首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Ab initio calculations (B3LYP and PBE-D3) of the structures, stabilities, vibrational, electronic and hydrogen adsorption behaviour of (MgO)n clusters are performed using 6-311+ + G(d,p) basis set. The planar (MgO)n clusters are found to be global minima for n ≤ 3 and local minima for n = 4 and 5. In addition, we have also analysed global minimum structures of (MgO)4 and (MgO)5. The binding energies suggest that their stabilities increase successively. Vibrational frequencies and IR intensities further support the enhanced stability with an increase in the size of (MgO)n clusters. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) surfaces are used to explain and discuss the electronic properties. Finally, we have demonstrated hydrogen storage capacity of (MgO)n clusters, considering hydrogen adsorption on planar as well as global minimum (MgO)4 and (MgO)5 clusters. We have noticed that four and five H2 molecules can be easily adsorbed by (MgO)4 and (MgO)5 clusters having adsorption energy of 0.13–0.14 eV with mass ratio of 4.76%. Thus, the present study is expected to motivate further the applications of small clusters for efficient hydrogen energy storage.  相似文献   

2.
This report presents the study of ab initio electronic structure and properties of pure and transition metal (TM = Ti, Zr and Hf)-doped silicon clusters, TM@Si(n), by using density functional theory with a polarised basis set (LanL2DZ) within the spin-polarised generalised gradient approximation for different values of n varying from 8 to 20. As the first step of the study, different optimised geometries of pure and doped clusters are calculated. These optimised clusters are then used to calculate different structural and physical parameters of the clusters, like binding energy, Highest Occupied Molecular Orbital – Lowest Unoccupied Molecular Orbital (HOMO–LUMO) gap, charge transfer, etc. In order to check the stability of the clusters, the second-order difference in the energy of the optimised structures is calculated. To study the optical behaviour of the clusters, infrared and Raman spectra are also calculated. Further calculations are also done on cation and anion clusters of both pure and doped nanoclusters to obtain their ionisation potential, electron affinity and chemical potential. An effort has been made to correlate the variation of different calculated parameters with the size of the clusters to explain the real existence and stabilities of different TM-doped clusters.  相似文献   

3.
Using density functional theory with the generalised gradient approximation, the structural and electronic properties of small (BaTiO3)n (n = 1–4) clusters have been studied. All the analysed growth modes were observed to consist of the same unit block, which in turn is similar to the well-known (TiO2)2 cluster. The BaTiO3 and (BaTiO3)2 systems were observed to adopt analogous geometries to the ground state of (TiO2)n clusters with Cs and D2h symmetries, respectively. The calculated value of the energy gap for the studied (BaTiO3)n clusters tends to approach that observed for its tetragonal bulk BaTiO3 counterpart when n ≥ 3 is considered; the same tendency is observed for the Ba–Ba, Ba–Ti, Ti–O and Ba–Ti interatomic distances. For all the (BaTiO3)n clusters, the structural characteristics of their respective isomers were explored.  相似文献   

4.
Structural, chemical, magnetic and thermodynamic properties of palladium clusters Pdn with n = 2–11 are studied using density functional methods. The average bond length, entropy, enthalpy and polarisability are observed to increase as the cluster grows in size. The binding energy per atom also increases with cluster size. Stability function and atom addition energy change predict that Pd4, Pd6 and Pd9 are relatively more stable than their neighbouring clusters. Electron affinity, electronegativity and electrophilicity values suggest that larger clusters have stronger tendency to accept electrons, thereby supporting the relative stability of Pd4 and Pd6. Chemical hardness is also seen to decrease with cluster size, which suggests that large clusters are more prone to changes in their electronic structure. The magnetic properties of these clusters are reported.  相似文献   

5.
A systematic study on the geometric structures, relative stabilities, and electronic properties of small bimetallic Au n Na (n = 1-9) clusters has been performed by means of first-principle density functional theory calculations at the PW91PW91 level. The results show that the optimized ground-state isomers adopt planar structures up to n = 5, and the Na-capped geometries are dominant growth patterns for n = 6-9. Dramatic odd-even alternative behaviors are obtained in the second-order difference of energies, fragmentation energies, highest occupied-lowest unoccupied molecular orbital energy gaps, and chemical hardness for both Au n Na and Au n+1 clusters. It is found that Au5Na and Au6 have the most enhanced stability. Here, the size evolutions of the theoretical ionization potentials are in agreement with available experimental data, suggesting a good prediction of the lowest energy structures in the present study. In addition, the charge transfer has been analyzed on the basis of natural population analysis.  相似文献   

6.
Charge-transfer-to-solvent excited iodide–polar solvent molecule clusters, [I(Solv)n]*, have attracted substantial interest over the past 20 years as they can undergo intriguing relaxation processes leading ultimately to the formation of gas-phase molecular analogues of the solvated electron. In this review article, we present a comprehensive overview of the development and application of state-of-the-art first-principles molecular dynamics simulation approaches to understand and interpret the results of femtosecond photoelectron spectroscopy experiments on [I(Solv)n]* relaxation, which point to a high degree of solvent specificity in the electron solvation dynamics. The intricate molecular details of the [I(Solv)n]* relaxation process are presented, and by contrasting the relaxation mechanisms of clusters with several different solvents (water, methanol and acetonitrile), the molecular basis of the solvent specificity of electron solvation in [I(Solv)n]* is uncovered, leading to a more refined view of the manifestation of electron solvation in small gas-phase clusters.  相似文献   

7.
ABSTRACT

The structural and electronic properties, such as adsorption energy, magnetic property, and charge-transferring process of Nin (n?=?1–6) clusters interacting with pristine, strained and defective graphene were investigated by using the density functional theory calculations with the Perdew–Burke–Ernzerhof exchange-correlation energy functional. By introducing strain and defects, the stability of the cluster-graphene system was improved significantly. The magnetic moments increased monotonically for Nin clusters on pristine and strained graphene while exhibited an oscillating behaviour for defective graphene. On the other hand, more charges being transferred from Nin clusters to defective graphene were observed compared with pristine and strained graphene.  相似文献   

8.
This work studies the solvation of bromide in acetonitrile by combining quantum mechanics, computer simulations and X-ray absorption near edge structure (XANES) spectroscopy. Three different sets of interaction potentials were tested, one of them derived from literature and the other two are simple modifications of the previous one to include specificities of the bromide–acetonitrile interactions. Results for microsolvation of bromide were obtained by quantum mechanical optimization and classical minimization of small clusters [Br(ACN) n ] (n = 9, 20). Analysis of molecular dynamics (MD) simulations has provided structural, dynamic and energetic aspects of the solvation phenomenon. The theoretical computation of Br K-edge XANES spectrum in solution using the structural information obtained from the different simulations has allowed the comparison among the three different potentials, as well as the examination of the main structural and dynamic factors determining the shape of the experimental spectrum.  相似文献   

9.
The stable geometries and atomization energies for the clusters Ni n (n = 2–5) are predicted with all-electron density functional theory (DFT), using the BMK hybrid functional and a Gaussian basis set. Possible isomers and several spin states of these nickel clusters are considered systematically. The ground spin state and the lowest energy isomers are identified for each cluster size. The results are compared to available experimental and other theoretical data. The molecular orbitals of the largest cluster are plotted for all spin states. The relative stabilities of these states are interpreted in terms of superatom orbitals and no-pair bonding.  相似文献   

10.
We have conducted first-principles total-energy density functional calculations to study the atomic structures, band structures and electronic structures of Zn1 ? xMxO (M = Be, Mg, Cd, Ag, Cu) semiconductor alloys. The Heyd–Scuseria–Ernzerhof hybrid functional has been performed to yield lattice constants and band gaps of Zn1 ? xMxO semiconductor in much better agreement with experimental data than with the standard local exchange correlation functional. We found that the strong coupling between O 2p and Cu 3d or Ag 4d bands plays a key role in narrowing of band gaps and leading to the half-metallic behaviour interpreted with the unique spatial distribution pattern between the highest occupied molecular orbital and the lowest unoccupied molecular orbital.  相似文献   

11.
Searching for materials and technologies of efficient CO2 capture is of the utmost importance to reduce the CO2 impact on the environment. Therefore, the (AlN)n clusters (n = 3–5) are researched using density functional theoretical calculations. The results of the optimization show that the most stable structures of (AlN)n clusters all display planar configurations at B3LYP and G3B3 methods, which are consistent with the reported results. For these planar clusters, we further systematically studied their interactions with carbon dioxide molecules to understand their adsorption behavior at the B3LYP/6–311+G(d,p) level, including geometric optimization, binding energy, bond index, and electrostatic. We found that the planar structures of (AlN)n (n = 3–5) can capture 3–5 CO2 molecules. The result indicates that (AlN)n (n = 3–5) clusters binding with CO2 is an exothermic process (the capture of every CO2 molecule on (AlN)n clusters releases at least 30 kcal mol-1 in relative free energy values). These analysis results are expected to further motivate the applications of clusters to be efficient CO2 capture materials.  相似文献   

12.
The neutral PrSi n (n = 12–21) species considering various spin configurations were systematically studied using PBE0 and B3LYP schemes in combination with relativistic small-core potentials (ECP28MWB) for Pr atoms and cc-pVTZ basis set for Si atoms. The total energy, growth-pattern, equilibrium geometry, relative stability, hardness, charge transfer, and magnetic moments are calculated and discussed. The results reveal that when n < 20, the ground-state structure of PrSi n evaluated to be prolate clusters. Starting from n = 20, the ground-state structures of PrSi n are evaluated to be endohedral cagelike clusters. Although the relative stabilities based on various binding energies and different functional is different from each other, the consensus is that the PrSi13, PrSi16, PrSi18, and PrSi20 are more stable than the others, especially the PrSi20. Analyses of hardness show that introducing Pr into Si n (n = 12–21) elevates the photochemical sensitivity, especially for PrSi20. Calculated result of magnetic moment and charge transfer shows that the 4f electrons of Pr in the clusters are changed, especially in endohedral structures such as PrSi20, in which one electron transfers from 4f to 5d orbital. That is, the 4f electron of Pr in the clusters participates in bonding. The way to participate in bonding is that a 4f electron transfers to 5d orbital. Although the 4f electron of Pr atom participates in bonding, the total magnetic moment of PrSi n is equal to that of isolated Pr atom. The charge always transfers from Pr atom to Si n cluster for the ground state structures of PrSin (n = 12–19), but charge transfer is reverse for n ≥ 20. The largest charge transfer for endohedral structure reveals that the bonding between Pr and Si n is ionic in nature and very strong. The fullerenelike structure of PrSi20 is the most stable among all of these clusters and can act as the building blocks for novel functional nanotubes.  相似文献   

13.
Ab initio methods based on density functional theory at BP86 level were applied to the study of the geometrical structures, relative stabilities, and electronic properties of small bimetallic Be2Au n (n = 1–9) clusters. The optimized geometries reveal that the most stable isomers have 3D structures at n = 3, 5, 7, 8, and 9. Here, the relative stabilities were investigated in terms of the averaged atomic binding energies, fragmentation energies and second-order difference of energies. The results show that the planar Be2Au4 structure is the most stable structure for Be2Au n clusters. The HOMO−LUMO gap, vertical ionization potential, vertical electron affinity and chemical hardness exhibit a pronounced even–odd alternating phenomenon. In addition, charge transfer and natural electron configuration were analyzed and compared.  相似文献   

14.
The geometrical structures, electronic properties and relative stabilities of small bimetallic Be n Cu m (n?+?m?=?2–7) clusters have been systematically investigated by using a density functional method at the B3PW91 level. In the most stable structures of Be n Cu m , the Be atoms tend to gather together and construct similar configurations to those of pure Be n clusters. Meanwhile, there is a tendency for Cu atoms to segregate toward the Be n cluster surface. The successive binding energies, cohesive energies, second difference of energies, the highest occupied-lowest unoccupied molecular orbital energy gaps and chemical hardness of Be n Cu m are also investigated. All of them demonstrate that the clusters with even number of copper atoms present relatively higher stabilities. The natural population analyses on the Be n Cu m clusters reveal that, the charge transfers from Be to Cu when the average coordination numbers (Nc) of Be atom is less than 3, whereas the charge-transferring direction reverses when Nc(Be) increases.  相似文献   

15.
The local meta-GGA exchange correlation density functional (TPSS) with a relativistic effective core potential was employed to systematically investigate the geometric structures, stabilities, and electronic properties of bimetallic Ca2Au n (n = 1–9) and pure gold Au n (n ≤ 11) clusters. The optimized geometries show that the most stable isomers for Ca2Au n clusters have 3D structure when n > 2, and that one Au atom capping the Ca2Au n−1 structure for different-sized Ca2Au n (n = 1–9) clusters is the dominant growth pattern. The average atomic binding energies and second-order difference in energies show that the Ca2Au4 isomer is the most stable among the Ca2Au n clusters. The same pronounced even–odd alternations are found in the HOMO–LUMO gaps, VIPs, and hardnesses. The polarizabilities of the Ca2Au n clusters show an obvious local minimum at n = 4. Moreover, the inverse corrections to the polarizabilities versus the ionization potential and hardness were found for the gold clusters.  相似文献   

16.
Geometrical structures and relative stabilities of (LiNH2)n (n = 1–5) clusters were studied using density functional theory (DFT) at the B3LYP/6-31G* and B3LYP/6-31++G* levels. The electronic structures, vibrational properties, N–H bond dissociation energies (BDE), thermodynamic properties, bond properties and ionization potentials were analyzed for the most stable isomers. The calculated results show that the Li–N and Li–Li bonds can be formed more easily than those of the Li–H or N–H bonds in the clusters, in which NH2 is bound to the framework of Li atomic clusters with fused rings. The average binding energies for each LiNH2 unit increase gradually from 142 kJ mol−1 up to about 180 kJ mol−1 with increasing n. Natural bond orbital (NBO) analysis suggests that the bonds between Li and NH2 are of strong ionicity. Three-center–two-electron Li–N–Li bonding exists in the (LiNH2)2 dimer. The N–H BDE values indicate that the change in N–H BDE values from the monomer a1 to the singlet-state clusters is small. The N–H bonds in singlet state clusters are stable, while the N–H bonds in triplet clusters dissociate easily. A study of their thermodynamic properties suggests that monomer a1 forms clusters (b1, c1, d2 and e1) easily at low temperature, and clusters with fewer numbers of rings tend to transfer to ones with more rings at low temperature. E g, E HOMO and E av decrease gradually, and become constant. Ring-like (LiNH2)3,4 clusters possess higher ionization energy (VIE) and E g, but lower values of E HOMO. Ring-like (LiNH2)3,4 clusters are more stable than other types. A comparison of structures and spectra between clusters and crystal showed that the NH2 moiety in clusters has a structure and spectral features similar to those of the crystal.  相似文献   

17.
Titanium dioxide nanoparticles (TiO2-NPs) interaction with human serum albumin (HSA) and DNA was studied by UV–visible spectroscopy, spectrofluorescence, circular dichroism (CD), and transmission electron microscopy (TEM) to analyze the binding parameters and protein corona formation. TEM revealed protein corona formation on TiO2-NPs surface due to adsorption of HSA. Intrinsic fluorescence quenching data suggested significant binding of TiO2-NPs (avg. size 14.0 nm) with HSA. The Stern–Volmer constant (Ksv) was determined to be 7.6 × 102 M?1 (r2 = 0.98), whereas the binding constant (Ka) and number of binding sites (n) were assessed to be 5.82 × 102 M?1 and 0.97, respectively. Synchronous fluorescence revealed an apparent decrease in fluorescence intensity with a red shift of 2 nm at Δλ = 15 nm and Δλ = 60 nm. UV–visible analysis also provided the binding constant values for TiO2-NPs–HSA and TiO2-NPs-DNA complexes as 2.8 × 102 M?1 and 5.4 × 103 M?1. The CD data demonstrated loss in α-helicity of HSA and transformation into β-sheet, suggesting structural alterations by TiO2-NPs. The docking analysis of TiO2-NPs with HSA revealed its preferential binding with aromatic and non-aromatic amino acids in subdomain IIA and IB hydrophobic cavity of HSA. Also, the TiO2-NPs docking revealed the selective binding with A-T bases in minor groove of DNA.  相似文献   

18.
Using the first-principle density functional calculations, the equilibrium geometries and electronic properties of anionic and neutral aluminum-sulfur Al n S m (2?≤?n?+?m?≤?6) clusters have been systematically investigated at B3PW91 level. The optimized results indicate that the lowest-energy structures of the anionic and neutral Al n S m clusters prefer the low spin multiplicities (singlet or doublet) except the Al2 ̄, Al2, S2, Al4 and Al2S4 clusters. A significant odd-even oscillation of the highest occupied-lowest unoccupied molecular orbital (HOMO-LUMO) energy gaps for the Al n S m  ̄ clusters is observed. Electron detachment energies (both vertical and adiabatic) are discussed and compared with the photoelectron spectra observations. Furthermore, a good agreement between experimental and theoretical results gives confidence in the most stable clusters considered in the present study and validates the chosen computational method. In addition, the variation trend of chemical hardness is in keeping with that of HOMO-LUMO energy gaps for the Al n S m clusters. Upon the interaction of oxygen with the stable AlS m  ̄ clusters, the dissociative chemisorptions are favorable in energy. The binding energy and Gibbs free energy change show completely opposite oscillating behaviors as the cluster size increases.  相似文献   

19.
The present study reports the effect of oxygen addition on small size Nin (n = 1-6) clusters in different spin states within the framework of linear combination of atomic orbital (LCAO) density functional theory (DFT) under spin polarized generalized gradient approximation (GGA) functional. Relative stabilities of the optimized clusters are discussed on the basis of the calculated parameters, such as, binding energy (BE), embedding energy (EE) and fragmentation energy (FE). Other parameters, like ionization potential (IP), electron affinity (EA), etc. show that though the additions of oxygen can affect the chemical properties of Nin clusters with an additional stability to NinO. In most of the cases the magnetic moment of the stable isomers are geometry dependent for a particular size both in pure and oxidized clusters. Calculated magnetic moments of NinO (n = 1-6) clusters reveal that the magnetic moment of ground state Ni4O isomers in different geometries is same as in pure Ni4 isomers. Present study also explains the cause of stable magnetic moment in Ni4O cluster through the distribution of electrons in different orbitals.  相似文献   

20.
A theoretical study was carried out to examine intra- and intermolecular hydrogen bond (HB) properties in crystalline maleic acid (MA). We investigated geometries, 17O and 1H nuclear magnetic resonance parameters of various MA clusters by means of M06 and B3LYP functionals using recently developed Jensen's polarisation-consistent basis sets, pcJ-n (n = 0, 1, 2, 3). Our results reveal that the calculated chemical shift isotropy, δiso, at the sites of 17O and 1H nuclei depends markedly on the size of the basis set. Overall, convergence of the pcJ-n series is rather similar for both B3LYP and M06 functionals. An increase of δiso(17O) and δiso(1H) in going from the pcJ-1 to the pcJ-3 basis set is a typical feature of the (MA)1–3 clusters. The quantum theory of atoms in molecules (QTAIM) and energy decomposition analyses were also used to elucidate the interaction characteristics in the MA H-bonded network. According to QTAIM results obtained, it is concluded that strong HBs are more covalent in nature and weak HBs are mainly electrostatic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号