首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emulsions are widely used as topical formulations in the pharmaceutical and cosmetic industries. They are thermodynamically unstable and require emulsifiers for stabilization. Studies have indicated that emulsifiers could affect topical delivery of actives, and this study was therefore designed to investigate the effects of different polymers, applied as emulsifiers, as well as the effects of pH on the release and topical delivery of the active. O/w emulsions were prepared by the layer-by-layer technique, with whey protein forming the first layer around the oil droplets, while either chitosan or carrageenan was subsequently adsorbed to the protein at the interface. Additionally, the emulsions were prepared at three different pH values to introduce different charges to the polymers. The active ingredient, salicylic acid, was incorporated into the oil phase of the emulsions. Physical characterization of the resulting formulations, i.e., droplet size, zeta potential, stability, and turbidity in the water phase, was performed. Release studies were conducted, after which skin absorption studies were performed on the five most stable emulsions, by using Franz type diffusion cells and utilizing human, abdominal skin membranes. It was found that an increase in emulsion droplet charge could negatively affect the release of salicylic acid from these formulations. Contrary, positively charged emulsion droplets were found to enhance dermal and transdermal delivery of salicylic acid from emulsions. It was hypothesized that electrostatic complex formation between the emulsifier and salicylic acid could affect its release, whereas electrostatic interaction between the emulsion droplets and skin could influence dermal/transdermal delivery of the active.  相似文献   

2.
This study sought to encapsulate a high concentration of L-ascorbic acid, up to 30% (w/v), in the inner aqueous phase of water-in-oil-water (W/O/W) emulsions with soybean oil as the oil phase. Two-step homogenization was conducted to prepare W/O/W emulsions stabilized by a hydrophobic emulsifier and 30% (v/v) of W/O droplets stabilized by a hydrophilic emulsifier. First-step homogenization prepared W/O emulsions with an average aqueous droplet diameter of 2.0 to 3.0 μm. Second-step homogenization prepared W/O/W emulsions with an average W/O droplet diameter of 14 to 18 μm and coefficients of variation (CVs) of 18% to 25%. The results indicated that stable W/O/W emulsions containing a high concentration of L-ascorbic acid were obtained by adding gelatin and magnesium sulfate in the inner aqueous phase and glucose in both aqueous phases. L-Ascorbic acid retention in the W/O/W emulsions was 40% on day 30 and followed first-order kinetics.  相似文献   

3.
Microgels formed from beta-lactoglobulin were used to prepare oil-in-water emulsions in order to examine their emulsifying capacity. Corn oil emulsions prepared with microgels of pure beta-lactoglobulin at pH 5.8 were initially stable, but a fraction of the droplets quickly flocculated to form a creamed layer that could not be dispersed by shear, which was attributed to hydrophobic attractions between the microgels on adjoining droplets. Emulsions prepared from microgels of beta-lactoglobulin and pectin at pH 4.75 possessed greater droplet sizes at lower concentrations, yet all emulsions were relatively stable to irreversible flocculation. Increased stability of emulsions stabilized by BP-gels was attributed to the presence of pectin on the surface of microgels, which increased repulsions between adjoining droplets. Stable corn oil emulsions were still prepared from microgels that were previously dialyzed to remove non-aggregated protein, which verified that the microgels were responsible for stabilizing emulsion droplets. Equilibrium surface pressure of corn oil droplets was similar between microgels and the unheated beta-lactoglobulin and pectin, yet the dynamic surface pressure was reduced at intermediate times and indicated a slow relaxation and deformation of the microgels at the interface. Microgels formed with pectin stabilized emulsions containing 90 % limonene for up to 5 days of room temperature storage, demonstrating the capacity of such protein microgels to stabilize flavor oil emulsions.  相似文献   

4.
The effects of lecithin addition in oil or water phase on the stability of oil-in-water emulsions made with 0.1 wt% whey protein and 10 wt% n-tetradecane at neutral and acidic pH were studied by monitoring the gravitational creaming and phase separation. The effects of lecithin addition on the interfacial behavior of β-lactoglobulin were also studied to compare with the results of emulsion stability. At neutral pH, crude phosphatidylcholine (PC) from egg yolk or soybean increased the stability of the emulsion made with protein and lowered the interfacial tension of protein films more effectively than pure egg PC. A more remarkable effect on both the emulsion stability and the interfacial tension was found when crude PC was added in the oil phase rather than in the water phase. The purity of lecithins and the way to add them are suggested to be very important to make a stable emulsion with protein. On acidic pH (4.5 or 3.0), the increased creaming or phase separation in a whey protein-stabilized emulsion, but the lowered interfacial tension of β-lactoglobulin films, were found upon the addition of pure or crude PC in oil or water phase. These results suggest that in acidic pH, densely packed films may be formed on a planar oil–water interface, but not on adsorbed layers around oil droplets in an emulsion.  相似文献   

5.
In studying perfluorooctyl bromide (PFOB) dispersions in aqueous media, we have used two types of surfactant: egg yolk phospholipids (EYP) and polyglycerol esters (PGE). Our interest in these dispersions arises from their potential biomedical applications as imaging solutions and oxygen-carrying solutions (i.e., blood substitutes). For EYP systems, we have identified the dispersion structure as consisting of (a) PFOB droplets (250-nm diameter) stabilized by a phospholipid monolayer adsorbed irreversibly at the o/w interface and (b) small empty phospholipid vesicles. With both surfactants commercial preparations yielded stable systems, while purified samples, being non-dispersible, could not be made to act as emulsifiers. In both cases, minor components in the commercial surfactant were found to be necessary for the formation of a stable dispersion, enabling the transport of the pure surfactant to the PFOB/water interface.  相似文献   

6.
Semen cryopreservation is an essential biotechnology in canine reproduction and during the cryopreservation process commonly egg yolk are used. The discrepancy in the egg yolk composition and the potential risk of disease dissemination are obstacles for semen exportation and use. Therefore, studies aiming to substitute egg yolk are extremely important. In this context, soy lecithin contains a low-density lipoprotein fraction, is an interesting alternative. Thus, the objective of this study was to compare extenders based on soy lecithin (several concentrations and forms) with egg yolk during the cryopreservation process of dog sperm. For this purpose, we used twelve dogs. Semen was evaluated at different time points (after refrigeration, glycerolization, and thawing), by motility analysis (CASA) and functional tests (e.g., membrane integrity—eosin/nigrosin, acrosome integrity—fast green/Bengal rose, mitochondrial activity—3’3 diaminobenzidine, Chromatin susceptibility to acid-induced denaturation—SCSA, and susceptibility to oxidative stress—thiobarbituric acid reactive substances). The results indicated that egg yolk and lower concentrations of lecithin had similar effects on mitochondrial activity and motility. Thus, soy lecithin is a potentially viable alternative to egg yolk for the cryopreservation of dog semen.  相似文献   

7.
Currently, much effort is being invested in novel formulations of bioactive molecules, such as emulsions, for pharmaceutical, food, and cosmetic applications. Therefore, methods to produce emulsions with controlled-size droplets of uniform size distribution have been developed. On this concern, a microfluidic device called the microchannel (MC) was used in this work for emulsification. This is a novel method for producing monodispersed emulsion droplets with very narrow droplet size distribution and low energy input, due to the spontaneous droplet generation basically driven by the interfacial tension, unlike other conventional emulsification processes. This technology provides the formulation of oil-in-water (O/W) emulsions containing lipophilic active molecules with increased bioavailability, which may be readily absorbed by the human body. MC emulsification enables the preparation of highly monodispersed O/W emulsions, which may be applied as enhancer on active molecules delivery systems, as well as in foodstuff. In this study, formulations of O/W emulsions loaded with bioactive molecules, such as β-carotene and γ-oryzanol, were prepared by the MC emulsification process. Refined soybean oil containing the dissolved lipophilic molecule and either sugar ester or gelatin solution (1 wt.%) were used as the dispersed and continuous phases, respectively. The emulsification process conducted using the asymmetric straight-through MC plate enabled the production of monodispersed O/W emulsions, resulting in β-carotene-loaded O/W emulsions with average droplet size (d av) of 27.6 μm and coefficient of variation (CV) of 2.3% and γ-oryzanol-loaded droplets with d av of 28.8 μm and CV of 3.8%. The highly monodisperse β-carotene-loaded droplets were physically stable throughout the storage period observed, resulting in droplets with d av 28.2 μm and CV of 2.9% after 4 months storage in darkness at 5 °C. Single micrometer-sized monodisperse emulsions loaded with β-carotene were successfully formulated using the grooved MC emulsification, resulting in droplets with d av of 9.1 μm and CV of 6.2%. This work was funded by The Ministry of Agriculture, Forestry and Fisheries of Japan, through the Food Nanotechnology Project, and the Japan Society for the Promotion of Science.  相似文献   

8.
Emulsions of 0.1 wt % corn oil-in-water containing oil droplets coated by beta-lactoglobulin (0.009 wt % beta-Lg, 5 mM phosphate buffer, pH 7.0) were prepared in the absence and presence of sodium alginate (0 or 0.004 wt %). The pH (3-7) and ionic strength (0-250 mM NaCl) of these emulsions were adjusted, and the particle charge, particle size, and creaming stability were measured. Alginate adsorbed to the beta-Lg-coated droplets from pH 3 to 6, which was attributed to electrostatic attraction between the anionic polymer and cationic patches on the droplet surfaces. Droplets coated by beta-Lg-alginate had better stability to flocculation than those coated by beta-Lg alone, especially around the isoelectric point of the adsorbed proteins and at low ionic strengths (< 100 mM NaCl). At pH 5, alginate molecules desorbed from the droplet surfaces at high salt concentrations due to weakening of the electrostatic attraction.  相似文献   

9.
Perfluorocarbon emulsions have been considered as potential blood substitutes for years due to their high capacity of dissolving respiratory oxygen and carbon dioxide. However, they have been reported to associate with side effects (e.g., flu-like syndrome) after being injected into animal's bloodstream. The cause of these side effects is related to the phagocytosis of perfluorocarbon emulsions by cells (e.g., macrophages). Inspired by the approach of using polyethylene glycol (PEG) to camouflage liposomes, we synthesized a perfluoroalkylated PEG (R(F)-PEG) surfactant to provide steric hindrance for decreasing phagocytosis of perfluorocarbon emulsions. The R(F)-PEG surfactant along with Pluronic F-68 and egg yolk phospholipid mediated perfluorocarbon emulsions were incubated individually with J774A.1 macrophages to examine the degree of phagocytosis. 19F NMR studies were used to quantitatively determine the amount of perfluorocarbon emulsions phagocytosed by macrophages. Results showed that the degree of phagocytosis was diminished to a large extent for perfluorocarbon microparticles emulsified by the R(F)-PEG surfactant.  相似文献   

10.
The sizes of oil droplets (globules) and the yolk sphere in the Medaka Oryzias latipes egg were measured in the developmental period from fertilization to hatching. Oil droplets coalesced with one another in the process of shifting toward the vegetal pole, and a single large oil droplet was finally located at the vegetal pole region in most eggs 2 days post-fertilization. The volume of the yolk sphere steeply decreased in the period from 2 to 8 days post-fertilization. The volume of oil droplets also declined linearly from 4 to 10 days post-fertilization. Lipid components exhibited no distinct change during embryogenesis. In order to verify whether oil droplets were required for development of Medaka embryos, oil droplets were artificially removed from the early developing embryos without the chorion (egg envelope). Naked embryos without the oil droplet developed normally to fry in the sterilized incubation medium and grew to the same mature fry as those grown from the control embryos.  相似文献   

11.
Time-dependent intermolecular sulphydryl-disulphide interchange involving beta-lactoglobulin adsorbed at the oil-water interface in n-tetradecane-in-water emulsions (10 wt% oil, 0.5 wt% protein, pH 7.0) has been investigated using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). While only monomers are detected in the adsorbed protein immediately after emulsion formation with pure beta-lactoglobulin, on storing the emulsion the amount of polymerized beta-lactoglobulin and the sizes of the oligomers are found to increase with time. There is no polymerization of adsorbed protein in emulsions made with pure alpha-lactalbumin after 72 h, or in emulsions made with beta-lactoglobulin in the presence of a reagent (N-ethylmaleimide) for modifying sulphydryl groups. Analysis by two-dimensional SDS-PAGE of adsorbed protein from aged emulsions made with a mixture of alpha-lactalbumin + beta-lactoglobulin shows some linking by disulphide bonds between alpha-lactalbumin and beta-lactoglobulin at the interface. Taken together with earlier time-dependent surface viscosity measurements, the results indicate the important role of free sulphydryl groups in the development of the high surface viscoelasticity of adsorbed globular proteins at the oil-water interface.  相似文献   

12.
Inulin, the polydisperse polyfructose, extracted from chicory, was modified via esterification with acyl phosphonates. The grafting of an acyl chain onto the inulin backbone under different conditions led to a highly efficient synthesis of a series of inulin esters, with interesting tensioactive properties. The derivatives were evaluated in oil-in-water (O/W) emulsions with isoparaffinic oil, Isopar M. Therefore, a 2% (w/v) aqueous solution of inulin-based surfactant was used in 50/50 O/W emulsions, in nonelectrolyte, and in electrolyte media, using 1 M MgSO4. Longer acyl chains, e.g., dodecanoyl (C12), hexadecanoyl (C16), and octadecanoyl (C18), with degrees of substitution lower than 0.5, gave rise to the highest emulsion stabilities against coalescence.  相似文献   

13.
Two types of experiments were performed to study the reversibility of interfacial adsorption of pancreatic lipase (PL) to fat droplets during lipolysis. Lipolysis was measured in olive oil/gum arabic emulsions containing radiolabeled triolein in the presence of bile salts and lecithin at rate-limiting concentrations of porcine PL (PPL) or human PL (HPL). The lipolysis rate in a labeled emulsion, i.e. release of [(14)C]oleic acid, was immediately reduced by around 50% upon dilution with an equal amount of an unlabeled emulsion. Further, lipolysis was rapidly and completely suppressed when a non-exchanging lipase inhibitor was present in the second emulsion. These results indicate hopping of lipase between emulsion droplets. Alternative explanations were excluded. Hopping of PL between triolein droplets stabilized with gum arabic at supramicellar bile salt concentrations was observed only in the presence, not in the absence, of lecithin. Displacement from a trioctanoin-water interface of active HPL by an inactive mutant (S152G) was studied in the presence of bile salts by measuring HPL distribution between the water phase and the oil-water interface. Colipase was limiting for HPL binding to the oil-water interface (colipase to lipase molar ratio: 0.5) and, thus, for lipolysis. Upon adding S152G, which has the same affinity for colipase, inactive and active HPL were found to compete for binding at the oil-water interface. When equal amounts of HPL and HPL S152G were used, the lipolysis rate dropped to half the maximum rate recorded with HPL alone, suggesting that half the active HPL was rapidly desorbed from the oil-water interface. Therefore, under various conditions, PL does not remain irreversibly adsorbed to the oil-water interface, but can exchange rapidly between oil droplets, via an equilibrium between soluble and lipid-bound PL.  相似文献   

14.
Double emulsions of the water-in-oil-in-water (W/O/W) type have application in the formulation of reduced-fat food products and as vehicles for encapsulation and delivery of nutrients during food digestion. Progress in the development of stable double emulsions for food use is dependent on replacing small-molecule emulsifiers and synthetic polymeric stabilizing agents by food-grade ingredients. Of particular value for conferring the required functionality are food proteins and polysaccharides. This review describes how these biopolymers have been successfully incorporated into the internal and external aqueous phases of W/O/W emulsions to improve the stability and yield of model systems. Recent advances in the use of protein–polysaccharide conjugates and complexes for the stabilization of the outer droplets of W/O/W emulsions are highlighted.  相似文献   

15.
The chicken egg yolk plasma and granule proteomes   总被引:5,自引:0,他引:5  
Mann K  Mann M 《Proteomics》2008,8(1):178-191
Using 1-D SDS-PAGE, LC-MS/MS, and MS(3), we identified 119 proteins from chicken egg yolk, 86 of which were not identified in yolk previously. Proteins were roughly quantitated by calculating their exponentially modified protein abundance index (emPAI) to classify them as major or minor yolk components, and to estimate their distribution between yolk plasma and yolk granular fraction. The proteins with highest abundance were serum albumin, the vitellogenin cleavage products, apovitellenins, IgY, ovalbumin, and 12 kDa serum protein with cross-reactivity to beta2-microglobulin. In addition yolk contained many other serum and egg white proteins, the proteases nothepsin and thrombin, numerous protease inhibitors, and antioxidative enzymes, such as superoxide dismutase and glutathione peroxidase. Among the moderately abundant proteins were two alpha2-macroglobulin-like proteins different from egg white alpha2-macroglobulin, and the major biotin-binding protein of yolk. An unexpected identification was that of the eggshell matrix protein ovocleidin-116, which was previously thought to be eggshell-specific. The list of chicken egg yolk proteins provided in this report is by far the most comprehensive at present and may serve as a starting point for the characterization of less well-known yolk proteins.  相似文献   

16.
Subvisible particles in formulations intended for parenteral administration are of concern in the biopharmaceutical industry. However, monitoring and control of subvisible particulates can be complicated by formulation components, such as the silicone oil used for the lubrication of prefilled syringes, and it is difficult to differentiate microdroplets of silicone oil from particles formed by aggregated protein. In this study, we demonstrate the ability of flow cytometry to resolve mixtures comprising subvisible bovine serum albumin (BSA) aggregate particles and silicone oil emulsion droplets with adsorbed BSA. Flow cytometry was also used to investigate the effects of silicone oil emulsions on the stability of BSA, lysozyme, abatacept, and trastuzumab formulations containing surfactant, sodium chloride, or sucrose. To aid in particle characterization, the fluorescence detection capabilities of flow cytometry were exploited by staining silicone oil with BODIPY 493/503 and model proteins with Alexa Fluor 647. Flow cytometric analyses revealed that silicone oil emulsions induced the loss of soluble protein via protein adsorption onto the silicone oil droplet surface. The addition of surfactant prevented protein from adsorbing onto the surface of silicone oil droplets. There was minimal formation of homogeneous protein aggregates due to exposure to silicone oil droplets, although oil droplets with surface-adsorbed trastuzumab exhibited flocculation. The results of this study demonstrate the utility of flow cytometry as an analytical tool for monitoring the effects of subvisible silicone oil droplets on the stability of protein formulations.  相似文献   

17.
The impact of a cationic polyelectrolyte on the pH sensitivity of the electrical charge and aggregation stability of protein-coated lipid droplets was examined. One percent (w/w) corn oil-in-water emulsions containing lipid droplets coated by β-lactoglobulin [0.05% (w/w) β-Lg, 10 mM acetate buffer, pH 3] were prepared in the absence (“primary” emulsions) and presence (“secondary” emulsions) of chitosan (0 to 0.05 wt%). The pH (3 to 8) of these emulsions was adjusted, and the particle charge, particle size, creaming stability, and microstructure were measured. Chitosan adsorbed to the β-Lg-coated droplets from pH 4.5 to 7.5, which was attributed to electrostatic attraction between the cationic polyelectrolyte and anionic patches on the droplet surfaces. Droplets coated by β-Lg–chitosan had better stability to flocculation than those coated by β-Lg alone around the isoelectric point of the adsorbed proteins (pH 4.5 to 5.5), which was attributed to increased electrostatic and steric repulsion between the droplets. We have shown that chitosan may be used to modulate the electrical characteristics and stability of protein-coated lipid droplets, which may be useful in the design and formation of delivery systems for use in the food, pharmaceutical, and other industries.  相似文献   

18.
Co-enzyme Q10 (CoQ10), a lipophilic compound that widely used in the food and pharmaceutical products was formulated in a κ-carrageenan coated oil-in-water (O/W) emulsion. In this work, we examined the solubility of CoQ10 in different carrier oils and effects of emulsifier type on the formation and stability of CoQ10-loaded O/W emulsion. Nine vegetable oils and four types of emulsifiers were used. CoQ10 was found significantly (p?<?0.05) more soluble in medium chain oils (coconut oil and palm kernel oil) as compared to other vegetable oils. The O/W emulsions were then prepared with 10 % (w/w) coconut oil and palm kernel oil containing 200 g CoQ10/L oil stabilized by 1 % (w/v) emulsifiers (sucrose laurate (SEL), sodium stearoyl lactate (SSL), polyglycerol ester (PE), or Tween 80 (Tw 80)) in 1 % (w/v) κ-carrageenan aqueous solution. Particle size distribution and physical stability of the emulsions were monitored. The droplet sizes (surface weighted mean diameter, D[3,2]) of fresh O/W emulsion in the range of 2.79 to 5.83 μm were observed. Irrespective of the oil used, results indicated that complexes of SSL/κ-carrageenan provided the most stable CoQ10-loaded O/W emulsion with smaller and narrower particle size distribution. Both macroscopic and microscopic observations showed that O/W emulsion stabilized by SSL/κ-carrageenan is the only emulsion that exhibited no sign of coalescence, flocculation, and phase separation throughout the storage period observed.  相似文献   

19.
Heat Resistance of Salmonella in Various Egg Products   总被引:4,自引:3,他引:1       下载免费PDF全文
The heat-resistance characteristics of Salmonella typhimurium Tm-1, a reference strain in the stationary phase of growth, were determined at several temperatures in the major types of products produced by the egg industry. The time required to kill 90% of the population (D value) at a given temperature in specific egg products was as follows: at 60 C (140 F), D = 0.27 min for whole egg; D = 0.60 min for whole egg plus 10% sucrose; D = 1.0 min for fortified whole egg; D = 0.20 min for egg white (pH 7.3), stabilized with aluminum; D = 0.40 min for egg yolk; D = 4.0 min for egg yolk plus 10% sucrose; D = 5.1 min for egg yolk plus 10% NaCl; D = 1.0 min for scrambled egg mix; at 55 C (131 F), D = 0.55 min for egg white (pH 9.2); D = 1.2 min for egg white (pH 9.2) plus 10% sucrose. The average Z value (number of degrees, either centigrade or fahrenheit, for a thermal destruction time curve to traverse one logarithmic cycle) was 4.6 C (8.3 F) with a range from 4.2 to 5.3 C. Supplementation with 10% sucrose appeared to have a severalfold greater effect on the heat stabilization of egg white proteins than on S. typhimurium Tm-1. This information should be of value in the formulation of heat treatments to insure that all egg products be free of viable salmonellae.  相似文献   

20.
The enzymatic cross-linking of adsorbed biopolymer nanoparticles formed between whey protein isolate (WPI) and sugar beet pectin using the complex coacervation method was investigated. A sequential electrostatic depositioning process was used to prepare emulsions containing oil droplets stabilized by WPI – nanoparticle – membranes. Firstly, a finely dispersed primary emulsion (10 % w/w miglyol oil, 1 % w/w WPI, 10 mM acetate buffer at pH 4) was produced using a high-pressure homogenizer. Secondly, a series of biopolymer particles were formed by mixing WPI (0.5 % w/w) and pectin (0.25 % w/w) solutions with subsequent heating above the thermal denaturation temperature (85 °C, 20 min) to prepare dispersions containing particles in the submicron range. Thirdly, nanoparticle-covered emulsions were formed by diluting the primary emulsion into coacervate solutions (0–0.675 % w/w) to coat the droplets. Oil droplets of stable emulsions with different interfacial membrane compositions were subjected to enzymatic cross-linking. We used cross-linked multilayered emulsions as a comparison. The pH stability of primary emulsions, biopolymer complexes and nanoparticle-coated base emulsions, as well as multilayered emulsions, was determined before and after enzyme addition. Freeze-thaw stability (?9 °C for 22 h, 25 °C for 2 h) of nanoparticle-coated emulsions was not affected by laccase. Results indicated that cross-linking occurred exclusively in the multilamellar layers and not between adsorbed biopolymer nanoparticles. Results suggest that the accessibility of distinct structures may play a key role for biopolymer-cross-linking enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号