首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the study was to determine the effects of different heat-processing methods of flaxseed on the in situ effective dry matter degradability (EDMD) and the in situ effective crude protein degradability (ECPD). The treatments included roasting, steep roasting, rolled roasting, rolled steep roasting, microwave irradiation and extrusion. Three rumen-fistulated sheep were used for in situ incubations. Furthermore, the effects of heat-processing methods on post-ruminal in vitro nutrient disappearance and total tract disappearance were measured by a three-step in vitro technique. The seeds were roasted and extruded at 140°C to 145°C. One lot of roasted seeds was gradually cooled for about 1 h (roasting) and another lot was held in temperature isolated barrels for 45 min (steep roasting). Moreover, roasted and steep roasted flaxseed was rolled in a roller mill. The lowest and highest EDMD was observed for unheated and extruded flaxseed, respectively (p < 0.05). The highest ECPD was observed for extruded flaxseed (p < 0.05). Roasting and microwave irradiation reduced ECPD of flaxseed (p < 0.05). In vitro post-ruminal disappearance of crude nutrients including fibre fractions was highest for rolled-roasted and rolled steep-roasted flaxseed (p < 0.05). The lowest and highest total tract disappearance rates of crude nutrients and fibre fractions were estimated for unheated and extruded flaxseed, respectively (p < 0.05). The post-ruminal disappearance of crude nutrients was also increased by roasting, in which rolling enhanced this effect. In conclusion, all investigated heat treatments had significant effects on in situ and in vitro degradability of nutrients. As well, rolling of roasted flaxseed enhanced the respective effects. Therefore, different methods of heat processing can be used to modify the feed value of flaxseed for specific purposes.  相似文献   

2.
Freshly harvested, dormant seeds of Amaranthus retroflexus were unable to germinate at 25 and 35 °C. To release their dormancy at the above temperatures, the seeds were stratified at a constant temperature (4 °C) under laboratory conditions or at fluctuating temperatures in soil or by outdoor burial in soil. Fully dormant, or seeds stratified or buried (2006/2007 and 2007/2008) for various periods were treated with exogenous gibberellic acid (GA3), ethephon and abscisic acid (ABA). Likewise, the effects of these regulators, applied during stratification, on seed germination were determined. The results indicate that A. retroflexus seed dormancy can be released either by stratification or by autumn–winter burial. The effect of GA3 and ethylene, liberated from ethephon, applied after various periods of stratification or during stratification, depends on dormancy level. GA3 did not affect or only slightly stimulated the germination of non-stratified, fully dormant seeds at 25 and 35 °C respectively. Ethylene increased germination at both temperatures. Seed response to GA3 and ethylene at 25 °C was increased when dormancy was partially removed by stratification at constant or fluctuating temperatures or autumn–winter burial. The response to GA3 and ethylene increased with increasing time of stratification. The presence of GA3 and ethephon during stratification may stimulate germination at 35 °C. Thus, both GA3 and ethylene can partially substitute the requirement for stratification or autumn–winter burial. Both hormones may also stimulate germination of secondary dormant seeds, exhumed in September. The response to ABA decreased in parallel with an increasing time of stratification and burial up to May 2007 or March 2008. Endogenous GAn, ethylene and ABA may be involved in the control of dormancy state and germination of A. retroflexus. It is possible that releasing dormancy by stratification or partial burial is associated with changes in ABA/GA and ethylene balance and/or sensitivity to these hormones.  相似文献   

3.
The flavor and taste of coffee are affected by roasting conditions and extraction temperature. This study assessed changes in the flavors and tastes of coffee extracted from Vietnamese Robusta with different roasting times and temperatures, as well as different extraction temperatures. Vietnamese Robusta green beans were roasted for different times ranging from 5 to 20 min and at different temperatures ranging from 100 to 250°C. The roasted coffee was then extracted at five different temperatures ranging from 90 to 120°C. The coffee flavor was evaluated in terms of 5 key odorants: guaiacol; 4-ethylguaiacol; 2-ethyl-3,5-dimethylpyrazine; 2,3-diethyl-5-methylpyrazine, and 2-furfuryl. The taste of coffee was evaluated in terms of 6 main compounds that confer bitterness and sourness: caffeine, trigonelline, chlorogenic acid and citric acid, acetic acid, formic acid. The optimized roasting and extracting conditions were identified that 200 g of VN Robusta green beans, roasting at 230°C for 18 min, and then extracted with Espresso Machine at 110°C.  相似文献   

4.
杨期和  殷寿华  夏永梅  兰芹英 《广西植物》2002,22(6):537-542-542
九里香种子自花后 42~ 77d,含水量和电导率逐渐降低 ,种子干重、发芽率、发芽指数和活力指数逐渐增加。硅胶脱水 1~ 6d后 ,种子含水量下降 1 0 %~ 3 5 % ,发芽率、发芽指数和活力指数均有不同程度的降低 ,不同发育时期九里香种子的脱水耐性有别 ,花后 42~ 70d不断增强 ,77d有所减弱。花后 70d的种子含水量降至 1 0 % ,种子发芽率无明显降低 ;含水量为 9%的种子在 4°C和 2 0°C的低温条件贮存 3 0d和 42d ,多数种子仍能萌发 ,这表明九里香种子是一种正常型种子。光照能促进种子的萌发 ;在 2 0~ 3 0°C、室温和 2 0 /3 0°C变温条件下种子萌发较好 ;光照和温度对种子萌发有单独影响 ,但又相互作用 ,同时光照对萌发的影响还与种子含水量有关。  相似文献   

5.
Fluctuating temperature plays a critical role in determining the timing of seed germination in many plant species. However, the physiological and biochemical mechanisms underlying such a response have been paid little attention. The present study investigated the effect of plant growth regulators and cold stratification in regulating Leymus chinensis seed germination and dormancy response to temperature. Results showed that seed germination was less than 2 % at all constant temperatures while fluctuating temperature significantly increased germination percentage. The highest germination was 71 % at 20/30 °C. Removal of the embryo enclosing material of L. chinensis seed germinated to 74 %, and replaced the requirement for fluctuating temperature to germinate, by increasing embryo growth potential. Applications of GA4+7 significantly increased seed germination at constant temperature. Also, inhibition of GA biosynthesis significantly decreased seed germination at fluctuating temperatures depending upon paclobutrazol concentration. This implied GA was necessary for non-dormant seed germination and played an important role in regulating seed germination response to temperature. Inhibition of ABA biosynthesis during imbibition completely released seed dormancy at 20/30 °C, but showed no effect on seed germination at constant temperature, suggesting ABA biosynthesis was important for seed dormancy maintenance but may not involve in seed germination response to temperature. Cold stratification with water or GA3 induced seed into secondary dormancy, but this effect was reversed by exogenous FL, suggesting ABA biosynthesis during cold stratification was involved in secondary dormancy. Also, cold stratification with FL entirely replaced the requirement of fluctuating temperature for germination with seeds having 73 % germination at constant temperature. This appears to be attributed to inhibition of ABA biosynthesis and an increase of GA biosynthesis during cold stratification, leading to an increased embryo growth potential. We suggest that fluctuating temperature promotes seed germination by increasing embryo growth potential, mainly attributed to GA biosynthesis during imbibitions. ABA is important for seed dormancy maintenance and induction but showed less effect on non-dormant seed germination response to temperature.  相似文献   

6.
Germination studies are important for collecting information on field seedling recruitment, plant conservation and restoration. This study investigated the role of light, temperature, nitrogen, water stress and burial depth in controlling germination of Stipa bungeana seeds. S. bungeana seeds are photo-inhibited; light significantly decreased seed germination regardless of temperature and water conditions. Seeds germinated at 10–30° C, and the highest germination was 72 % and 88 % at 20° C in light and dark, respectively. Thermal model analysis showed that presence of light significantly increased average thermal requirement [θ T (50)] from 105°Cd to 186°Cd at sub-optimal temperature, implying that light delays seed germination. Hydrotime model analysis showed that presence of light caused a shift in the median base water potential [Ψ b(50)] from ?0.68 to ?0.26 MPa, which partly explains why light decreased both percentage and speed of germination, even at optimal conditions. As burial depth increased, seedling emergence initially increased and then decreased; the highest seedling emergence recruitment was 43 %, for seeds buried at a depth of 1 cm. Field observations showed that seedling emergence occurred primarily from July to September, and scarcely occurred from April to June. These results suggest that the light inhibitory effect is an adaptive mechanism that prevents S. bungeana seeds from germinating on the soil surface. To attain highest seedling establishment, seeds of S. bungeana should be sown at a soil depth of 1 cm prior to the rainy season, using seeds stored for 1 year.  相似文献   

7.
The relationship between biocontrol activity of Pseudomonas putida strain N1R against Pythium ultimum on pea and soybean seeds and the reduction in ethanol evolution by imbibed seeds was investigated under different treatment conditions, including temperature and numbers of seed‐applied cells of the bacterium. Treatment with strain N1R increased emergence at all temperatures, except for soybean at 12 °C and reduced ethanol concentration in the spermosphere of imbibed seeds at several temperatures. The concentration of bacterial cells in the seed treatment suspension also significantly affected biocontrol efficiency and reduced ethanol production, especially in pea seeds. In contrast, the duration (0–7 h) of submergence of seeds in bacterial suspension had little effect on biocontrol activity of N1R, although submergence of soybean seeds reduced their emergence even in the absence of the pathogen or biocontrol agent. Competition for seed‐derived compounds, including ethanol, is suggested to be one possible mechanism of biocontrol of Pythium by strain N1R, which is not known to produce antifungal antibiotics.  相似文献   

8.
Time-to-event analysis represents a collection of relatively new, flexible, and robust statistical techniques for investigating the incidence and timing of transitions from one discrete condition to another. Plant biology is replete with examples of such transitions occurring from the cellular to population levels. However, application of these statistical methods has been rare in botanical research. Here, we demonstrate the use of non- and semi-parametric time-to-event and categorical data analyses to address questions regarding seed to seedling transitions of Ipomopsis rubra propagules exposed to various doses of constant or simulated seasonal diel temperatures. Seeds were capable of germinating rapidly to >90 % at 15–25 or 22/11–29/19 °C. Optimum temperatures for germination occurred at 25 or 29/19 °C. Germination was inhibited and seed viability decreased at temperatures ≥30 or 33/24 °C. Kaplan–Meier estimates of survivor functions indicated highly significant differences in temporal germination patterns for seeds exposed to fluctuating or constant temperatures. Extended Cox regression models specified an inverse relationship between temperature and the hazard of germination. Moreover, temperature and the temperature × day interaction had significant effects on germination response. Comparisons to reference temperatures and linear contrasts suggest that summer temperatures (33/24 °C) play a significant role in differential germination responses. Similarly, simple and complex comparisons revealed that the effects of elevated temperatures predominate in terms of components of seed viability. In summary, the application of non- and semi-parametric analyses provides appropriate, powerful data analysis procedures to address various topics in seed biology and more widespread use is encouraged.  相似文献   

9.
Crisp lettuce plants cv. Saladin were grown from the time they started flowering, at 20/10°C (16 h day, 8 h night), 25/15°C and 30/20°C in glasshouses on two occasions in 1985. Yields of seed increased from, on average, 15 g to 27 g and then fell to 20 g per plant with progressive increases in temperature. The number of mature florets per plant increased with temperature but the number of seeds per mature floret was lower at 20/10°C and 30/20°C than at 25/15°C. An increase in temperature reduced mean seed weight by up to 45%, seed volume by 15%, cell numerical volume density (Nv) by 27% and the number of cells per seed by 39%. Percentage seed germination reached a maximum early in seed development at the stage when the pappus appeared through the involucral bracts. Differences in percentage germination and vigour of seeds (slope test) from different temperatures were accounted for largely by the effects on mean seed weight. However, when germinated at 30°C seeds produced at 30/20°C germinated more readily than those produced at 25/15°C or 20/10°C. Seed vigour gradually increased with an increase in the length of storage after harvest, reaching a maximum after 260 days. In general, seeds produced at 25/15°C exhibited a greater variation in numbers of seeds per floret, Nv, seed weight, times of seedling emergence, seedling and mature head weight than seeds produced at lower or higher temperatures.  相似文献   

10.
Water entry at germination for black locust (Robinia pseudoacacia L.) seeds which are known as hard seeds with impermeable seed coat to water, was examined using micro-magnetic resonance imaging (MRI). The MRI apparatus equipped with a low-field (1 T; Tesla) permanent magnet was used, which is open access, easy maintenance, operable and transportable. The excellent point of the apparatus is that T 1-enhancement of water signals absorbed in dry seeds against steeping free water is stronger than the apparatuses with high-field superconducting magnets, which enabled clear detection of water entry. Water hardly penetrated into the seeds for more than 8 h but approximately 60 % of seeds germinated by incubating on wet filter papers for several days. Hot water treatments above 75 °C for 3 min effectively induced water gap; scarification was 70 % at 100 °C and 75 °C, declined to 15 % at 50 °C and decreased further at room temperature. Water entered into the scarified seeds exclusively through the lens, spread along the dorsal side of the seeds and reached the hypocotyl, whereas water migrated slowly through hilum side to radicle within 3 h.  相似文献   

11.
《Flora》2006,201(2):135-143
The effects of time of seed maturation and dry seed storage and of light and temperature requirements during seed incubation on final germination percentage and germination rate were assessed for the invasive shrub Prosopis juliflora (Sw.) D.C., grown under desert environmental conditions of the United Arab Emirates (UAE). Seeds were collected from Fujira on the northern coast of the UAE at different times during the growing seasons (autumn, winter and spring) and were germinated immediately and after 8 months of dry storage under room temperature (20±3 °C). Seeds were germinated at three temperatures (15, 25 and 40 °C) in both continuous light and darkness. The results showed significant effects for time of seed collection, seed storage, light and temperature of seed incubation and many of their interactions on both germination percentage and rate. Fresh seeds matured during autumn and winter germinated significantly greater at 40 °C and in light than at lower temperatures and in dark. Storage significantly increased germination percentage and rate; the increase was greater for seeds matured during winter than for seeds matured during spring. This indicates that dormancy breakage was greater in seeds of winter than seeds of spring. The need for high temperature to achieve greater germination was significantly reduced after seed storage, especially for seeds matured in autumn and winter.  相似文献   

12.
The seed-bank dynamics of cerrado, a savanna-like vegetation type in central Brazil, was monitored for a year after a fire event in the mid-dry season. Fifty paired soil and litter samples were collected 1 day before and 1 day after the fire to record the immediate effects on the seed bank, and thereafter at monthly intervals to investigate the post-fire seed bank dynamics. The samples were hand-sorted and the intact seeds were classified as monocot or dicot and counted. All seeds underwent germination trials in a germination chamber for 1 month. Seeds that did not germinate were checked for the presence and viability of the embryo. The sorted soil samples were placed in a greenhouse for 6 months, and the count of emerging seedlings was added to the number of germinated and dormant seeds from the germination trials to estimate the total number of viable seeds per sample. The fire did not affect the total seed-bank density: 63 ± 8 seeds m?2 before the fire, and 83 ± 20 seeds m?2 (mean ± se) immediately after it. Although monocots represented 65 % of the pre-fire seed bank, 1 year after the fire, the monocot seed density did not reach the pre-fire value, whereas the density of dicot seeds increased threefold. After the fire, the viable seed density and species richness, decreased with the onset of the rainy season coinciding with germination in the field. Therefore, post-fire recruitment increases genetic variability and contributes to the persistence of plant populations in cerrado communities.  相似文献   

13.
In many angiosperms, the fruit rather than the seed is the dispersal/germination unit, and this is the case with Lachnoloma lehmannii, a desert annual ephemeral in central southwestern Asia with indehiscent nonmucilaginuous silicles covered with trichomes. The primary aim of this study was to assess the role of trichomes and pericarp in dispersal, anchorage of diaspores, and seed germination of this species. Mature silicles are dispersed by wind and gravity, and trichomes not only significantly increased their dispersal distance, adherence to sandy soil particles, mass of water imbibed and moisture content, but also decreased the rate of water loss and moisture content of seeds. A significantly higher percentage of seeds within silicles than of isolated seeds retained viability after exposure to 60 °C for 24 h. Seed dormancy is due to the pericarp and to nondeep physiological dormancy, as shown by the increase in germination percentage of isolated seeds following dry storage and treatment with GA3. Removal of pericarp increased germination of 6-month-old seeds from 0 to 80–90 %, and leachate from both pericarp and trichomes significantly inhibited germination of isolated seeds. Ninety-five percent of seeds within silicles buried in soil for 2 years were viable, but only 28 % of them germinated in light at 15/2 °C; thus L. lehmannii forms a persistent soil seed bank. The pericarp and its trichomes may maximize plant fitness by determining the settlement location of silicles, thus helping to ensure that seeds germinate during the cool season for seedling survival in the desert environment.  相似文献   

14.
The effects of salinity on growth and fatty acid composition of borage (Borago officinalis L.) leaves and seeds grown in hydroponic medium were investigated. Three different levels of NaCl (25, 50, and 75 mM) were applied. The first results showed that salinity significantly reduced plant growth by 56.5 % at 75 mM compared with the control, suppressed seed yield at 50 and 75 mM, and increased lipid peroxidation. Raising NaCl concentrations led to an important decrease in total fatty acid (TFA) content by 77 % at 75 mM NaCl. Moreover, the polyunsaturated fatty acid (PUFA) content decreased, whereas the saturated fatty acids increased with respect to increasing salinity. The 25 mM NaCl level did not modify the fatty acid composition of seeds and their contents.  相似文献   

15.
Effects of exogenous nitric oxide (NO) on the germination and antioxidant enzyme during cucumber seed germination were investigated under salt stress. Seeds of cucumber (Cucumis sativus L. cv. Jinyou 1) were treated with distilled water or NaCl in the presence or absence of NO donor sodium nitroprusside (SNP) during germination. Excess 50 mM NaCl reduced significantly the seed germination rate in a short term and speed of germination. When salt concentration increased, germination of cucumber seed was reduced and the time needed to complete germination lengthened. Addition of exogenous SNP in salt solution attenuated the salt stress effects in a dose-dependent manner, as indicated by accelerating the seed germination, as well as weight increase of budding seeds, and 50 μM SNP was optimal concentration. At 150 mM NaCl, the 50 μM exogenous SNP significantly increased the activities of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6) and protein content, while decreased the contents of malondialdehyde (MDA). There were no obvious effects of exogenous NO on peroxidase (POD, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.6) activities under salt stress. Exogenous NO also increased the SOD and CAT isozyme expression under salt stress, which was in accordance with the improved antioxidant activities in the germinating seeds. The NO-induced salt stress resistance was associated with activated enzymes, and enhanced protein content, thus decreasing MDA content. It is concluded that exogenous NO treatment on cucumber seeds may be a good option to improve seed germination under saline conditions.  相似文献   

16.
Seeds with efficient antioxidant defence system show higher germination under stress conditions; however, such information is limited for the halophyte seeds. We therefore studied lipid peroxidation and antioxidant responses of a leaf-succulent halophyte Salsola drummondii during seed germination under different salinity levels (0, 200 and 800 mM NaCl), temperature (10/20, 20/30 and 25/35°C) and light regimes. Seeds absorbed water and germinated in less than 1 h in non-saline control while increases in salinity decreased the rate of water uptake as well as seed germination. Non-optimal temperatures (10/20 and 25/35°C) and complete dark condition reduced seed germination in comparison to those seeds germinated under optimal temperature (20/30°C) and 12-h photoperiod, respectively. Generally, higher lipid peroxidation and antioxidant enzyme activities were observed in seeds at non-optimal temperature and in those seeds germinated in dark. Decrease in reduced ascorbic acid content was found in highest salinity and temperature treatments, while reduced glutathione content did not change significantly with changes in salinity, temperature and light regimes. These results indicate variation in temperature and light but not salinity enhances antioxidant enzyme activities in germinating seeds of Salsola drummondii.  相似文献   

17.
Fermented cocoa beans (Theobroma cacao L., Sterculiaceae) from different countries of origin (Ecuador, Ghana, Trinidad) and cocoa beans roasted under defined conditions (industrial roasting; 150-220 degrees C for 20 min, dry roasting in conventional oven) were analyzed for their contents of certain chiral hydroxy acids, catechins, and amino acids. Cocoa beans are fermented, dried, and industrially transformed by roasting for the production of chocolate, cocoa powders, and other cocoa-related products. Fermentation and roasting conditions influence the contents of chiral compounds such as hydroxy acids, amino acids, and polyphenols, depending on technological procedures as well as some technical parameters. The aim of this work was to check if the content and nature of the named chiral compounds present both in fermented and roasted cocoa beans could be related to the traditional parameters used to classify the variety of seeds and the degree of fermentation. The extent of racemization of amino acids in fermented cocoa beans was low while it slowly increased during roasting, depending on the temperature applied. L-lactic acid was always higher than the D-form while citric acid was generally the most abundant hydroxy acid detected in beans. A correlation was found between polyphenol content and degree of fermentation, while epimerization of (-)-epicatechin to (+)-catechin was observed during roasting. On the whole, results showed that several chiral compounds could be considered as good quality markers for cocoa seeds and cocoa-related products of different quality and geographic origin.  相似文献   

18.
Elevated temperature and water deficit are the major abiotic factors restricting plant growth. While in nature these two stresses often occur at the same time; little is known about their combined effect on plants. Therefore, the main objective of the current study was to observe the effect of these two stresses on phenology, dry matter and seed yield in soybean. Two soybean genotypes JS 97-52 and EC 538828 were grown under green-house conditions which were maintained at different day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C with an average temperature of 26, 29, 32 and 35 °C, respectively. At each temperature, pots were divided into three sets, one set was unstressed while second and third set were subjected to water stress at vegetative and reproductive stage, respectively. As compared to 30/22 °C increase in temperature to 34/24 °C caused a marginal decline in leaf area, seed weight, total biomass, pods/pl, seeds/pl, harvest index, seeds/pod and 100 seed weight. The decline was of higher magnitude at 38/26 and 42/28 °C. Water stress imposed at two growth stages also significantly affected dry matter and yield. The highest average seed yield (10.9 g/pl) was observed at 30/22 °C, which was significantly reduced by 19, 42 and 64% at 34/24, 38/24 and 42/28 °C, respectively. Similarly, compared to unstressed plants (11.3 g/pl) there was 28 and 74% reduction in yield in plants stressed at vegetative and reproductive stage. Thus, both temperature and water stress affected the growth and yield but the effect was more severe when water stress was imposed at higher temperatures. JS 97-52 was more affected by temperature and water stress as compared to EC 538828. Though drought is the only abiotic factor that is known to affect the water status of plants, but the severity of the effect is highly dependent on prevailing temperature.  相似文献   

19.
The effect of roasted and unroasted seeds of C. cajan on serum glucose levels of normal and alloxan diabetic mice were studied. Single doses of unroasted seeds (60% and 80%) on administration to normal as well as alloxanized mice showed significant reduction in the serum glucose levels after 1-2 hr and a significant rise at 3 hr. In case of roasted seeds, on other hand there was a significant increase in serum glucose levels during 3 hr experimental period. It is therefore concluded that roasting of seeds at high temperature for an half hour period resulted in the total loss of hypoglycemic principle but not the hyperglycemic principle present in the seeds.  相似文献   

20.
The impact of rising atmospheric CO2 on crop productivity and quality is very important for global food and nutritional security under the changing climatic scenario. A study was conducted to investigate the effect of elevated CO2 on seed oil quality and yield in a sunflower hybrid DRSH 1 and variety DRSF 113, raised inside open top chambers and exposed to elevated CO2 (550 ± 50 µl l?1). Elevated CO2 exposure significantly influenced the rate of photosynthesis, seed yield and the quality traits in both hybrid and variety. Plants grown under elevated CO2 concentration showed 61–68 % gain in biomass and 35–46 % increase in seed yield of both the genotypes, but mineral nutrient and protein concentration decreased in the seeds. The reduction in seed protein was up to 13 %, while macro and micronutrients decreased drastically (up to 43 % Na in hybrid seeds) under elevated CO2 treatment. However, oil content increased significantly in DRSF 113 (15 %). Carbohydrate seed reserves increased with similar magnitudes in both the genotypes under elevated CO2 treatment (13 %). Fatty acid composition in seed oil contained higher proportion of unsaturated fatty acids (oleic and linoleic acid) under elevated CO2 treatment, which is a desirable change in oil quality for human consumption. These findings conclude that rising atmospheric CO2 in changing future climate can enhance biomass production and seed yield in sunflower and alter their seed oil quality in terms of increased concentration of unsaturated fatty acids compared with saturated fatty acids and lower seed proteins and mineral nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号