首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present an experimental study of the pore formation processes of small amphipathic peptides in model phosphocholine lipid membranes. We used atomic force microscopy to characterize the spatial organization and structure of alamethicin- and melittin-induced defects in lipid bilayer membranes and the influence of the peptide on local membrane properties. Alamethicin induced holes in gel DPPC membranes were directly visualized at different peptide concentrations. We found that the thermodynamic state of lipids in gel membranes can be influenced by the presence of alamethicin such that nanoscopic domains of fluid lipids form close to the peptide pores, and that the elastic constants of the membrane are altered in their vicinity. Melittin-induced holes were visualized in DPPC and DLPC membranes at room temperature in order to study the influence of the membrane state on the peptide induced hole formation. Also differential scanning calorimetry was used to investigate the effect of alamethicin on the lipid membrane phase behaviour.  相似文献   

2.
We present an experimental study of the pore formation processes of small amphipathic peptides in model phosphocholine lipid membranes. We used atomic force microscopy to characterize the spatial organization and structure of alamethicin- and melittin-induced defects in lipid bilayer membranes and the influence of the peptide on local membrane properties. Alamethicin induced holes in gel DPPC membranes were directly visualized at different peptide concentrations. We found that the thermodynamic state of lipids in gel membranes can be influenced by the presence of alamethicin such that nanoscopic domains of fluid lipids form close to the peptide pores, and that the elastic constants of the membrane are altered in their vicinity. Melittin-induced holes were visualized in DPPC and DLPC membranes at room temperature in order to study the influence of the membrane state on the peptide induced hole formation. Also differential scanning calorimetry was used to investigate the effect of alamethicin on the lipid membrane phase behaviour.  相似文献   

3.
Incorporation of the helical antimicrobial peptide alamethicin from aqueous phase into hydrated phases of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC) was investigated within a range of peptide concentrations and temperatures by time-resolved synchrotron X-ray diffraction. It was found that alamethicin influences the organizations of the non-bilayer-forming (DOPE) and the bilayer-forming (DOPC) lipids in different ways. In DOPC, only the bilayer thickness was affected, while in DOPE new phases were induced. At low peptide concentrations (<1.10(-4) M), an inverted hexagonal (H(II)) phase was observed as with DOPE dispersions in pure buffer solution. A coexistence of two cubic structures was found at the critical peptide concentration for induction of new lipid/peptide phases. The first one Q224 (space group Pn3m) was identified within the entire temperature region studied (from 1 to 45 degrees C) and was found in coexistence with H(II)-phase domains. The second lipid/peptide cubic structure was present only at temperatures below 16 degrees C and its X-ray reflections were better fitted by a Q212 (P4(3)32) space group, rather than by the expected Q229 (Im3m) space group. At alamethicin concentrations of 1 mM and higher, a nonlamellar phase transition from a Q224 cubic phase into an H(II) phase was observed. Within the investigated range of peptide concentrations, lamellar structures of two different bilayer periods were established with the bilayer-forming lipid DOPC. They correspond to lipid domains of associated and nonassociated helical peptide. The obtained X-ray results suggest that the amphiphilic alamethicin molecules adsorb from the aqueous phase at the lipid head group/water interface of the DOPE and DOPC membranes. At sufficiently high (>1.10(-4) M) solution concentrations, the peptide is probably accommodated in the head group region of the lipids thus inducing structural features of mixed lipid/peptide phases.  相似文献   

4.
In this study, we used cholestatrienol (CTL) as a fluorescent reporter molecule to study sterol-rich L(o) domains in complex lipid bilayers. CTL is a fluorescent cholesterol analog that mimics the behavior of cholesterol well. The ability of 12SLPC to quench the fluorescence of cholestatrienol gives a measure of the amount of sterol included in L(o) domains in mixed lipid membranes. The stability of sterol-rich domains formed in complex lipid mixtures containing saturated sphingomyelins, phosphatidylcholines, or galactosylceramide as potential domain-forming lipids were studied. The amount of sterol associated with sterol-rich domains seemed to always increase with increasing temperature. The quenching efficiency was highly dependent on the domain-forming lipid present in complex lipid mixtures. Sphingomyelins formed stable sterol-enriched domains and were able to shield CTL from quenching better than the other lipids included in this study. The saturated phosphatidylcholines also formed sterol-rich domains, but the quenching efficiency in membranes with these was higher than with sphingomyelins and the domains melted at lower temperatures. PGalCer was not able to form sterol-enriched domains. However, we found that PGalCer stabilized sterol-rich domains formed in PSM-containing bilayers. Using a fluorescent ceramide analog, we also demonstrated that N-palmitoyl-ceramide displaced the sterol from sphingolipid-rich domains in mixed bilayer membranes.  相似文献   

5.
The structural organization of ion channels formed in lipid membranes by amphiphilic alpha-helical peptides is deduced by applying direct structural methods to different lipid/alamethicin systems. Alamethicin represents a hydrophobic alpha-helical peptide antibiotic forming voltage-gated ion channels in lipid membranes. Here the first direct evidence for the existence of large-scale two-dimensional crystalline domains of alamethicin helices, oriented parallel to the air/water interface, is presented using synchrotron x-ray diffraction, fluorescence microscopy, and surface pressure/area isotherms. Proofs are obtained that the antibiotic peptide injected into the aqueous phase under phospholipid monolayers penetrates these monolayers, phase separates, and forms domains within the lipid environment, keeping the same, parallel orientation of the alpha-helices with respect to the phospholipid/water interface. A new asymmetrical, "lipid-covered ring" model of the voltage-gated ion channel of alamethicin is inferred from the structural results presented, and the mechanism of ion-channel formation is discussed.  相似文献   

6.
There has been increasing interest in recent years in describing the lateral organization of membranes and the formation of membrane domains. Much of the focus in this area has been on the formation of cholesterol-rich domains in mammalian membranes. However, it is likely that there are domains in all biological membranes. One of the challenges has been to define the chemical composition, lifetime and size of these domains. There is evidence that bacteria have domains that are enriched in cardiolipin. In addition, the formation of lipid domains can be induced in bacteria by clustering negatively charged lipids with polycationic substances. Many antimicrobial compounds have multiple positive charges. Such polycationic compounds can sequester anionic lipids to induce lipid phase separation. The molecular interactions among lipids and their lateral packing density will be different in a domain from its environment. This will lead to phase boundary defects that will lower the permeability barrier between the cell and its surroundings. The formation of these clusters of anionic lipids may also alter the stability or composition of existing membrane domains that may affect bacterial function. Interestingly many antimicrobial agents are polycationic and therefore likely have some effect in promoting lipid phase segregation between anionic and zwitterionic lipids. However, this mechanism is expected to be most important for substances with sequential positive charges contained within a flexible molecule that can adapt to the arrangement of charged groups on the surface of the bacterial cell. When this mechanism is dominant it can allow the prediction of the bacterial species that will be most affected by the agent as a consequence of the nature of the lipid composition of the bacterial membrane.  相似文献   

7.
There has been increasing interest in recent years in describing the lateral organization of membranes and the formation of membrane domains. Much of the focus in this area has been on the formation of cholesterol-rich domains in mammalian membranes. However, it is likely that there are domains in all biological membranes. One of the challenges has been to define the chemical composition, lifetime and size of these domains. There is evidence that bacteria have domains that are enriched in cardiolipin. In addition, the formation of lipid domains can be induced in bacteria by clustering negatively charged lipids with polycationic substances. Many antimicrobial compounds have multiple positive charges. Such polycationic compounds can sequester anionic lipids to induce lipid phase separation. The molecular interactions among lipids and their lateral packing density will be different in a domain from its environment. This will lead to phase boundary defects that will lower the permeability barrier between the cell and its surroundings. The formation of these clusters of anionic lipids may also alter the stability or composition of existing membrane domains that may affect bacterial function. Interestingly many antimicrobial agents are polycationic and therefore likely have some effect in promoting lipid phase segregation between anionic and zwitterionic lipids. However, this mechanism is expected to be most important for substances with sequential positive charges contained within a flexible molecule that can adapt to the arrangement of charged groups on the surface of the bacterial cell. When this mechanism is dominant it can allow the prediction of the bacterial species that will be most affected by the agent as a consequence of the nature of the lipid composition of the bacterial membrane.  相似文献   

8.
One key tenet of the raft hypothesis is that the formation of glycosphingolipid- and cholesterol-rich lipid domains can be driven solely by characteristic lipid-lipid interactions, suggesting that rafts ought to form in model membranes composed of appropriate lipids. In fact, domains with raft-like properties were found to coexist with fluid lipid regions in both planar supported lipid layers and in giant unilamellar vesicles (GUVs) formed from 1) equimolar mixtures of phospholipid-cholesterol-sphingomyelin or 2) natural lipids extracted from brush border membranes that are rich in sphingomyelin and cholesterol. Employing headgroup-labeled fluorescent phospholipid analogs in planar supported lipid layers, domains typically several microns in diameter were observed by fluorescence microscopy at room temperature (24 degrees C) whereas non-raft mixtures (PC-cholesterol) appeared homogeneous. Both raft and non-raft domains were fluid-like, although diffusion was slower in raft domains, and the probe could exchange between the two phases. Consistent with the raft hypothesis, GM1, a glycosphingolipid (GSL), was highly enriched in the more ordered domains and resistant to detergent extraction, which disrupted the GSL-depleted phase. To exclude the possibility that the domain structure was an artifact caused by the lipid layer support, GUVs were formed from the synthetic and natural lipid mixtures, in which the probe, LAURDAN, was incorporated. The emission spectrum of LAURDAN was examined by two-photon fluorescence microscopy, which allowed identification of regions with high or low order of lipid acyl chain alignment. In GUVs formed from the raft lipid mixture or from brush border membrane lipids an array of more ordered and less ordered domains that were in register in both monolayers could reversibly be formed and disrupted upon cooling and heating. Overall, the notion that in biomembranes selected lipids could laterally aggregate to form more ordered, detergent-resistant lipid rafts into which glycosphingolipids partition is strongly supported by this study.  相似文献   

9.
Using giant unilamellar vesicles (GUVs) made from POPC, DPPC, cholesterol and a small amount of a porphyrin-based photosensitizer that we name PE-porph, we investigated the response of the lipid bilayer under visible light, focusing in the formation of domains during the lipid oxidation induced by singlet oxygen. This reactive species is generated by light excitation of PE-porf in the vicinity of the membrane, and thus promotes formation of hydroperoxides when unsaturated lipids and cholesterol are present. Using optical microscopy we determined the lipid compositions under which GUVs initially in the homogeneous phase displayed Lo-Ld phase separation following irradiation. Such an effect is attributed to the in situ formation of both hydroperoxized POPC and cholesterol. The boundary line separating homogeneous Lo phase and phase coexistence regions in the phase diagram is displaced vertically towards the higher cholesterol content in respect to ternary diagram of POPC:DPPC:cholesterol mixtures in the absence of oxidized species. Phase separated domains emerge from sub-micrometer initial sizes to evolve over hours into large Lo-Ld domains completely separated in the lipid membrane. This study provides not only a new tool to explore the kinetics of domain formation in mixtures of lipid membranes, but may also have implications in biological signaling of redox misbalance.  相似文献   

10.
Sulfogalactosylglycerolipid (SGG) is found in detergent-resistant lipid raft fractions isolated from sperm plasma membranes and has been shown to be important in sperm-egg adhesion. In order to provide more direct evidence for the association of sulfoglycolipids with lipid raft domains, we have examined the distribution of two sulfoglycolipids in supported membranes prepared from artificial lipid mixtures and cellular lipid extracts. Atomic force microscopy has been used to visualize the localization of SGG and sulfogalactosylceramide (SGC) in liquid-ordered domains in supported bilayers of ternary lipid mixtures comprised of dipalmitoylphosphatidylcholine, cholesterol and palmitoyldocosahexaenoylphosphatidylcholine. The localization of SGC/SGG in the liquid-ordered raft domains is demonstrated by changes in bilayer morphology in the presence of sulfoglycolipid, by selective antibody labeling of the domains with anti-SGC/SGG and by the effects of the cholesterol-sequestering agent, methyl-beta-cyclodextrin, on the supported membranes. In addition, we use a combination of atomic force microscopy and immunofluorescence to show that supported bilayers made from lipids extracted from sperm anterior head plasma membranes (APM) and isolated APM vesicles exhibit small SGG-rich domains that are similar to those observed in bilayers of artificial lipid mixtures. The possible implications of these results for the involvement of SGG-rich lipid rafts in modulating sperm-egg interactions in vivo and the utility of model membranes for studying the behavior of lipid rafts are discussed.  相似文献   

11.
Sulfogalactosylglycerolipid (SGG) is found in detergent-resistant lipid raft fractions isolated from sperm plasma membranes and has been shown to be important in sperm-egg adhesion. In order to provide more direct evidence for the association of sulfoglycolipids with lipid raft domains, we have examined the distribution of two sulfoglycolipids in supported membranes prepared from artificial lipid mixtures and cellular lipid extracts. Atomic force microscopy has been used to visualize the localization of SGG and sulfogalactosylceramide (SGC) in liquid-ordered domains in supported bilayers of ternary lipid mixtures comprised of dipalmitoylphosphatidylcholine, cholesterol and palmitoyldocosahexaenoylphosphatidylcholine. The localization of SGC/SGG in the liquid-ordered raft domains is demonstrated by changes in bilayer morphology in the presence of sulfoglycolipid, by selective antibody labeling of the domains with anti-SGC/SGG and by the effects of the cholesterol-sequestering agent, methyl-β-cyclodextrin, on the supported membranes. In addition, we use a combination of atomic force microscopy and immunofluorescence to show that supported bilayers made from lipids extracted from sperm anterior head plasma membranes (APM) and isolated APM vesicles exhibit small SGG-rich domains that are similar to those observed in bilayers of artificial lipid mixtures. The possible implications of these results for the involvement of SGG-rich lipid rafts in modulating sperm-egg interactions in vivo and the utility of model membranes for studying the behavior of lipid rafts are discussed.  相似文献   

12.
Monte Carlo (MC) simulations, Differential Scanning Calorimetry (DSC) and Fourier Transform InfraRed (FTIR) spectroscopy were used to study the melting behavior of individual lipid components in two-component membranes made of DMPC and DSPC. We employed Monte Carlo simulations based on parameters obtained from DSC profiles to simulate the melting of the different lipids as a function of temperature. The simulations show good agreement with the FTIR data recorded for deuterated and non-deuterated lipids, which demonstrates that the information on the differential melting of the individual components is already contained in the calorimetric profiles. In mixtures, both lipids melt over a wide temperature range. As expected, the lipid melting events of the lipid with the lower melting temperature occur on average at lower temperatures. The simulations also yield information on the lateral distribution of the lipids that is neither directly contained in the DSC nor in the FTIR data. In the phase coexistence region, liquid disordered domains are typically richer in the lower-melting-temperature lipid species.  相似文献   

13.
Wan C  Kiessling V  Tamm LK 《Biochemistry》2008,47(7):2190-2198
We showed previously that cholesterol-rich liquid-ordered domains with lipid compositions typically found in the outer leaflet of plasma membranes induce liquid-ordered domains in adjacent regions of asymmetric lipid bilayers with apposed leaflets composed of typical inner leaflet lipid mixtures [Kiessling, V., Crane, J. M., and Tamm, L. K. (2006) Biophys. J. 91, 3313-26]. To further examine the nature of transbilayer couplings in asymmetric cholesterol-rich lipid bilayers, the effects on the lipid phase behavior in asymmetric bilayers of different lipid compositions were investigated. We established systems containing several combinations of natural extracted and synthetic lipids that exhibited coexisting liquid-ordered (lo) and liquid-disordered (ld) domains in a supported bilayer format. We find that lo phase domains are induced in all quaternary inner leaflet combinations composed of PCs, PEs, PSs, and cholesterol. Ternary mixtures of PCs/PEs/Chol, PCs/PSs/Chol also exhibit lo phases adjacent to outer leaflet lo phases. However, with the exception of brain PC extracts, binary PC/Chol mixtures are not induced to form lo phases by adjacent outer leaflet lo phases. Higher melting lipid ad-mixtures of PEs and PSs are needed for lo phase induction in the inner leaflet. It appears that the phase behavior of the inner leaflet mixtures is dominated by the intrinsic chain melting temperatures of the lipid components, rather than by their specific headgroup classes. In addition, similar studies with synthetic, completely saturated lipids and cholesterol show that lipid oxidation is not a factor in the observed phase behavior.  相似文献   

14.
In this experimental work we employed single-molecule electrical recordings on alamethicin oligomers inserted in lipid bilayers made of brain sphingomyelin (bSM), palmitoyloleoylphosphatidylcholine (POPC) and cholesterol (chol) to unravel novel aspects regarding lipid raft interactions with pore-forming peptides. We probed the effect of lipid rafts on electrical properties of inserted alamethicin oligomers, and our data convincingly prove that the single-channel electrical conductance of various subconductance states of the alamethicin oligomer (1) increases in the presence of raft-containing ternary lipid mixtures (POPC-chol-bSM) compared to cases when bilayers were made of POPC-chol and POPC and (2) decreases in the presence of raft-containing ternary lipid mixtures compared to nonraft ternary mixtures which favor the fluid and liquid ordered phases alone. Our data demonstrate that the presence of lipid rafts leads to a slower association kinetics of alamethicin oligomers, seemingly reflecting a slower lateral diffusion process of such peptide aggregates compared to the case of nonraft, binary lipid mixtures. Furthermore, we show that the electrical capacitance of ternary lipid mixtures (POPC-chol-bSM) decreases in the presence of raft domains by comparison to nonraft binary phases (POPC-chol) or POPC alone, and this could constitute an additional mechanism via which macroscopic electrical manifestations of eukaryotic cells are modulated by the coexistence of gel and fluid domains of the plasma membrane.  相似文献   

15.
Lipid bilayers provide a solute-proof barrier that is widely used in living systems. It has long been recognized that the structural changes of lipids during the phase transition from bilayer to non-bilayer have striking similarities with those accompanying membrane fusion processes. In spite of this resemblance, the numerous quantitative studies on pure lipid bilayers are difficult to apply to real membranes. One reason is that in living matter, instead of pure lipids, lipid mixtures are involved and there is currently no model that establishes the connection between pure lipids and lipid mixtures. Here, we make this connection by showing how to obtain (i) the short-range repulsion between bilayers made of lipid mixtures and, (ii) the pressure at which transition from bilayer phase to non-bilayer phases occur. We validated our models by fitting the experimental data of several lipid mixtures to the theoretical data calculated based on our model. These results provide a useful tool to quantitatively predict the behavior of complex membranes at low hydration.  相似文献   

16.
H Vogel 《Biochemistry》1987,26(14):4562-4572
The secondary structure of alamethicin in lipid membranes below and above the lipid phase transition temperature Tt is determined by Raman spectroscopy and circular dichroism (CD) measurements. In both cases structural data are obtained by fitting the experimental spectra by a superposition of the spectra of 15 reference proteins of known three-dimensional structure. According to the Raman experiments, in a lipid bilayer above Tt alamethicin is helical from residue 1 to 12, whereas below Tt the helix extends from residue 1 to 16. The remaining C-terminal part is nonhelical up to the end residue 20 both above and below Tt. A considerable lower helix content is derived from CD, namely, 38% and 46% above and below Tt, respectively, in agreement with several reported values for CD in the literature. It is shown that the commonly used set of CD spectra of water-soluble reference proteins is unsuitable to describe the CD spectra of alamethicin correctly. Therefore the secondary structure of alamethicin as derived from CD measurements is at the present state of analysis unreliable. In contrast to the case of alamethicin, the CD spectra of melittin in lipid membranes are correctly described by the reference protein spectra. The helix content of melittin is determined thereby to be 72% in lipid membranes above Tt and 75% below Tt. The data are in accord with a structure where the hydrophobic part of melittin adopts a bent helix as determined recently by Raman spectroscopy [Vogel, H., & J?hnig, F. (1986) Biophys. J. 50, 573]. The orientational order parameters of the helical parts of alamethicin and of melittin in a lipid membrane are deduced from the difference between a corresponding CD spectrum of a polypeptide in planar multibilayers and that in lipid vesicles. The presented method for determining helix order parameters is new and may be generally applicable to other membrane proteins. The orientation of the helical part of both polypeptides depends on the physical state of the lipid bilayer at maximal membrane hydration and in the ordered lipid state furthermore on the degree of membrane hydration. Under conditions where alamethicin and melittin are incorporated in an aggregated form in a fluid lipid membrane at maximal water content the helical segments are oriented preferentially parallel to the membrane normal. Cooling such lipid membranes to a temperature below Tt changes the orientation of the helical part of alamethicin as well as melittin toward the membrane plane.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The importance of membrane-based compartmentalization in eukaryotic cell function has become broadly appreciated, and a number of studies indicate that these eukaryotic cell membranes contain coexisting liquid-ordered (L(o)) and liquid-disordered (L(d)) lipid domains. However, the current evidence for such phase separation is indirect, and so far there has been no direct demonstration of differences in the ordering and dynamics for the lipids in these two types of regions or their relative amounts in the plasma membranes of live cells. In this study, we provide direct evidence for the presence of two different types of lipid populations in the plasma membranes of live cells from four different cell lines by electron spin resonance. Analysis of the electron spin resonance spectra recorded over a range of temperatures, from 5 to 37 degrees C, shows that the spin-labeled phospholipids incorporated experience two types of environments, L(o) and L(d), with distinct order parameters and rotational diffusion coefficients but with some differences among the four cell lines. These results suggest that coexistence of lipid domains that differ significantly in their dynamic order in the plasma membrane is a general phenomenon. The L(o) region is found to be a major component in contrast to a model in which small liquid-ordered lipid rafts exist in a 'sea' of disordered lipids. The results on ordering and dynamics for the live cells are also compared with those from model membranes exhibiting coexisting L(o) and L(d) phases.  相似文献   

18.
Lipid compositions vary greatly among organelles, and specific sorting mechanisms are required to establish and maintain these distinct compositions. In this review, we discuss how the biophysical properties of the membrane bilayer and the chemistry of individual lipid molecules play a role in the intracellular trafficking of the lipids themselves, as well as influencing the trafficking of transmembrane proteins. The large diversity of lipid head groups and acyl chains lead to a variety of weak interactions, such as ionic and hydrogen bonding at the lipid/water interfacial region, hydrophobic interactions, and van-der-Waals interactions based on packing density. In simple model bilayers, these weak interactions can lead to large-scale phase separations, but in more complex mixtures, which mimic cell membranes, such phase separations are not observed. Nevertheless, there is growing evidence that domains (i.e., localized regions with non-random lipid compositions) exist in biological membranes, and it is likely that the formation of these domains are based on interactions similar to those that lead to phase separations in model systems. Sorting of lipids appears to be based in part on the inclusion or exclusion of certain types of lipids in vesicles or tubules as they bud from membrane organelles.  相似文献   

19.
The biological membrane surrounding milk fat globules (MFGM) exhibits lateral phase separation of lipids, interpreted as gel or liquid-ordered phase sphingomyelin-rich (milk SM) domains dispersed in a fluid continuous lipid phase. The objective of this study was to investigate whether changes in the phase state of milk SM-rich domains induced by temperature (T < Tm or T > Tm) or cholesterol affected the Young modulus of the lipid membrane. Supported lipid bilayers composed of MFGM polar lipids, milk SM or milk SM/cholesterol (50:50 mol) were investigated at 20 °C and 50 °C using atomic force microscopy (AFM) and force spectroscopy. At 20 °C, gel-phase SM-rich domains and the surrounding fluid phase of the MFGM polar lipids exhibited Young modulus values of 10–20 MPa and 4–6 MPa, respectively. Upon heating at 50 °C, the milk SM-rich domains in MFGM bilayers as well as pure milk SM bilayers melted, leading to the formation of a homogeneous membrane with similar Young modulus values to that of a fluid phase (0–5 MPa). Upon addition of cholesterol to the milk SM to reach 50:50 mol%, membranes in the liquid-ordered phase exhibited Young modulus values of a few MPa, at either 20 or 50 °C. This indicated that the presence of cholesterol fluidized milk SM membranes and that the Young modulus was weakly affected by the temperature. These results open perspectives for the development of milk polar lipid based vesicles with modulated mechanical properties.  相似文献   

20.
Treatment of microsomal membranes from cotyledons of Phaseolus vulgaris with ozone raises the liquid-crystalline to gel lipid phase transition temperature and results in the formation of distinct domains of gel phase lipid in the membranes. Liposomes prepared from the total lipid extracts of ozone-treated membranes undergo phase separations just a few degrees below the transition temperature for intact membranes, indicating that the formation of gel phase lipids is largely attributable to ozone-induced alterations in the membrane lipids. Levels of unsaturated fatty acids as well as the sterol to phospholipid ratio are markedly reduced in the ozone-treated membranes, and the neutral lipid fraction from treated membranes shows, an increased propensity to induce the formation of gel phase phospholipid when incorporated into liposomes of egg phosphatidylcholine. Since gel phase phospholipid also forms in naturally senescing plant membranes and appears to be attributable to changes in the neutral lipid fraction, the effects of natural senescence and ozone on membranes have been compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号