首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A computer search of the pBR322 DNA sequence identified five sites matching reported glucocorticoid regulatory element (GRE) DNA consensus sequences and three related sites. A pBR322 DNA fragment containing one GRE site was shown to bind immobilized HeLa S3 cell glucocorticoid receptor and to compete for receptor binding in a competitive binding assay. Conversely, a pBR322 DNA fragment devoid of GRE sites showed barely detectable interaction with glucocorticoid receptor in either of these assays. These results demonstrate the importance of GRE consensus sequences in glucocorticoid receptor interactions with DNA, and further identify a cause for high background binding observed when pBR322 DNA is used as a negative control in studies of glucocorticoid receptor-DNA interactions.  相似文献   

2.
3.
A quartz crystal microbalance with dissipation (QCM-D) is used to determine the adsorption rate of a supercoiled plasmid DNA onto a quartz surface and the structure of the resulting adsorbed DNA layer. To better understand the DNA adsorption mechanisms and the adsorbed layer physicochemical properties, the QCM-D data are complemented by dynamic light scattering measurements of diffusion coefficients of the DNA molecules as a function of solution ionic composition. The data from simultaneous monitoring of variations in frequency and dissipation energy with the QCM-D suggest that the adsorbed DNA layer is more rigid in the presence of divalent (calcium) cations compared to monovalent (sodium) cations. Adsorption rates are significantly higher in the presence of calcium, attaining a transport-limited rate at about 1 mM Ca2+. Results further suggest that in low ionic strength solutions containing 1 mM Ca2+ and in moderately high ionic strength solutions containing 300 mM NaCl, plasmid DNA adsorption to negatively charged mineral surfaces is irreversible.  相似文献   

4.
A variation of affinity capillary electrophoresis, called the replacement ion (RI) method, has been developed to measure the binding of monovalent cations to random sequence, double-stranded (ds) DNA. In this method, the ionic strength is kept constant by gradually replacing a non-binding ion in the solution with a binding ion and measuring the mobility of binding and non-binding analytes as a function of binding ion concentration. The method was validated by measuring the binding of Li+ ions to adenosine nucleotides; the apparent dissociation constants obtained by the RI method are comparable to literature values obtained by other methods. The binding of Tris+, NH4+, Li+, Na+, and K+ to dsDNA was then investigated. The apparent dissociation constants observed for counterion binding to a random-sequence 26-base pair (bp) oligomer ranged from 71 mM for Tris+ to 173 mM for Na+ and K+. Hence, positively charged Tris buffer ions will compete with other monovalent cations in Tris-buffered solutions. The bound cations identified in this study may correspond to the strongly correlated, tightly bound ions recently postulated to exist as a class of ions near the surface of dsDNA (Tan, Z.-J., and Chen, S.-J. (2006) Biophys. J. 91, 518-536). Monovalent cation binding to random-sequence dsDNA would be expected to occur in addition to any site-specific binding of cations to A-tracts or other DNA sequence motifs. Single-stranded DNA oligomers do not bind the five tested cations under the conditions investigated here.  相似文献   

5.
Effects of monovalent cations on the neutral rabbit liver fructose-1,6-bisphosphatase are multifunctional and dependent on their nonhydrated ionic size. (a) The maximal velocity is increased by addition of monovalent cations with the optimum stimulation occurring with a nonhydrated ionic radius of 1.2 A in the presence of a chelating agent such as EDTA. (B) Activation curves are sigmoidal with n values varying from 1.5 to 2.3 as ionic radius of monovalent cation increases. The apparent Ka values from 16.0 to 180 mM, obtained for various monovalent cations, have a linear relationship to ionic radii of cations. (c) At lower concentrations of fructose 1,6-bisphosphate monovalent cations show the inhibitory effect and the apparent Km for fructose 1,6-bisphosphate is increased as the concentration of monovalent cation is increased. A linear relationship is obtained between the slopes of increase in the Km and the reciprocals of ionic volume of monovalent cations. (d) The apparent Ka for Mg2+ is also increased as the concentration of monovalent cation is increased, and a linear relationship is obtained again between the increases in Ka and the reciprocals of ionic volume of monovalent cations. The cooperative nature for Mg2+ saturation is decreased as the Ka increases. (e) The apparent Ki for AMP is also linearly altered as the concentration of monovalent cation is varied. However, the alteration of the Ki is unusual, that is, the smaller cations than K+ increase the Ki (Li+ greater than Na+ greater than NH4+), whereas the larger cations decrease the value ((CH2CH2OH)3N+ greater than Cs+ greater than Rb+). The effect of K+ is insignificant. Alterations in the Ki are also linearly related to the reciprocals of ionic volume of monovalent cations. The cooperative nature for AMP inhibition is decreased or increased as the Ki increased or decreased. (f) In the absence of the chelating agent, the curves for Mg2+ saturation and AMP inhibition were hyperbolic without monovalent cations. By addition of monovalent cation the Ka for Mg+2+ or Ki for AMP is increased and cooperative natures for binding of both ligands are induced. For nonspherical monovalent cations, the application of "functional ionic radius" is proposed. Functional ionic radii of NH4+, (CH2OH)3CNH3+, and (CH2CH2OH)3N+ are estimated to be 1.17, 2.55, and 2.87 A, respectively. The presence of two distinct sites for the actions of monovalent cations is suggested.  相似文献   

6.
7.
Liu W  Toney MD 《Biochemistry》2004,43(17):4998-5010
Dialkylglycine decarboxylase (DGD) is a tetrameric pyridoxal phosphate (PLP)-dependent enzyme that catalyzes both decarboxylation and transamination in its normal catalytic cycle. Its activity is dependent on cations. Metal-free DGD and DGD complexes with seven monovalent cations (Li(+), Na(+), K(+), Rb(+), Cs(+), NH(4)(+), and Tl(+)) and three divalent cations (Mg(2+), Ca(2+), and Ba(2+)) have been studied. The catalytic rate constants for cation-bound enzyme (ck(cat) and ck(cat)/bK(AIB)) are cation-size-dependent, K(+) being the monovalent cation with the optimal size for catalytic activity. The divalent alkaline earth cations (Mg(2+), Ca(2+), and Ba(2+)) all give approximately 10-fold lower activity compared to monovalent alkali cations of similar ionic radius. The Michaelis constant for aminoisobutyrate (AIB) binding to DGD-PLP complexes with cations (bK(AIB)) varies with ionic radius. The larger cations (K(+), Rb(+), Cs(+), NH(4)(+), and Tl(+)) give smaller bK(AIB) ( approximately 4 mM), while smaller cations (Li(+), Na(+)) give larger values (approximately 10 mM). Cation size and charge dependence is also found with the dissociation constant for PLP binding to DGD-cation complexes (aK(PLP)). K(+) and Rb(+) possess the optimal ionic radius, giving the lowest values of aK(PLP). The divalent alkaline earth cations give aK(PLP) values approximately 10-fold higher than alkali cations of similar ionic radius. The cation dissociation constant for DGD-PLP-AIB-cation complexes (betaK(M)z+) was determined and also shown to be cation-size-dependent, K(+) and Rb(+) yielding the lowest values. The kinetics of PLP association and dissociation from metal-free DGD and its complexes with cations (Na(+), K(+), and Ba(2+)) were analyzed. All three cations tested increase PLP association and decrease PLP dissociation rate constants. Kinetic studies of cation binding show saturation kinetics for the association reaction. The half-life for association with saturating Rb(+) is approximately 24 s, while the half-life for dissociation of Rb(+) from the DGD-PLP-AIB-Rb(+) complex is approximately 12 min.  相似文献   

8.
The denaturation of Escherichia coli acyl carrier protein (ACP) in buffers containing both monovalent and divalent cations was followed by variable-temperature NMR and differential scanning calorimetry. Both high concentrations of monovalent salts (Na+) and moderate concentrations of divalent salts (Ca2+) raise the denaturation temperature, but calorimetry indicates that a significant increase in the enthalpy of denaturation is obtained only with the addition of a divalent salt. NMR experiments in both low ionic strength monovalent buffers and low ionic strength monovalent buffers containing calcium ions show exchange between native and denatured forms to be slow on the NMR time scale. However, in high ionic strength monovalent buffers, where the temperature of denaturation is elevated as it is in the presence of Ca2+, the transition is fast on the NMR time scale. These results suggest that monovalent and divalent cations may act to stabilize ACP in different ways. Monovalent ions may nonspecifically balance the intrinsic negative charge of this protein in a way that is similar for native, denatured, and intermediate forms. Divalent cations provide stability by binding to specific sites present only in the native state.  相似文献   

9.
The kinetics of the binding reaction of MS2 phage to free F pili, which were highly purified from Escherichia coli, has been studied using a membrane filter assay. The rate of dissociation (kd) of the MS2-phage--F-pilus complex is very slow and follows first-order kinetics with a half-life of 4.2 h at 30 degrees C in the standard buffer. The dissociation rate is rather insensitive to temperature, but becomes more rapid at high ionic strength or at basic pH. In a 0.25 M ionic strength buffer, the half-life of the complex is about 1.0 min. The rate of association is very fast and follows second-order kinetics with the rate constant for association (ka) being 8 x 10(7) M-1 s-1 at 30 degrees C in the standard buffer. The rate of association is almost insensitive to ionic strength but slightly sensitive to pH or temperature. Monovalent cations can also promote the binding reaction as well as divalent cations but the complex formed with monovalent cation is unstable. A study of the kinetics of dissociation suggests that there are two types of interaction between MS2 phage and F pilus; one is a strong interaction formed with divalent cations and the other is a weak one formed with monovalent cations. The physical nature of the bonds involved in the former and the latter seems to be mainly electrostatic and non-electrostatic respectively. The mechanism of the binding reaction is discussed.  相似文献   

10.
11.
DNA in living cells is generally processed via the generation and the protection of single-stranded DNA involving the binding of ssDNA-binding proteins (SSBs). The studies of SSB-binding mode transition and cooperativity are therefore critical to many cellular processes like DNA repair and replication. However, only a few atomic force microscopy (AFM) investigations of ssDNA nucleoprotein filaments have been conducted so far. The point is that adsorption of ssDN A-SSB complexes on mica, necessary for AFM imaging, is not an easy task. Here, we addressed this issue by using spermidine as a binding agent. This trivalent cation induces a stronger adsorption on mica than divalent cations, which are commonly used by AFM users but are ineffective in the adsorption of ssDNA-SSB complexes. At low spermidine concentration (<0.3 mM), we obtained AFM images of ssDNA-SSB complexes (E. coli SSB, gp32 and yRPA) on mica at both low and high ionic strengths. In addition, partially or fully saturated nucleoprotein filaments were studied at various monovalent salt concentrations thus allowing the observation of SSB-binding mode transition. In association with conventional biochemical techniques, this work should make it possible to study the dynamics of DNA processes involving DNA-SSB complexes as intermediates by AFM.  相似文献   

12.
Zupán K  Herényi L  Tóth K  Egyeki M  Csík G 《Biochemistry》2005,44(45):15000-15006
We studied the complex formation of tetrakis(4-N-methylpyridyl)porphyrin (TMPyP) with double stranded DNAs and T7 phage nucleoprotein complex. We analyzed the effect of base pair composition of DNA, the presence of capsid protein, and the composition of the microenvironment on the distribution of TMPyP between binding forms as determined by the decomposition of porphyrin absorption spectra. No difference was found in the amount of bound TMPyP between DNAs of various base compositions; however, the ratio of TMPyP binding forms depends on the AT/GC ratio. The presence of protein capsid opposes the binding of TMPyP to DNA. This behavior offers a possibility to investigate the protein capsid integrity due to the analysis of porphyrin binding. Increasing ionic strength of monovalent ions decreases the amount of bound porphyrin through the inhibition of intercalation, but does not influence the quantity of groove-binding forms when TMPyP interacts with isolated DNA. In the case of the nucleoprotein complex the groove-binding is also inhibited already at 140 mM ionic strength. The presence of 1 mM divalent cations (Mg(2+), Ca(2+), Cu(2+) and Ni(2+)) in a buffer solution of 70 mM ionic strength does not influence significantly the free to bound ration of TMPyP when it interacts with isolated DNA. The contribution of binding forms is remarkably different in Mg(2+)/Ca(2+) and Cu(2+)/Ni(2+) containing solutions. Transition metals significantly decrease the binding sites for intercalation in both DNA and nucleoprotein complex, but facilitate the groove-binding of TMPyP to isolated DNA.  相似文献   

13.
The X-ray crystal structure of the DNA decamer d(GACCGCGGTC), containing half the human papilloma virus E2 binding site, has been solved from two crystals grown at different ionic conditions (50 mM MgCl2and 50 mM spermine or 1.56 mM MgCl2and 1.56 mM spermine). Despite the variation in salt concentration, the two DNA structures are in a very similar, A-type DNA conformation, with helical axes curving towards the major groove. Although the salt concentrations do not effect the helical parameters or hydration to a large degree, there is a change in the overall helical curvature; 18 degrees and 31 degrees for the low and high salt structures, respectively. This curvature appears to be sequence specific and biologically relevant when compared with similar DNA structures, including the E2 binding site of a protein-DNA complex.  相似文献   

14.
The DNA binding of three different NF-kappaB dimers, the p50 and p65 homodimers and the p50/p65 heterodimer, has been examined using a combination of gel mobility shift and fluorescence anisotropy assays. The NF-kappaB p50/p65 heterodimer is shown here to bind the kappaB DNA target site of the immunoglobulin kappa enhancer (Ig-kappaB) with an affinity of approximately 10 nm. The p50 and p65 homodimers bind to the same site with roughly 5- and 15-fold lower affinity, respectively. The nature of the binding isotherms indicates a cooperative mode of binding for all three dimers to the DNA targets. We have further characterized the role of pH, salt, and temperature on the formation of the p50/p65 heterodimer-Ig-kappaB complex. The heterodimer binds to the Ig-kappaB DNA target in a pH-dependent manner, with the highest affinity between pH 7.0 and 7.5. A strong salt-dependent interaction between Ig-kappaB and the p50/p65 heterodimer is observed, with optimum binding occurring at monovalent salt concentrations below 75 mm, with binding becoming virtually nonspecific at a salt concentration of 200 mm. Binding of the heterodimer to DNA was unchanged across a temperature range between 4 degrees C and 42 degrees C. The sensitivity to ionic environment and insensitivity to temperature indicate that NF-kappaB p50/p65 heterodimers form complexes with specific DNA in an entropically driven manner.  相似文献   

15.
The free solution mobilities of single- and double-stranded DNA molecules of various molecular weights have been measured by capillary electrophoresis in solutions of constant ionic strength containing a common anion and fifteen different monovalent cations. In solutions with the same ionic composition, the mobilities of different DNA molecules can vary by up to 20%, depending on molecular weight, the number of strands, and the presence or absence of A-tracts, runs of four or more contiguous adenine residues. Importantly, the mobilities observed for the same DNA sample can vary by up to 40% in solutions containing different cations. The mobility differences observed for the same DNA in solutions containing different cations cannot be rationalized by differences in the anhydrous radii or intrinsic conductivities of the various cations, or by the sequence-dependent binding of certain cations to A-tracts. Instead, the observed mobilities are linearly correlated with the average number of water-water hydrogen bonds that are present in solutions containing different cations. The mobilities are also correlated with the viscosity B coefficients of the various cations and with the rotational correlation times frictional coefficients observed for water molecules in solutions containing different cations. Hence, monovalent cations modify the free solution mobility of DNA primarily by perturbing the hydrogen-bonded structure of water, affecting the friction experienced by the migrating DNA molecules during electrophoresis.  相似文献   

16.
Magnesium (Mg2+) increases binding of follicle-stimulating hormone (FSH) to membrane-bound receptors and increases adenylyl cyclase activity. We examined the effects of divalent and monovalent cations on FSH binding to receptors in granulosa cells from immature porcine follicles. Divalent and monovalent cations increased binding of [125I]iodo-porcine FSH (125I-pFSH). The divalent cations Mg2+, calcium (Ca2+) and manganese, (Mn2+) increased specific binding a maximum of 4- to 5-fold at added concentrations of 10 mM. Mg2+ caused a half-maximal enhancement of binding at 0.6 mM, whereas Ca2+ and Mn2+ had half-maximal effects at 0.7 mM and 0.8 mM, respectively. The monovalent cation potassium (K+) increased binding a maximum of 1.5-fold at an added concentration of 50 mM, whereas the monovalent cation (Na+) did not increase binding at any concentration tested. The difference between K+ and Na+ suggested that either enhancement of binding was not a simple ionic effect or Na+ has a negative effect that suppresses its positive effect. Ethylenediamine tetraacetic acid, a chelator of Mg2+, prevented binding of 125I-pFSH only in the presence of Mg2+, whereas pregnant mare's serum gonadotropin, a competitor with FSH for the receptor, prevented binding in both the absence and the presence of Mg2+. Guanyl-5-ylimidodiphosphate (Gpp[NH]p) inhibited binding of 125I-pFSH in the absence or presence of Mg2+, but only at Gpp(NH)p concentrations greater than 1 mM. We used Mg2+ to determine if divalent cations enhanced FSH binding by increasing receptor affinity or by increasing the apparent number of binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Complex formation between horse heart cytochrome c (cyt c) and bovine cytochrome c oxidase (cco) incorporated into a supported planar egg phosphatidylcholine membrane containing varying amounts of cardiolipin (CL) (0-20 mol%) has been studied under low (10 mM) and medium (160 mM) ionic strength conditions by surface plasmon resonance (SPR) spectroscopy. Both specific and nonspecific modes of cyt c binding are observed. The dissociation constant of the specific interaction between cyt c and cco increases from approximately 6.5 microM at low ionic strength to 18 microM at medium ionic strength, whereas the final saturation level of bound protein is independent of salt concentration and corresponds to approximately 53% of the total cco molecules present in the membrane. This suggests a 1:1 binding stoichiometry between the two proteins. The nonspecific binding component is governed by electrostatic interactions between cyt c and the membrane lipids and results in a partially ionic strength-reversible protein-membrane association. Thus, hydrophobic interactions between cyt c and the membrane, which are the predominant mode of binding in the absence of cco, are greatly suppressed. Both the amount of nonspecifically bound protein and the binding affinity can be varied over a broad range by changing the ionic strength and the extent of CL incorporation into the membrane. Under conditions approximating the physiological state in the mitochondrion (i.e., 20 mol% CL and medium ionic strength), 1-1.5 cyt c molecules are bound to the lipid phase per molecule of cco, with a dissociation constant of 0.1 microM. The possible physiological significance of these observations is discussed.  相似文献   

18.
19.
20.
A combination of the gel retardation assay and interference by hydroxyl radical modification (missing nucleoside technique) was used to analyze the interaction of the glucocorticoid receptor (GR) with various glucocorticoid responsive elements (GRE). Short oligonucleotides containing the 15-bp GRE and 1 to 3 flanking base pairs on each side, are bound with very low affinity. The same GREs, when positioned in the center of a large DNA fragment (40-50 bp), show high affinity for the receptor. However, when the GRE is positioned at the border of a 54-bp fragment, the affinity of the GR for the GRE decreases markedly. The DNA binding affinity increases linearly with each added flanking base pair and optimal binding is observed with 8-10 flanking bp. Thus, the nonconserved DNA sequences flanking the GRE contribute significantly to the free energy of receptor binding to DNA. Using larger DNA fragments (greater than 100 bp) and a smaller form of the receptor (40 kD), two retarded complexes are found that correspond to monomeric and homodimeric receptor DNA complexes. The DNA-binding domain of the GR (20 kD), expressed in bacteria, binds to the GRE as a monomer as well as a dimer and can form heterodimers with the native 94-kD GR. Insertion or deletion of one single base pair between the two halves of the GRE reduces the affinity for the homodimeric form of the native GR, and inhibits the function of the GRE in gene transfer experiments, suggesting that a dimer of the GR is the functional entity that binds to the GRE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号