首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Various angles viz. superior, medial, inferior, inferolateral, lateral, acromial and coracoid were studied in 42 scapulae of right side and 54 scapulae of left side. The angles have no correlation to that of opposite side. The correlation coefficient of each angle in relation to other angles on the same side was studied. Some of the angles showed significant correlation to that of the others.  相似文献   

2.
3.
Levin SM 《Journal of biomechanics》2005,38(8):1733-4; author reply 1734-6
  相似文献   

4.
5.
Finite element analyses, with increasing levels of detail and complexity, are becoming effective tools to evaluate the performance of joint replacement prostheses and to predict the behaviour of bone. As a first step towards the study of the complications of shoulder arthroplasty, the aim of this work was the development and validation of a 3D finite element model of an intact scapula for the prediction of the bone remodelling process based on a previously published model that attempts to follow Wolff's law. The boundary conditions applied include full muscle and joint loads taken from a multibody system of the upper limb based on the same subject whose scapula was here analysed. To validate the bone remodelling simulations, qualitative and quantitative comparisons between the predicted and the specimen's bone density distribution were performed. The results showed that the bone remodelling model was able to successfully reproduce the actual bone density distribution of the analysed scapula.  相似文献   

6.
BackgroundThe scapula locator method has associated intra-observer and inter-observer errors caused by the dependency on the observer to locate the scapular landmarks. The potential effect of the pressures applied by the observer on the measured scapular kinematics when this method is used has also been overlooked so far. The aim of this study was to investigate the effect of using feedback on the pressures applied on the scapula using the locator on the intra-observer and inter-observer reliabilities of the method as well as on the kinematics obtained using this method.MethodsThree observers tracked the scapular motion of the dominant shoulder of each subject using the locator with no reference to pressure-feedback for three trials of bilateral elevation in the scapular plane and using the locator with pressure-feedback for three other trials. Variations between the measurements obtained were used to calculate the intra-observer errors and variations between the measurements obtained by the three observers for the same subject were used to calculate inter-observer errors. Repeated-measures ANOVA tests were used to look at differences between the two methods in terms of intra-observer and inter-observer errors and scapular kinematics.FindingsUsing pressure-feedback reduced the intra-observer errors but had no effect on the inter-observer errors. Different scapular kinematics was measured using the two methods.InterpretationsPressure-feedback improves the reliability of the scapula locator method. Differences in the scapular kinematics suggest that unregulated pressures have an effect on the physiological scapular motion.  相似文献   

7.
8.
Certain features of the Sterkfontein scapular fragment have been examined in the light of available data relating to the form of the scapula in primates. One suggestion currently in the literature, that this fragment is relatively less specialized than the corresponding region of the gibbon and chimpanzee (being more like some extant monkeys), may not be justified.  相似文献   

9.
10.
In this paper, several hypotheses of morphological integration within the hominoid (ape) scapula are tested. In particular, whether the scapula represents a set of developmental tissues sharing tight correlations between constituent parts (i.e., highly integrated) or is more modularly organized (i.e., covariation is greater within regions than between) is tested. Whether the patterns of integration in the scapula have changed over phylogenetic time or in response to selective forces is also examined. Results from two different analyses (matrix correlations and edge deviance) indicate traits comprising the blade and acromion, and to a weaker degree the glenoid, correlate highly with each other. The coracoid exhibits more independence from other parts of the scapula, perhaps reflecting its distinct evolutionary developmental history. Overall, similarity in species-specific patterns of correlation was high between all taxa. Correlation matrix similarity was significantly correlated with functional similarity and morphological distance, but not with phylogenetic distance. These results are congruent with other studies of integration that suggest correlation patterns remain stable over evolutionary time. There are changes associated with phylogeny, but the tight link between functional similarity and phylogenetic distance at this level of comparison presents possible challenges to interpretation. Overall similarities in the pattern of integration in all taxa might be better interpreted as relative strengthening or weakening of trait correlations rather than broadscale changes in the pattern of relationship between developmental regions. Larger sample sizes with greater taxonomic/functional breadth, and finer scale analyses of patterns of correlation are needed to test these hypotheses further.  相似文献   

11.
Adaptation of the scapula bone tissue to mechanical loading is simulated in the current study using a subject-specific three-dimensional finite element model of an intact cadaveric scapula. The loads experienced by the scapula during different types of movements are determined using a subject-specific large-scale musculoskeletal model of the shoulder joint. The obtained density distributions are compared with the CT-measured density distribution of the same scapula. Furthermore, it is assumed that the CT-measured density distribution can be estimated as a weighted linear combination of the density distributions calculated for different loads experienced during daily life. An optimization algorithm is used to determine the weighting factors of fourteen different loads such that the difference between the weighted linear combination of the calculated density distributions and the CT-measured density is minimal. It is shown that the weighted linear combination of the calculated densities matches the CT-measured density distribution better than every one of the density distributions calculated for individual movements. The weighting factors of nine out of fourteen loads were estimated to be zero or very close to zero. The five loads that had larger weighting factors were associated with either one of the following categories: (1) small-load small-angle abduction or flexion movements that occur frequently during our daily lives or (2) large-load large-angle abduction or flexion movements that occur infrequently during our daily lives.  相似文献   

12.
The scapula is subdivided into head, collum, and blade. Due to the expression pattern of Emx2 and the absence of the scapula blade in Emx2 knockout mice, it has been suggested that Emx2 is involved in the formation of the scapula. Micromanipulation experiments revealed that ectoderm ablation over the somites does not affect Emx2 expression but inhibits the formation of the scapula blade indicating that Emx2 is not sufficient to induce scapula blade formation. Furthermore, we show that the formation of the scapula head is dependent, scapula blade formation independent of FGFR-1-mediated signaling. Overexpression of Emx2 does not influence scapula blade formation but leads to the development of an additional posterior digit in the anterior border of the limb. Taken together, the data presented implicate that Emx2 expression is necessary but not sufficient for the development of the scapula blade. It is not a marker for scapula development but rather provides positional information along the proximodistal and anterior-posterior limb axes, whereas the specificity of the developing skeletal elements is determined by the concerted interaction of Emx2 with other factors.  相似文献   

13.
Stress analysis in the individual parts of the scapula under normal physiological conditions is necessary to understand the load transfer mechanism, its relation with morphology of bone and to analyse the deviations in stress patterns due to implantation of the glenoid. The purpose of this study was to obtain stress distribution in the scapula during abduction of the arm and to obtain a qualitative estimate of the function of coracoacromial ligament. An accurate three-dimensional (3D) finite element (FE) model of the natural scapula has been developed for this purpose, using computed tomography data and shell-solid modelling approach. The model was experimentally validated. A musculoskeletal shoulder model of forces that calculates all muscle, ligament and joint reaction forces, in six load cases (30-180 degrees) during unloaded humeral abduction was used as applied loading conditions for the 3D FE model. High tensile and compressive stresses (15-60 MPa) were generated in the thick bony ridges of the scapula, like the scapular spine, lateral border, glenoid and acromion. High compressive stresses (45-58 MPa) were evoked in the glenoid and at the connection of glenoid-scapular spine-infraspinous fossa. The stresses in the infraspinous fossa and supraspinous fossa were low (0.05-15 MPa). These results indicated that the transfer of major muscle and joint reaction take place predominantly through the thick bony ridges, whereas the fossa area act more as attachment sites of large muscles. During humeral abduction, coracoacromial ligament was stretched, and presumably will be under tension.  相似文献   

14.
15.
Among the late consequences of obstetrical brachial plexus palsy is winging of the scapula, a functional and aesthetic deformity. This article introduces a novel surgical procedure for the dynamic correction of this clinical entity that involves the dynamic transfer of the contralateral trapezius muscle and/or rhomboid muscles and anchoring to the affected scapula. In more severe cases of scapula winging, the contralateral latissimus dorsi muscle may also need to be transferred to achieve dynamic scapula stabilization. The outcomes of this novel surgical procedure were analyzed in relation to the effect on abduction, external rotation, growth of the scapula, and distance of the scapula from the posterior midline. The results were analyzed in 26 patients who underwent this procedure and had adequate follow-up. The mean patient age was 6.39 years. Fourteen (54 percent) had a diagnosis of Erb palsy, and 12 (46 percent) had a diagnosis of global paralysis. All 26 patients had an additional secondary procedure performed prior to or simultaneously with the scapula stabilization procedure. In 19 patients, the contralateral trapezius was transferred and anchored to the medial border of the winged scapula alone, but in seven cases the underlying rhomboid major was transferred along with the trapezius muscle to provide sufficient scapula stabilization. In five cases in which the scapula winging was severe, the contralateral latissimus dorsi muscle was transferred at a second stage. After this procedure, all patients demonstrated improved scapula symmetry. The mean increase in abduction was 18 degrees (p < 0.001), the mean increase in external rotation was 19 degrees (p < 0.001), and the mean increase in anterior flexion was 12 degrees (p = 0.015). The improvement of the relative position of the winged scapula on the posterior thorax was analyzed by measuring the distance of the inferior angle of both scapulae from the midline, then calculating the difference between normal and affected sides and comparing this value before and after the scapula stabilization procedure. This value preoperatively was 3.24 cm; postoperatively it decreased to 0.36 cm (p < 0.001), demonstrating a statistically significant improvement.  相似文献   

16.
The therian scapula was until now thought to show very primitive features during early morphogenesis, as are found in the scapula of adult monotremes (elevated position of the scapula, lack of a spina and a fossa supraspinata, laterally directed cavitas glenoidalis). A morphogenetic study of the scapula of Tupaia belangeri has proved some of these assumptions to be wrong. The scapula undergoes a tilting which shifts its angulus articularis cranially, but no descent of the scapula could be found. The supraspinous fossa, which was supposed to develop very late in ontogeny from the anterior border of the scapula (Lewis 1902, Cheng 1955), is present in Tapaiai from the start. Part of it ossifies in membrane. The scapular spine does not develop as a cartilaginous outgrowth from the anterior border, but is formed mainly as an appositional bone along the lateral surface of the scapula. The glenoid cavity and the humerus are initially directed laterally. They attain their definitive form after the heart has migrated downward and the arms have been adducted. This represents a true plesiomorphous character state in therian ontogeny.  相似文献   

17.
18.
Agenesis of the scapula in Emx2 homozygous mutants   总被引:2,自引:0,他引:2  
The shoulder and pelvic girdles represent the proximal bones of the appendicular skeleton that connect the anterior and posterior limbs to the body trunk. Although the limb is a well-known model in developmental biology, the genetic mechanisms controlling the development of the more proximal elements of the appendicular skeleton are still unknown. The knock-out of Pax1 has shown that this gene is involved in patterning the acromion, while the expression pattern candidates Hoxc6 as a gene involved in scapula development. Surprisingly, we have found that scapula and ilium do not develop in Emx2 knock-out mice. In the homozygous mutants, developmental abnormalities of the brain cortex, the most anterior structure of the primary axis of the body, are associated with important defects of the girdles, the more proximal elements of the secondary axis. These abnormalities suggest that the molecular mechanisms patterning the more proximal elements of the limb axis are different from those patterning the rest of appendicular skeleton. While Hox genes specify the different segments of the more distal part of the appendicular skeleton forming the limb, Emx2 is concerned with the more proximal elements constituting the girdles.  相似文献   

19.
Bones of the postcranial skeleton of higher vertebrates originate from either somitic mesoderm or somatopleural layer of the lateral plate mesoderm. Controversy surrounds the origin of the scapula, a major component of the shoulder girdle, with both somitic and lateral plate origins being proposed. Abnormal scapular development has been described in the naturally occurring undulated series of mouse mutants, which has implicated Pax1 in the formation of this bone. Here we addressed the development of the scapula, firstly, by analysing the relationship between Pax1 expression and chondrogenesis and, secondly, by determining the developmental origin of the scapula using chick quail chimeric analysis. We show the following. (1) The scapula develops in a rostral-to-caudal direction and overt chondrification is preceded by an accumulation of Pax1-expressing cells. (2) The scapular head and neck are of lateral plate mesodermal origin. (3) In contrast, the scapular blade is composed of somitic cells. (4) Unlike the Pax1-positive cells of the vertebral column, which are of sclerotomal origin, the Pax1-positive cells of the scapular blade originate from the dermomyotome. (5) Finally, we show that cells of the scapular blade are organised into spatially restricted domains along its rostrocaudal axis in the same order as the somites from which they originated. Our results imply that the scapular blade is an ossifying muscular insertion rather than an original skeletal element, and that the scapular head and neck are homologous to the 'true coracoid' of higher vertebrates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号