首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mao Y  Wei W  He D  Nie L  Yao S 《Analytical biochemistry》2002,306(1):23-30
A new method for monitoring, in real time, the drug-binding process to protein with piezoelectric quartz crystal impedance (PQCI) is proposed. The method was used to monitor the binding process of berberine hydrochloride to bovine serum albumin (BSA). BSA was immobilized on the silver electrode surface of a piezoelectric quartz crystal and the optimized experimental conditions were established. The BSA-coated piezoelectric sensor was in contact with berberine solution. The time courses of the resonant frequency and equivalent circuit parameters of the sensor during the protein-drug binding were simultaneously obtained. On the basis of the analysis of the multidimensional information provided by PQCI, it was concluded that the observed frequency decrease was mainly ascribed to the mass increase of the sensor surface resulting from the binding. According to the frequency decrease with time, the kinetics of the binding process were quantitatively studied. A piezoelectric response model for the binding was theoretically derived. Fitting the experimental data to the model, the kinetic parameters, such as the binding and dissociation rate constants (k(1) and k(-1)) and the binding equilibrium constant (K(a)), were determined. The k(1), k(-1), and K(a) values obtained at 25 degrees C were 67.5 (+/-0.1) (mol liter(-1))(-1) s(-1), 1.7 (+/- 0.1) x 10(-3) s(-1), and 3.97 (+/- 0.06) x10(4) (mol liter(-1))(-1), respectively.  相似文献   

2.
In this paper, the interaction between orientin and bovine serum albumin (BSA) was examined using fluorescence and absorbance spectroscopy. The analysis of the quenching mechanism was done using Stern–Volmer plots which exhibit upward (positive) deviation. A linear response to orientin was shown in the concentration range between 3 and 50 μM. The experimental results showed the presence of a static quenching process between orientin and BSA. The thermodynamic parameters ΔH, ΔS and ΔG were also calculated and suggested that the hydrophobic and electrostatic interactions played an important role in the interaction between orientin and BSA. Furthermore, the distances between BSA and orientin were determined according to Förster non‐radiation energy transfer theory. In addition, the results of the synchronous fluorescence obtained indicated that the binding of orientin with BSA could affect conformation in BSA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Conformational change of bovine serum albumin by heat treatment   总被引:1,自引:0,他引:1  
The thermal denaturation of bovine serum albumin (BSA) was studied at pH 2.8 and 7.0 in the range of 2–65°C. The relative proportions of -helix, -structure, and disordered structure in the protein conformation were determined as a function of temperature, by the curve-fitting method of circular dichroism spectra. With the rise of temperature at pH 7.0, the proportion of -helix decreased above 30°C and those of -structure and disordered structure increased in the same temperature range. The structural change was reversible in the temperature range below 45°C. However, the structural change was partially reversible upon cooling to room temperature subsequent to heating at 65°C. On the other hand, the structural change of BSA at pH 2.3 was completely reversible in the temperature range of 2–65°C, probably because the interactions between domains and between subdomains might disappear due to the acid expansion. The secondary structure of disulfide bridges-cleaved BSA remained unchanged during the heat treatment up to 65°C at pH 2.8 and 7.0.  相似文献   

4.
Ye H  Qiu B  Lin Z  Chen G 《Luminescence》2011,26(5):336-341
The interaction between tamibarotene and bovine serum albumin (BSA) was studied using fluorescence quenching technique and ultraviolet–visible spectrophotometry. The results of experiments showed that tamibarotene could strongly quench the intrinsic fluorescence of BSA by a dynamic quenching mechanism. The apparent binding constant, number of binding site and corresponding thermodynamic parameters at different temperatures were calculated respectively, and the main interaction force between tamibarotene and BSA was proved to be hydrophobic force. Synchronous fluorescence spectra showed that tamibarotene changed the molecular conformation of BSA. When BSA concentration was 1.00 × 10?6 mol L?1, the quenched fluorescence ΔF had a good linear relationship with the concentration of tamibarotene in the range 1.00 × 10?6 to 12.00 × 10?6 mol L?1 with the detection limit of 6.52 × 10?7 mol L?1. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Three sulfonamide derivatives (SAD) were first synthesized from p‐hydroxybenzoic acid and sulfonamides (sulfadimidine, sulfamethoxazole and sulfachloropyridazine sodium) and were characterized by elemental analysis, 1H NMR and MS. The interaction between bovine serum albumin (BSA) and SAD was studied using UV/vis absorption spectroscopy, fluorescence spectroscopy, time‐resolved fluorescence spectroscopy and circular dichroism spectra under imitated physiological conditions. The experimental results indicated that SAD effectively quenched the intrinsic fluorescence of BSA via a static quenching process. The thermodynamic parameters showed that hydrogen bonding and van der Waal's forces were the predominant intermolecular forces between BSA and two SADs [4‐((4‐(N‐(4,6‐dimethylpyrimidin‐2‐yl)sulfamoyl)phenyl)carbamoyl)phenyl acetate and 4‐((4‐(N‐(5‐methylisoxazol‐3‐yl)sulfamoyl)phenyl)carbamoyl)phenyl acetate], but hydrophobic forces played a major role in the binding process of BSA and 4‐((4‐(N‐(6‐chloropyridazin‐3‐yl)sulfamoyl)phenyl) carbamoyl)phenyl acetate. In addition, the effect of SAD on the conformation of BSA was investigated using synchronous fluorescence spectroscopy and circular dichroism spectra. Molecular modeling results showed that SAD was situated in subdomain IIA of BSA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The interaction of lycopene with bovine serum albumin (BSA) in aqueous solution was studied by fluorescence quenching, three‐dimensional fluorescence and circular dichroism spectroscopy. The data showed that the fluorescence of BSA was quenched by lycopene at different temperatures through a dynamic mechanism. The evaluation of three‐dimensional fluorescence spectra revealed a conformational modification of BSA induced by coupling with lycopene and an increase in protein diameter as a consequence of the ligand–protein interaction. Moreover, the information obtained from evaluation of the effect of lycopene on BSA conformation by circular dichroism strongly supported the existence of a slight unfolding of BSA induced by coupling to lycopene. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
To investigate the influence of magnetic–thermosensitive carbon microspheres (MTCMSs) as a targeting drug carrier on serum albumins in vitro, in this study, bovine serum albumin (BSA) was chosen as a template protein to explore the interaction between serum proteins and MTCMSs. Fluorescence spectrophotometry, ultraviolet–visible absorbance (UV–vis) spectrophotometry and circular dichroism spectrometry were used to investigate the interaction between MTCMSs and BSA. Results indicate that BSA interacts with MTCMSs and the fluorescence intensity of BSA is quenched by 50% in a static quenching at 310 K when the concentration of MTCMSs reaches 30 mg/L. Thermodynamic parameters including free energy change (△Gθ), enthalpy change (△Hθ) and entropy change (△Sθ) were calculated. The results (△Gθ < 0, △Hθ < 0 and △Sθ > 0) suggest a spontaneous process and the formation of a hydrogen bond between MTCMSs and BSA. UV–vis measurements reveal that the micro‐environment of an amino acid residue is altered in the presence of MTCMSs. The α‐helix content of BSA decreases by 4% and the β‐sheet content increases by 3.2% with increasing concentrations of MTCMSs to 30 mg/L, illustrating a change in the skeletal structure of BSA. These results demonstrate that MTCMSs as a targeting drug carrier impact the structure of serum albumins. This work provides not only a theoretical basis of BSA adsorption onto MTCMSs, but also an understanding of safe drug carriers in biomedicine. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The purpose of this study was to investigate the site-selective binding of erlotinib hydrochloride (ET), a targeted anticancer drug, to bovine serum albumin (BSA) through 1H NMR, spectroscopic, thermodynamic, and molecular modeling methods. The fluorescence quenching of BSA by ET was a result of the formation of BSA–ET complex with high binding affinity. The site marker competition study combined with isothermal titration calorimetry experiment revealed that ET binds to site II of BSA mainly through hydrogen bond and van der Waals force. Molecular docking was further applied to define the specific binding site of ET to BSA. The conformation of BSA was changed in the presence of ET, revealed by synchronous fluorescence, circular dichroism, and three-dimensional fluorescence spectroscopy results. Further, NMR analysis of the complex revealed that the binding capacity contributed by the aromatic protons in the binding site of BSA might be greater than the aliphatic protons.

An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:26  相似文献   

9.
Eriocitrin is a flavanone glycoside, which exists in lemon or lime citrus fruits. It possesses antioxidant, anticancer, and anti‐allergy activities. In order to investigate the pharmacokinetics and pharmacological mechanisms of eriocitrin in vivo, the interaction between eriocitrin and bovine serum albumin (BSA) was studied under the simulated physiological conditions by multispectroscopic and molecular docking methods. The results well indicated that eriocitrin and BSA formed a new eriocitrin‐BSA complex because of intermolecular interactions, which was demonstrated by the results of ultraviolet‐visible (UV‐vis) absorption spectra. The intrinsic fluorescence of BSA was quenched by eriocitrin, and static quenching was the quenching mechanism. The number of binding sites (n) and binding constant (Kb) at 310 K were 1.22 and 2.84 × 106 L mol?1, respectively. The values of thermodynamic parameters revealed that the binding process was spontaneous, and the main forces were the hydrophobic interaction. The binding distance between eriocitrin and BSA was 3.43 nm. In addition, eriocitrin changed the conformation of BSA, which was proved by synchronous fluorescence and circular dichroism (CD) spectra. The results of site marker competitive experiments suggested that eriocitrin was more likely to be inserted into the subdomain IIA (site I), which was further certified by molecular docking studies.  相似文献   

10.
11.
Summary A two-chain polypeptide, which corresponds to amino acid residues 115–143 and 144–184(185) of bovine serum albumin, connected to each other by a disulfide bridge, potentiated the effects of insulin on glucose transport and glucose metabolism in isolated rat adipocytes. Although the peptide alone had little activity, it shifted the concentration-response curves of insulin-stimulated D-[I-14C]glucose oxidation, 2-deoxyglucose transport, and lipid synthesis from D-[U-14C]glucose to lower insulin concentrations. It also increased the maximal responses of these parameters to insulin. However, it did not affect insulin binding to adipocytes. The peptide protected insulin considerably from degradation, but this effect alone cannot account for its effect in increasing the maximal responses to the hormone, and even when degradation of a submaximal concentration of insulin was suppressed by bacitracin, the peptide still had an enhancing effect. These results suggest not only that the peptide influences a step distal to receptor-mediated insulin binding but also that inhibition of insulin degradation alone cannot explain its total effect.The peptide lost its insulin-stimulating activity completely when it was further digested with V8 or lysinespecific endopeptidase, or when it was reduced and then carboxamidomethylated or oxidized with performic acid. Similar active tryptic fragments were obtained from human and rat albumins.Insulin-stimulating peptides should be useful in studies on the mechanisms of insulin action including both the sensitivities and responsiveness of target cells to the hormone.Abbreviations ISP insulin-stimulating peptide - HEPES N-(2-hydroxyethyl)piperazine-N-2-ethanesulfonic acid - HPLC high-performance liquid chromatography - SDS sodium dodecyl sulfate  相似文献   

12.
The design and fabrication of protein biochips requires characterization of blocking agents that minimize nonspecific binding of proteins or organisms. Nonspecific adsorption of Escherichia coli, Listeria innocua, and Listeria monocytogenes is prevented by bovine serum albumin (BSA) or biotinylated BSA adsorbed on SiO(2) surfaces of a biochip that had been modified with a C(18) coating. Biotinylated BSA forms a protein-based surface that in turn binds streptavidin. Because streptavidin has multiple binding sites for biotin, it in turn anchors other biotinylated proteins, including antibodies. Hence, biotinylated BSA simultaneously serves as a blocking agent and a foundation for binding an interfacing protein, avidin or streptavidin, which in turns anchors biotinylated antibody. In our case, the antibody is C11E9, an IgG-type antibody that binds Listeria spp. Nonspecific adsorption of another bacterium, Escherichia coli, is also minimized due to the blocking action of the BSA. The blocking characteristics of BSA adsorbed on C(18)-derivatized SiO(2) surfaces for construction of a protein biochip for electronic detection of pathogenic organisms is investigated.  相似文献   

13.
聚乙二醇修饰牛血清白蛋白的反应与分析   总被引:3,自引:1,他引:3  
采用N,N′-羰基二咪唑活化法活化单甲氧基聚乙二醇5000分子一端的羟基,对活化后的单甲氧基聚乙二醇分子进行了元素分析。用该活化产物对牛血清白蛋白的赖氨酸侧链氨基进行化学修饰。应用毛细管电泳对聚乙二醇修饰后的产物进行了分析,并与高效液相色谱分析结果作了对照研究,表明毛细管电泳对修饰后的牛血清白蛋白有更好的分析效果。  相似文献   

14.
In this work, we have studied the interaction between the anticancer drug doxorubicin (doxo) and condensed DNA, using optical tweezers. To perform this task, we use the protein bovine serum albumin (BSA) in the working buffer to mimic two key conditions present in the real intracellular environment: the condensed state of the DNA and the abundant presence of charged macromolecules in the surrounding medium. In particular, we have found that, when doxo is previously intercalated in disperse DNA, the drug hinders the DNA condensation process upon the addition of BSA in the buffer. On the other hand, when bare DNA is firstly condensed by BSA, doxo is capable to intercalate and to unfold the DNA condensates at relatively high concentrations. In addition, a specific interaction between BSA and doxo was verified, which significantly changes the chemical equilibrium of the DNA–doxo interaction. Finally, the presence of BSA in the buffer stabilizes the double‐helix structure of the DNA–doxo complexes, preventing partial DNA denaturation induced by the stretching forces.  相似文献   

15.
A fluorescence quenching technique is often used to study interactions between small molecules and serum albumin. However, the results are quite different by using spectroscopic techniques on the same drug‐protein interaction research and they may be affected by different conditions (e.g. working solution of pH and ionic strength). In this research, using apigenin as an example, the effect of experimental conditions of fluorescence quenching on the binding parameters of drug to bovine serum albumin was investigated using a response surface method (RSM). The effect of pH, the concentration of NaCl and the concentration Mg2+ on the quenching constant (KSV), the apparent association constant (Ka) and the number of binding sites (n) was studied by single‐factor experiments with pH, [NaCl] and [Mg2+] as independent variables and KSV, Ka and n as response values. Prediction models were fit to a quadratic polynomial regression equation and the results showed that both KSV and n displayed a second‐order model, whereas Ka displayed linear relation dependence on pH, [NaCl] and [Mg2+]. Under these experimental conditions, [NaCl] was the most significant (p < 0.05) impact factor on KSV and Ka, whereas n was most affected by pH (p < 0.05). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The interaction of dextromethorphan hydrobromide (DXM) with bovine serum albumin (BSA) is studied by using fluorescence spectra, UV–vis absorption, synchronous fluorescence spectra (SFS), 3D fluorescence spectra, Fourier transform infrared (FTIR) spectroscopy and circular dichroism under simulated physiological conditions. DXM effectively quenched the intrinsic fluorescence of BSA. Values of the binding constant, KA, are 7.159 × 103, 9.398 × 103 and 16.101 × 103 L/mol; the number of binding sites, n, and the corresponding thermodynamic parameters ΔG°, ΔH° and ΔS° between DXM and BSA were calculated at different temperatures. The interaction between DXM and BSA occurs through dynamic quenching and the effect of DXM on the conformation of BSA was analyzed using SFS. The average binding distance, r, between the donor (BSA) and acceptor (DXM) was determined based on Förster's theory. The results of fluorescence spectra, UV–vis absorption spectra and SFS show that the secondary structure of the protein has been changed in the presence of DXM. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Peptide bond hydrolysis of bovine serum albumin (BSA) by chymotrypsin and trypsin was investigated by employing time-resolved fluorescence spectroscopy. As a fluorescent cross-linking reagent, N-(1-pyrenyl) maleimide (PM) was attached to BSA, through all free amine groups of arginine, lysine, and/or single free thiol (Cys34). Time-resolved fluorescence spectroscopy was used to monitor fluorescence decays analyzed by exponential series method to obtain the changes in lifetime distributions. After the exposure of synthesized protein substrate PM-BSA to chymotrypsin and trypsin, it is observed that each protease produced a distinct change in the lifetime distribution profile, which was attributed to distinct chemical environments created by short peptide fragments in each hydrolysate. The persistence of excimer emission at longer lifetime regions for chymotrypsin, as opposed to trypsin, suggested the presence of small-scale hydrophobic clusters that might prevent some excimers from being completely quenched. It is most likely that the formation of these clusters is due to hydrophobic end groups of peptide fragments in chymotrypsin hydrolysate. A similar hydrophobic shield was not suggested for trypsin hydrolysis, as the end groups of peptide fragments would be either arginine or lysine. Overall, in case the target protein’s 3D structure is known, the structural analysis of possible excimer formation presented here can be used as a tool to explain the differences in activity between two proteases, i.e. the peak’s intensity and location in the profile. Furthermore, this structural evaluation might be helpful in obtaining the optimum experimental conditions in order to generate the highest amount of PM-BSA complexes.  相似文献   

18.
Qasem RJ 《AAPS PharmSciTech》2006,7(1):E104-E110
The purpose of this study was to compare the effects of denaturation by microwave irradiation on release properties of 2 physically different proteins. Matrices were prepared from water-soluble bovine serum albumin loaded with metoclopramide and sorbed with adequate amount of moisture were thermally denatured in a microwave oven. The release profile of the rather insoluble denatured albumin matrices followed the classical Fickian diffusion profile. The release rate was dependent on the degree of denaturation, which was highly dependent on the level of moisture originally absorbed by the albuminoidal matrices and the period of exposure to microwave energy. Consersely, attempts to reduce the rate of drug release through microwave irradiation of metoclopramide-loaded matrices prepared from water-insoluble gluten were futile. The denaturation process was shown to be limited to the relatively water-soluble protein core fraction, while aggregation between neighboring gluten proteins in the matrix was not achieved even in the presence of considerable amounts of sorbed water. Published: February 10, 2006  相似文献   

19.
Yin J  Wei W  Liu X  Kong B  Wu L  Gong S 《Analytical biochemistry》2007,360(1):99-104
A biosensor based on bovine serum albumin (BSA) for the detection of lead (Pb(2+)) ion was developed and characterized. BSA was immobilized onto a colloidal Au-modified piezoelectric quartz crystal (PQC) as a biosensor for the detection of Pb(2+) ion by piezoelectric quartz crystal impedance (PQCI). Calibration curves for the quantification of Pb(2+) ion showed excellent linearity throughout the concentration range from 1.0 x 10(-7) to 3.0 x 10(-9)mol/L. The interaction between the Pb(2+) ions and the sensor chip is influenced significantly by the pH of the reaction buffer, and the optimal pH for the experiment was 5.4. Under the optimal conditions, the detection limit of 1.0 x 10(-9)mol/L for Pb(2+) was obtained. Kinetic parameters of the Pb(2+)-BSA interactions were also determined by using this chip. The sensor chip could be regenerated for use by dipping in the ethylenediaminetetraacetic acid (EDTA) solution for approximately 2h, and the chip was used to detect Pb(2+) ion for eight times without obvious signal attenuation.  相似文献   

20.
The interactions of dihydroartemisinin (DHA) and artemisinin (ART) with bovine serum albumin (BSA) have been investigated using fluorescence, UV/vis absorption and Fourier transform infrared (FTIR) spectra under simulated physiological conditions. The binding characteristics of DHA/ART and BSA were determined by fluorescence emission and resonance light scattering (RLS) spectra. The quenching mechanism between BSA and DHA/ART is static. The binding constants and binding sites of DHA/ART–BSA systems were calculated at different temperatures (293, 298, 304 and 310 K). According to Förster non‐radiative energy transfer theory, the binding distance of BSA to DHA/ART was calculated to be 1.54/1.65 nm. The effect of DHA/ART on the secondary structure of BSA was analyzed using UV/vis absorption, FTIR, synchronous fluorescence and 3D fluorescence spectra. In addition, the effects of common ions on the binding constants of BSA–DHA and BSA–ART systems were also discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号