首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The structure of the small squash trypsin inhibitor CMTI-I is refined by directly minimizing the difference between the observed two-dimensional nuclear Overhauser enhancement (NOE) intensities and those calculated by the full relaxation matrix approach. To achieve this, a term proportional to this difference was added to the potential energy function of the molecular dynamics program X-PLOR. Derivatives with respect to atomic co-ordinates are calculated analytically. Spin diffusion effects are thus accounted for fully during the refinement. Initial structures for the refinement were those determined recently by solution nuclear magnetic resonance using the isolated two-spin approximation to derive distance range estimates. The fits to the nuclear magnetic resonance data improve significantly with only small shifts in the refined structures during a few cycles of conjugate gradient minimization. However, larger changes (approximately 1 A) in the conformation occur during simulated annealing, which is accompanied by a further reduction of the difference between experimental and calculated two-dimensional NOE intensities. The refined structures are closer to the X-ray structure of the inhibitor complexed with trypsin than the initial structures. The root-mean-square difference for backbone atoms between the initial structures and the X-ray structure is 0.96 A, and that between the refined structures and the X-ray structure 0.61 A.  相似文献   

2.
The refinement of antigen-binding fragment structures by the method of simulated annealing was tested. Using the program X-PLOR, we refined the structure of one immunoglobulin light-chain dimer against 2.8 A diffraction data collected for a homologous light-chain dimer. The refinement proceeded smoothly; alpha-carbons of the conserved segments of the domain moved to the positions in the reference structure solved independently. An average movement of approximately 1.5 A for atoms in the variable domains (half of the molecule) was observed. Though the final R-factors and energy terms of the reference and test structures were very similar, some of the chain segments of the hypervariable loops (HVR3s) and the ends of some side chains did not converge to the positions in the reference structure. Therefore, although globally the refinement worked very well, positions of the loops and the side chains that are critical for immunoglobulin function have to be carefully examined by difference Fourier techniques.  相似文献   

3.
The structure of ferricytochrome c' extracted from Rhodospirillum rubrum has been determined by the X-ray crystallographic method. Crystals in hexagonal space group P6(1), with unit-cell dimensions a = b = 51.72 A and c = 155.49 A, contain one dimer molecule composed of chemically identical polypeptide chains (monomer I and monomer II) per asymmetric unit. An electron density map has been calculated at a resolution of 2.8 A by the multiple isomorphous replacement method using four-circle diffractometer data from native crystals and two heavy-atom derivatives. The quality of the map was improved by averaging the electron density about the non-crystallographic 2-fold axis relating the two monomers. The initial three-dimensional model of monomer I was built on a computer graphics system and that of monomer II was derived from monomer I using the non-crystallographic symmetry matrices. The dimer structure has been refined using a combination of simulated annealing and conventional restrained least-squares crystallographic refinement. The current model includes 244 amino acid residues (122 x 2) and 2 hemes, with a root-mean-square deviation in bond lengths from ideal values of 0.022 A. The current crystallographic R-factor is 23.3% for 4,481 independent reflections [magnitude of Fo greater than or equal to sigma (F)] between 5.0 and 2.8 A resolution. The monomer molecule is structurally organized as an array of four nearly parallel alpha-helices which construct a left-twisted bundle. One end of the bundle, in which a covalently bound protoheme IX prosthetic group is incorporated, is more divergent than the other.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
The structure of the methyl-alpha-D-mannopyranoside-LOL I complex has been solved by the molecular replacement method using the refined saccharide-free LOL I coordinates as starting model. The methyl-alpha-D-mannopyranoside-LOL I complex was refined by simulated annealing using the program X-PLOR. The final R-factor value is 0.182 [Fo greater than 1 sigma(Fo)]. The isostructural methyl-alpha-D-glucopyranoside-LOL I complex was refined by X-Ray coupled energy minimization using the methyl-alpha-D-mannopyranoside-LOL I structure as a starting model to an R factor of 0.179 (all data). In both crystal forms, each dimer binds two molecules of sugar in pockets found near the calcium ions. The two saccharide moieties, which are in the C1 chair conformation, establish the same hydrogen bond pattern with the lectin. However, the van der Waals contacts are different between the O2, C2, C6, and O6 atoms of the two molecules and the backbone atoms of residues 208-211. Mannose, due to its axial C2 conformation, encloses the backbone atoms of the protein in a clamplike way. Van der Waals energy calculations suggest that this better complementarity of the mannoside molecule with the lectin could explain its higher affinity for isolectin I.  相似文献   

6.
The B-subunit of verotoxin-1, which is believed to form a pentamer (monomer Mr = 7691), has been crystallized by vapor diffusion over a wide range of conditions. The best crystals, obtained with polyethylene glycol 8000 as the precipitant, belong to the orthorhombic space group P2(1)2(1)2(1), with cell dimensions a = 59.2 A, b = 102.7 A, c = 56.3 A. The cell dimensions are consistent with one B-subunit pentamer per asymmetric unit, and the crystals diffract to at least 2.0 A resolution. Data collected using synchrotron radiation at a wavelength of 2.070 A may allow the structure to be solved using the anomalous signal from three sulfur atoms in the monomer, combined with averaging over the non-crystallographic symmetry.  相似文献   

7.
Symmetric protein complexes are abundant in the living cell. Predicting their atomic structure can shed light on the mechanism of many important biological processes. Symmetric docking methods aim to predict the structure of these complexes given the unbound structure of a single monomer, or its model. Symmetry constraints reduce the search-space of these methods and make the prediction easier compared to asymmetric protein-protein docking. However, the challenge of modeling the conformational changes that the monomer might undergo is a major obstacle. In this article, we present SymmRef, a novel method for refinement and reranking of symmetric docking solutions. The method models backbone and side-chain movements and optimizes the rigid-body orientations of the monomers. The backbone movements are modeled by normal modes minimization and the conformations of the side-chains are modeled by selecting optimal rotamers. Since solved structures of symmetric multimers show asymmetric side-chain conformations, we do not use symmetry constraints in the side-chain optimization procedure. The refined models are re-ranked according to an energy score. We tested the method on a benchmark of unbound docking challenges. The results show that the method significantly improves the accuracy and the ranking of symmetric rigid docking solutions. SymmRef is available for download at http:// bioinfo3d.cs.tau.ac.il/SymmRef/download.html.  相似文献   

8.
The refinement of low-quality structures is an important challenge in protein structure prediction. Many studies have been conducted on protein structure refinement; the refinement of structures derived from NMR spectroscopy has been especially intensively studied. In this study, we generated flat-bottom distance potential instead of NOE data because NOE data have ambiguity and uncertainty. The potential was derived from distance information from given structures and prevented structural dislocation during the refinement process. A simulated annealing protocol was used to minimize the potential energy of the structure. The protocol was tested on 134 NMR structures in the Protein Data Bank (PDB) that also have X-ray structures. Among them, 50 structures were used as a training set to find the optimal “width” parameter in the flat-bottom distance potential functions. In the validation set (the other 84 structures), most of the 12 quality assessment scores of the refined structures were significantly improved (total score increased from 1.215 to 2.044). Moreover, the secondary structure similarity of the refined structure was improved over that of the original structure. Finally, we demonstrate that the combination of two energy potentials, statistical torsion angle potential (STAP) and the flat-bottom distance potential, can drive the refinement of NMR structures.  相似文献   

9.
The uncertainties in the refined parameters for a 1.5-A X-ray structure of carbon-monoxy (FeII) myoglobin are estimated by combining energy minimization with least-squares refinement against the X-ray data. The energy minimizations, done without reference to the X-ray data, provide perturbed structures which are used to restart conventional X-ray refinement. The resulting refined structures have the same, or better, R-factor and stereochemical parameters as the original X-ray structure, but deviate from it by 0.13 A rms for the backbone atoms and 0.31 A rms for the sidechain atoms. Atoms interacting with a disordered sidechain, Arg 45 CD3, are observed to have larger positional uncertainties. The uncertainty in the B-factors, within the isotropic harmonic motion approximation, is estimated to be 15%. The resulting X-ray structures are more consistent with the energy parameters used in simulations.  相似文献   

10.
The three-dimensional structure of Cu,Zn-superoxide dismutase from spinach leaves has been determined by X-ray crystal structure analysis. The atomic coordinates were refined at 2.0 A resolution using the Hendrickson and Konnert program for stereochemically restrained refinement against structure factors, which allowed the use of non-crystallographic symmetry. The crystallographic residual error for the refined model was 24.9%, with a root mean square deviation of 0.03 A from the ideal bond length and an average atomic temperature factor of 9.6 A. A dimeric molecule of the enzyme is comprised of two identical subunits related by a non-crystallographic 2-fold axis. Each subunit of 154 amino acid residues is composed primarily of eight anti-parallel beta-strands that form a flattened cylinder, plus three external loops. The main-chain hydrogen bonds primarily link the beta-strands. The overall structure of this enzyme is quite similar to that of the bovine dismutase except for some parts. The single disulfide bridge (Cys57-Cys146) and the salt bridge (Arg79-Asp101) may stabilize the loop regions of the structure. The Cu2+ and Zn2+ ions in the active site lie 6.1 A apart at the bottom of the long channel. The Cu2+ ligands (ND1 of His-46, and NE2 of His-48, -63, and -120) show an uneven tetrahedral distortion from a square plane. The Zn2+ ligands (ND1 of His-63, -71, and -80 and OD1 of Asp-83) show an almost tetrahedral geometry. The imidazole ring of His-63 forms a bridge between the Cu2+ and Zn2+ ions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The variant surface glycoprotein (VSG) of Trypanosoma brucei forms a coat on the surface of the parasite; by the expression of a series of antigenically distinct VSGs in the surface coat the parasite escapes the host immune response. The 2.9 A resolution crystal structure of the N-terminal domain of one variant, MITat 1.2, has been determined. The structure was solved using data collected from two crystal forms. Initially a partial model was built into an electron density map based on multiple isomorphous replacement phases and improved by phase combination methods. Subsequently this model was used to obtain the molecular replacement solution for a second crystal form, providing starting phases which were refined using 2-fold non-crystallographic symmetry averaging. The current model includes 362 residues and has been refined using X-PLOR to an R value of 0.22 for data between 7 and 2.9 A. The molecule is a dimer, approximately 100 A long, having an asymmetrical cross section with maximum dimensions of approximately 40 A x 60 A. Two long, approximately 70 A, alpha-helices from each monomer pack together to form, with several other helices, a core helix bundle that extends nearly the full length of the molecule. The "top" of the protein, which in the surface coat may be exposed to the external environment, is formed from the ends of the two long helices, a short three-stranded beta-sheet, and a strand having irregular conformation that packs above these secondary structure elements. Two conserved disulfide bridges are in this part of the molecule. Several elements of the MITat 1.2 sequence, which contribute to the formation of the helix bundle structure, have been identified. These elements can be found in the sequences of several different VSGs, suggesting that to some extent the VSG structure is conserved in those variants.  相似文献   

12.
The crystal structure of Escherichia coli aspartate carbamoyltransferase complexed with adenosine 5'-triphosphate (ATP) has been solved by molecular replacement and has been refined to a crystallographic residual of 0.17 at 2.6-A resolution by using the computer program X-PLOR. The unit cell dimensions of this crystal form are a = b = 122.2 A and c = 143.3 A and the space group is P321. Although the c-axis unit cell dimension is approximately 1 A longer than the corresponding dimension of the CTP-ligated P321 crystal form (c = 142.2 A), the ATP-ligated enzyme adopts a T-like quaternary structure. The base moiety of ATP interacts with residues Glu10, Ile12, and Lys60 while the ribose is near Asp19 and Lys60; the triphosphate entity is bound to Lys94, although His20 and Arg96 are nearby. We observe a higher occupancy for ATP in the allosteric site of the R1 regulatory chain in comparison to the occupancy of the R6 allosteric site. These crystallographically independent sites are related by a molecular 2-fold axis. There are other violations of the noncrystallographic symmetry that are similar to those observed in the refined CTP-ligated aspartate carbamoyltransferase structure. These infringements on the molecular symmetry might be the result of intermolecular interactions in the crystal. To ensure the most meaningful comparison with the ATP-ligated structure, we refined the previously reported CTP-bound and unligated structures to crystallographic residuals between 0.17 and 0.18 using X-PLOR. These X-PLOR refined structures are not significantly different from the initial structures that had been crystallographically refined by a restrained least-squares method. After making all possible comparisons between the CTP- and ATP-ligated and the unligated T-state structures, we find that the most significant differences are located at the allosteric sites and in small changes in the quaternary structures. At the allosteric site, the binding of CTP and ATP successively enlarges the nucleotide binding cavity, particularly in the vicinity of the base. The changes in the quaternary structure can be characterized by an increase in the separation of the catalytic trimers by approximately 0.5 A as ATP binds to the unligated T structure. On the basis of these structural studies, we discuss the relationships between the conformational differences in the allosteric site and the small changes in the quaternary structure within the T form to the possible mechanisms for CTP inhibition and ATP activation.  相似文献   

13.
The basic phospholipase A2 from the venom ofAgkistrodon halys Pallas is a potent hemolytic toxin and anticoagulant. The accurate rotation and translation parameters of the molecules in orthorhombic crystal form I were successfully obtained using the fitting refinement technique. The structure was refined in the resolution range of 0.6–0.25 nm using least square refinement with non-crystallographic two fold symmetry restraint, and resulted in the finalR factor of 20.1 %, and the rms deviations from ideal stereochemistry were 0.001 3 nm for bond lengths and 1.32° for bond angles. The overall architecture of the present structure was similar to that of the determined structure of the orthorhombic crystal form II, with a few differences in the regions of the β-wing and Ca2+ -binding Imp. The dimers formed by the two molecules in the asymmetric unit in both crystal forms were also similar. However, one of the monomers showed an orientational difference of 5.5° along the dimer interface in the two crystal forms, suggesting the flexibility of the interface of the dimer to some degree. The molecular packing of the dimer in crystal form I was much more compact than that in crystal form II.  相似文献   

14.
The internal symmetry of a macromolecule is both an important aspect of its function and a useful feature in obtaining a structure by X-ray crystallography and other techniques. A method is presented for finding internal symmetry and other non-crystallographic symmetry in a structure based on patterns of density in a density map for that structure. Regions in map that are similar are identified by cutting out a sphere of density from a region that has high local variation and using an FFT-based correlation search to find other regions that match. The relationships among correlated regions are then refined to maximize their correlations and are found to accurately represent non-crystallographic symmetry in the map.  相似文献   

15.
We have determined, via 1H-n.m.r., the solution conformation of the collagen-binding b-domain of the bovine seminal fluid protein PDC-109 (PDC-109/b). The structure determination is based on 341 interproton distance estimates and 42 dihedral angle estimates: a set of 24 initial structures were computed; 12 using the variable target function program DIANA, and 12 using the metric matrix program DISGEO. These structures were optimized by restrained energy minimization and dynamic simulated annealing using the CHARMM and X-PLOR programs. The average pairwise root-mean-square difference (r.m.s.d) between the optimized DIANA (DISGEO) structures is 0.71 A (0.82 A) for the backbone atoms, and 1.73 A (2.03 A) for all atoms. Both sets of structures exhibit the same global fold, secondary structure and placement of most non-polar side-chains. Two central antiparallel beta-sheets, which lie roughly perpendicular to each other, and two irregular loops support a large, partially exposed, hydrophobic surface that defines a putative binding site. A test of a hybrid relaxation matrix-based distance refinement protocol (MIDGE program) was performed using a normalized 250 millisecond NOESY spectrum. The resulting distances were input to the molecular mechanics/dynamics procedures mentioned above in order to optimize the DIANA structures. Our results indicate that relaxation matrix refinement of distances is most useful when used conservatively for identifying underestimated distance constraints. 1H-n.m.r. monitored ligand titration experiments revealed definite, albeit weak, binding interactions for phenethylamine and leucine analogs (Ka less than or equal to 25 M-1). Residues perturbed by ligand binding include Tyr7, Trp26, Tyr33, Asp34 and Trp39. These results suggest that PDC-109/b may recognize specific leucine and/or isoleucine-containing sequences within collagen.  相似文献   

16.
Kringle-kringle interactions in multimer kringle structures.   总被引:1,自引:1,他引:0       下载免费PDF全文
The crystal structure of a monoclinic form of human plasminogen kringle 4 (PGK4) has been solved by molecular replacement using the orthorthombic structure as a model and it has been refined by restrained least-squares methods to an R factor of 16.4% at 2.25 A resolution. The X-PLOR structure of kringle 2 of tissue plasminogen activator (t-PAK2) has been refined further using PROFFT (R = 14.5% at 2.38 A resolution). The PGK4 structure has 2 and t-PAK2 has 3 independent molecules in the asymmetric unit. There are 5 different noncrystallographic symmetry "dimers" in PGK4. Three make extensive kringle-kringle interactions related by noncrystallographic 2(1) screw axes without blocking the lysine binding site. Such associations may occur in multikringle structures such as prothrombin, hepatocyte growth factor, plasminogen (PG), and apolipoprotein [a]. The t-PAK2 structure also has noncrystallographic screw symmetry (3(1)) and mimics fibrin binding mode by having lysine of one molecule interacting electrostatically with the lysine binding site of another kringle. This ligand-like binding interaction may be important in kringle-kringle interactions involving non-lysine binding kringles with lysine or pseudo-lysine binding sites. Electrostatic intermolecular interactions involving the lysine binding site are also found in the crystal structures of PGK1 and orthorhombic PGK4. Anions associate with the cationic centers of these and t-PAK2 that appear to be more than occasional components of lysine binding site regions.  相似文献   

17.
The structures of D-xylose isomerase from Arthrobacter strain B3728 containing the polyol inhibitors xylitol and D-sorbitol have been solved at 2.5 A and 2.3 A, respectively. The structures have been refined using restrained least-squares refinement methods. The final crystallographic R-factors for the D-sorbitol (xylitol) bound molecules, for 43,615 (32,989) reflections are 15.6 (14.7). The molecule is a tetramer and the asymmetric unit of the crystal contains a dimer, the final model of which, incorporates a total of 6086 unique protein, inhibitor and magnesium atoms together with 535 bound solvent molecules. Each subunit of the enzyme contains two domains: the main domain is a parallel-stranded alpha-beta barrel, which has been reported in 14 other enzymes. The C-terminal domain is a loop structure consisting of five helical segments and is involved in intermolecular contacts between subunits that make up the tetramer. The structures have been analysed with respect to molecular symmetry, intersubunit contacts, inhibitor binding and active site geometry. The refined model shows the two independent subunits to be similar apart from local deviations due to solvent contacts in the solvent-exposed helices. The enzyme is dependent on a divalent cation for catalytic activity. Two metal ions are required per monomer, and the high-affinity magnesium(II) site has been identified from the structural results presented here. The metal ion is complexed, at the high-affinity site, by four carboxylate side-chains of the conserved residues, Glu180, Glu216, Asp244 and Asp292. The inhibitor polyols are bound in the active site in an extended open chain conformation and complete an octahedral co-ordination shell for the magnesium cation via their oxygen atoms O-2 and O-4. The active site lies in a deep pocket near the C-terminal ends of the beta-strands of the barrel domain and includes residues from a second subunit. The tetrameric molecule can be considered to be a dimer of "active" dimers, the active sites being composed of residues from both subunits. The analysis has revealed the presence of several internal salt-bridges stabilizing the tertiary and quaternary structure. One of these, between Asp23 and Arg139, appears to play a key role in stabilizing the active dimer and is conserved in the known sequences of this enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The basic phospholipase A2 from the venom of Agkistrodon halys Pallas is a potent hemolytic toxin and anticoagulant. The accurate rotation and translation parameters of the molecules in orthorhombic crystal form I were successfully obtained using the fitting refinement technique. The structure was refined in the resolution range of 0. 6-0.25 nm using least square refinement with non-crystallographic two fold symmetry restraint, and resulted in the final R factor of 20.1 % , and the rms deviations from ideal stereochemistry were 0. 001 3 nm for bond lengths and 1. 32° for bond angles. The overall architecture of the present structure was similar to that of the determined structure of the orthorhombic crystal form Ⅱ, with a few differences in the regions of the β-wing and Ca2+-binding loop. The dimers formed by the two molecules in the asymmetric unit in both crystal forms were also similar. However, one of the monomers showed an orientational difference of 5.5° along the dimer interface in the two crystal forms, suggesting the flexibility of the interface of the dimer to some degree. The molecular packing of the dimer in crystal form I was much more compact than that in crystal form Ⅱ.  相似文献   

19.
Crystals of the deamidated form of bovine pancreatic ribonuclease which contains an isoaspartyl residue in position 67 diffract to 0. 87 A at 100 K. We have refined the crystallographic model using anisotropic displacement parameters for all atoms to a conventional crystallographic residual R=0.101 for all observed reflections in the resolution range 61.0-0.87 A. The ratio observations/parameters is 7.2 for the final model. This structure represents one of the highest resolution protein structures to date and interestingly, it is the only example containing more than one molecule in the asymmetric unit with a resolution better than 1.0 A. The non-crystallographic symmetry has been used as a validation check of the geometrical parameters and it has allowed an estimate for an upper limit of errors associated with this high resolution model. In the present structure it was possible to obtain a more accurate picture of the active site whose electron density was not clearly interpretable in the previous 1.9 A resolution structure. In particular, the P1 site is alternatively occupied either by a sulphate anion or by a water molecule network. Most of hydrogen atoms were visible in the electron density maps, including those involved in C(alpha)-H(alpha).O interactions. Analysis of protein-solvent interactions has revealed the occurrence of an extensive cluster of water molecules, predominantly arranged in pentagonal fused rings and surrounding hydrophobic moiety of side-chains. Finally, in spite of the limited sample of residues, we have detected a clear dependence of backbone N-C(alpha)-C angle on residue conformation. This correlation can be fruitfully used as a valuable tool in protein structure validation.  相似文献   

20.
A restrained least squares refinement of the solution structure of the double-stranded DNA undecamer 5'd(AAGTGT-GACAT).5'd(ATGTCACACTT) comprising a portion of the specific target site of the cAMP receptor protein in the gal operon is presented. The structure is refined on the basis of both distance and planarity restraints, 2331 in all. The distance restraints comprise 150 interproton distances determined from pre-steady state nuclear Overhauser enhancement measurements and 2159 other interatomic distances derived from idealized geometry (i.e., distances between covalently bonded atoms, between atoms defining fixed bond angles, and between atoms defining hydrogen bonding in AT and GC base pairs). Two refinements were carried out and in both cases the final RMS difference between the experimental and calculated interproton distances was 0.2 A. The difference between the two refined structures is small (overall RMS difference of 0.23 A) and represents the error in the refined coordinates. Although the refined structures have an overall B-type conformation there are large variations in many of the local conformational parameters including backbone and glycosidic bond torsion angles, helical twist and propellor twist, base roll and base tilt angles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号