A similar situation was found in the STRUCTURE analysis, with reciprocal contributions from the two taxa to the respective clusters, indicating that C. grammicus and C. undatus cannot be differentiated using the molecular markers. Corroborating the genetic data, our plumage analyses also failed to find any clear diagnostic characters between the polytypic C. undatus and C. grammicus, as they are defined at present. The genetic profile is consistent with either extensive historical gene flow between the species or, alternatively, incomplete lineage sorting, rather than recent secondary contact. The lack of monophyly between the two taxa impeded subspecies‐level phylogeographic inferences, with the subspecific variation being interpreted as a probable artefact of the phenotypic plasticity of the two forms. These findings indicate clearly that the two taxa form a single evolutionary unit, in which the morphological differentiation used to diagnose the species, combined with their geographic distribution, is at odds with the incomplete separation of the taxa. This may reflect disparities in the rates of differentiation between molecular and phenotypic markers, which is possibly due to the variation in selection pressures along a humidity gradient in Amazonia.  相似文献   

16.
The importance of phenotypic plasticity for successful invasion by exotic plant species has been well studied, but with contradictory and inconclusive results. However, many previous studies focused on comparisons of native and invasive species that co‐occur in a single invaded region, and thus on species with potentially very different evolutionary histories. We took a different approach by comparing three closely related Centaurea species: the highly invasive C. solstitialis, and the noninvasive but exotic C. calcitrapa and C. sulphurea. These species have overlapping distributions both in their native range of Spain and in their non‐native range of California. We collected seeds from 3 to 10 populations from each region and species and grew them in common garden greenhouse conditions to obtain an F1 generation in order to reduce maternal effects. Then, F1 seeds were grown subjected to simulated herbivory, variation in nutrient availability, and competition, to explore plasticity in the responses to these conditions. We found little variation in phenotypic plasticity among species and regions, but C. solstitialis plants from California produced more biomass in competition than their Spanish conspecifics. This species also had the highest relative growth rates when in competition and when grown under low nutrient availability. Noninvasive congeners produced intermediate or opposite patterns.  相似文献   

17.

Background  

Mitochondrial DNA sequencing increasingly results in the recognition of genetically divergent, but morphologically cryptic lineages. Species delimitation approaches that rely on multiple lines of evidence in areas of co-occurrence are particularly powerful to infer their specific status. We investigated the species boundaries of two cryptic lineages of the land snail genus Trochulus in a contact zone, using mitochondrial and nuclear DNA marker as well as shell morphometrics.  相似文献   

18.
A hybrid zone along an environmental gradient should contain a clinal pattern of genetic and phenotypic variation. This occurs because divergent selection in the two parental habitats is typically strong enough to overcome the homogenizing effects of gene flow across the environmental transition. We studied hybridization between two parapatric tree squirrels (Tamiasciurus spp.) across a forest gradient over which the two species vary in coloration, cranial morphology and body size. We sampled 397 individuals at 29 locations across a 600‐km transect to seek genetic evidence for hybridization; upon confirming hybridization, we examined levels of genetic admixture in relation to maintenance of phenotypic divergence despite potentially homogenizing gene flow. Applying population assignment analyses to microsatellite data, we found that Tamiasciurus douglasii and T. hudsonicus form two distinct genetic clusters but also hybridize, mostly within transitional forest habitat. Overall, based on this nuclear analysis, 48% of the specimens were characterized as T. douglasii, 9% as hybrids and 43% as T. hudsonicus. Hybrids appeared to be reproductively viable, as evidenced by the presence of later‐generation hybrid genotypes. Observed clines in ecologically important phenotypic traits—fur coloration and cranial morphology—were sharper than the cline of putatively neutral mtDNA, which suggests that divergent selection may maintain phenotypic distinctiveness. The relatively recent divergence of these two species (probably late Pleistocene), apparent lack of prezygotic isolating mechanisms and geographic coincidence of cline centres for both genetic and phenotypic variation suggest that environmental factors play a large role in maintaining the distinctiveness of these two species across the hybrid zone.  相似文献   

19.
The identification of species within the genus Tetrahymena is known to be difficult due to their essentially identical morphology, the occurrence of cryptic and sibling species and the phenotypic plasticity associated with the polymorphic life cycle of some species. We have combined morphology and molecular biology to describe Tetrahymena aquasubterranea n. sp. from groundwater of Cape Town, Republic of South Africa. The phylogenetic analysis compares the cox1 gene sequence of T. aquasubterranea with the cox1 gene sequences of other Tetrahymena species and uses the interior‐branch test to improve the resolution of the evolutionary relationships. This showed a considerable genetic divergence of T. aquasubterranea to its next relative, T. farlyi, of 9.2% (the average cox1 divergence among bona fide species of Tetrahymena is ~ 10%). Moreover, the analysis also suggested a sister relationship between T. aquasubterranea and a big clade comprising T. farleyi, T. tropicalis, T. furgasoni and T. mobilis. The morphological data available for these species show that they share with T. aquasubterranea a pyriformis‐like life style and at least two of them, T. farleyi and T. mobilis, a similar type II silverline pattern consisting of primary and secondary meridians. Tetrahymena aquasubterranea exhibits a biphasic life cycle with trophonts and theronts, is amicronucleate, and feeds on bacteria.  相似文献   

20.
Human activities reduce biodiversity but may also drive diversification by modifying selection. Urbanization alters stream hydrology by increasing peak water velocities, which should in turn alter selection on the body morphology of aquatic species. Here, we show how urbanization can generate evolutionary divergence in the body morphology of two species of stream fish, western blacknose dace (Rhinichthys obtusus) and creek chub (Semotilus atromaculatus). We predicted that fish should evolve more streamlined body shapes within urbanized streams. We found that in urban streams, dace consistently exhibited more streamlined bodies while chub consistently showed deeper bodies. Comparing modern creek chub populations with historical museum collections spanning 50 years, we found that creek chub (1) rapidly became deeper bodied in streams that experienced increasing urbanization over time, (2) had already achieved deepened bodies 50 years ago in streams that were then already urban (and showed no additional deepening over time), and (3) remained relatively shallow bodied in streams that stayed rural over time. By raising creek chub from five populations under common conditions in the laboratory, we found that morphological differences largely reflected genetically based differences, not velocity–induced phenotypic plasticity. We suggest that urbanization can drive rapid, adaptive evolutionary responses to disturbance, and that these responses may vary unpredictably in different species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号