首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
von Willebrand factor (vWf) is a multimeric adhesive glycoprotein that serves as a carrier for factor VIII in plasma. Although each vWf subunit displays a high affinity binding site for factor VIII in vitro, in plasma, only 2% of the vWf sites for factor VIII are occupied. We investigated whether interaction of plasma proteins with vWf or adhesion of vWf to collagen may alter the affinity or availability of factor VIII-binding sites on vWf. When vWf was immobilized on agarose-linked monoclonal antibody, factor VIII bound to vWf with high affinity, and neither the affinity nor binding site availability was influenced by the presence of 50% plasma. Therefore, plasma proteins do not alter the affinity or availability of factor VIII-binding sites. In contrast, when vWf was immobilized on agarose-linked collagen, its affinity for factor VIII was reduced 4-fold, with KD increasing from 0.9 to 3.8 nM. However, one factor VIII-binding site remained available on each vWf subunit. A comparable reduction in affinity for factor VIII was observed when vWf was a constituent of the subendothelial cell matrix and when it was bound to purified type VI collagen. In parallel with the decreased affinity for factor VIII, collagen-bound vWf displayed a 6-fold lower affinity for monoclonal antibody W5-6A, with an epitope composed of residues 78-96 within the factor VIII-binding motif of vWf. We conclude that collagen induces a conformational change within the factor VIII-binding motif of vWf that lowers the affinity for factor VIII.  相似文献   

2.
Binding of human factor VIII to phospholipid vesicles   总被引:6,自引:0,他引:6  
Factor VIII, a protein cofactor involved in blood coagulation, functions in vitro on a phospholipid membrane surface to greatly increase the rate of factor X activation by factor IXa. Using gel filtration, rapid sedimentation, and resonance energy transfer we have studied the interaction of recombinant-derived human factor VIII with small and large unilamellar phospholipid vesicles composed of phosphatidylserine and phosphatidylcholine. Resonance energy transfer, from intrinsic fluorophores in factor VIII to dansyl-phosphatidylethanolamine incorporated into vesicles, has been adapted for quantitative equilibrium measurements. Factor VIII binds rapidly and reversibly to small and large vesicles. At 8 degrees C the interaction of factor VIII with small vesicles fits a simple bimolecular model with a KD of 2 nM and a phospholipid binding site defined by 180 phospholipid monomers. At 25 degrees C the binding of factor VIII to small vesicles containing 20% phosphatidylserine can be described by an apparent KD of 4 nM; the phospholipid/protein ratio at saturation was 170. Binding to large vesicles was demonstrated with a KD of 2 nM and a phospholipid/protein ratio at saturation of 385. Binding was dependent upon the phosphatidylserine mole fraction and was nonlinear from 0 to 30% phosphatidylserine content. A direct comparison of factor VIII and factor V binding indicated that the affinity of factor V to phospholipid vesicles was equivalent to that of factor VIII and that the phosphatidylserine requirement was lower. A model is proposed to explain the nonlinear phosphatidylserine dependence of binding for factor VIII.  相似文献   

3.
Lactadherin, a milk protein, contains discoidin-type lectin domains with homology to the phosphatidylserine-binding domains of blood coagulation factor VIII and factor V. We have found that lactadherin functions, in vitro, as a potent anticoagulant by competing with blood coagulation proteins for phospholipid binding sites [J. Shi and G.E. Gilbert, Lactadherin inhibits enzyme complexes of blood coagulation by competing for phospholipid binding sites, Blood 101 (2003) 2628-2636]. We wished to characterize the membrane-binding properties that correlate to the anticoagulant capacity. We labeled bovine lactadherin with fluorescein and evaluated binding to membranes of composition phosphatidylserine/phosphatidylethanolamine/phosphatidylcholine, 4:20:76 supported by 2 mum diameter glass microspheres. Lactadherin bound saturably with an apparent KD of 3.3+/-0.4 nM in a Ca++ -independent manner. The number of lactadherin binding sites increased proportionally to the phosphatidylserine content over a range 0-2% and less rapidly for higher phosphatidylserine content. Inclusion of phosphatidylethanolamine in phospholipid vesicles did not enhance the apparent affinity or number of lactadherin binding sites. The number of sites was at least 4-fold higher on small unilamellar vesicles than on large unilamellar vesicles, indicating that lactadherin binding is enhanced by membrane curvature. Lactadherin bound to membranes with synthetic dioleoyl phosphatidyl-L-serine but not dioleoyl phosphatidyl-D-serine indicating stereoselective recognition of phosphatidyl-L-serine. We conclude that lactadherin resembles factor VIII and V with stereoselective preference for phosphatidyl-L-serine and preference for highly curved membranes.  相似文献   

4.
Lactadherin, a milk protein, contains discoidin-type lectin domains with homology to the phosphatidylserine-binding domains of blood coagulation factor VIII and factor V. We have found that lactadherin functions, in vitro, as a potent anticoagulant by competing with blood coagulation proteins for phospholipid binding sites [J. Shi and G.E. Gilbert, Lactadherin inhibits enzyme complexes of blood coagulation by competing for phospholipid binding sites, Blood 101 (2003) 2628-2636]. We wished to characterize the membrane-binding properties that correlate to the anticoagulant capacity. We labeled bovine lactadherin with fluorescein and evaluated binding to membranes of composition phosphatidylserine/phosphatidylethanolamine/phosphatidylcholine, 4:20:76 supported by 2 μm diameter glass microspheres. Lactadherin bound saturably with an apparent KD of 3.3±0.4 nM in a Ca++-independent manner. The number of lactadherin binding sites increased proportionally to the phosphatidylserine content over a range 0-2% and less rapidly for higher phosphatidylserine content. Inclusion of phosphatidylethanolamine in phospholipid vesicles did not enhance the apparent affinity or number of lactadherin binding sites. The number of sites was at least 4-fold higher on small unilamellar vesicles than on large unilamellar vesicles, indicating that lactadherin binding is enhanced by membrane curvature. Lactadherin bound to membranes with synthetic dioleoyl phosphatidyl-l-serine but not dioleoyl phosphatidyl-d-serine indicating stereoselective recognition of phosphatidyl-l-serine. We conclude that lactadherin resembles factor VIII and V with stereoselective preference for phosphatidyl-l-serine and preference for highly curved membranes.  相似文献   

5.
Factor VIII, a cofactor of the intrinsic clotting pathway, is proteolytically inactivated by the vitamin K-dependent serine protease, activated protein C in a reaction requiring Ca2+ and a phospholipid surface. Factor VIII was inactivated 15 times faster than factor VIII in complex with either von Willebrand factor (vWf) or the large homodimeric fragment, SPIII (vWf residues 1-1365). Free factor VIII or factor VIII in complex with a smaller fragment, SPIII-T4 (vWf residues 1-272), were inactivated at the same rate, suggesting that this effect was dependent upon the size of factor VIII-vWf complex rather than changes in factor VIII brought about by occupancy of the vWf-binding site. Thrombin cleavage of the factor VIII light chain to remove the vWf-binding site eliminated the protective effects of vWf. In the absence of phospholipid, high levels of the protease inactivated both free and vWf-bound factor VIII at equivalent rates. Using the same conditions, isolated heavy chains and the heavy chains of factor VIII were proteolyzed at similar rates. Taken together, these results suggested that, in the absence of phospholipid, inactivation of factor VIII is independent of factor VIII light chain and further suggest that vWf did not mask susceptible cleavage sites in the cofactor. Solution studies employing fluorescence energy transfer using coumarin-labeled factor VIII (fluorescence donor) and synthetic phospholipid vesicles labeled with octadecyl rhodamine (fluorescence acceptor) indicated saturable binding and equivalent extents of donor fluorescence quenching for factor VIII alone or when complexed with SPIII-T4. However, complexing of factor VIII with either vWf or SPIII eliminated its binding to the phospholipid. Since a phospholipid surface is required for efficient catalysis by the protease, these results suggest that vWf protects factor VIII by inhibiting cofactor-phospholipid interactions.  相似文献   

6.
Factor VIII is a cofactor in the tenase enzyme complex which assembles on the membrane of activated platelets. A critical step in tenase assembly is membrane binding of factor VIII. Platelet membrane factor VIII-binding sites were characterized by flow cytometry using either fluorescein maleimide-labeled recombinant factor VIII or a fluorescein-labeled monoclonal antibody against factor VIII. Following activation by thrombin, most platelets bound factor VIII within 90 s. In addition, over the course of several minutes, membranous vesicles (microparticles) were shed from the platelet plasma membrane and each microparticle bound as much factor VIII as a stimulated platelet. Over 30 min, stimulated platelets (but not microparticles) lost the capacity to bind factor VIII. Factor VIII bound saturably to microparticles from platelets stimulated with thrombin, thrombin plus collagen, or the complement proteins C5b-9. The binding of factor VIII was compared to factor V, a structurally homologous coagulation cofactor. Analysis of microparticle binding kinetics yielded similar on and off rates for factor VIII and factor Va and KD values of 2-10 nM. In the presence of 20 nM factor Va, the binding of factor VIII to microparticles was increased, and there was a comparable increase in platelet tenase activity. At higher factor Va concentrations, factor VIII binding and tenase activity were inhibited. Conversely, factor VIII had a similar dose-dependent effect on factor Va binding and platelet prothrombinase activity. Synthetic phospholipid vesicles containing phosphatidylserine competed with microparticles for binding of factor VIII and factor Va. These studies indicate that activated platelets express a transient increase in high affinity receptors for factor VIII, whereas platelet-derived microparticles express a sustained increase in receptors. The binding characteristics of platelet membrane receptors for factor VIII are similar to those for factor Va.  相似文献   

7.
Human coagulation factor V is an integral component of the prothrombinase complex. Rapid activation of prothrombin is dependent on the interactions of this nonenzymatic cofactor with factor Xa and prothrombin in the presence of calcium ions and a phospholipid or platelet surface. Factor V is similar structurally and functionally to the homologous cofactor, factor VIII, which interacts with factor IXa to accelerate factor X activation in the presence of calcium and phospholipids. Both of these cofactors, when activated, possess homologous heavy and light chains. Binding to anionic phospholipids is mediated by the light chains of these two cofactors. In bovine factor Va, a phosphatidylserine-specific binding site has been localized to the amino-terminal A3 domain of the light chain. In human factor VIII, on the other hand, a region within the carboxyl-terminal C2 domain of the light chain has been shown to interact with anionic phospholipids. We have constructed a series of recombinant deletion mutants lacking domain-size fragments of the light chain of human factor V (rHFV). These mutants are expressed and secreted as single-chain proteins by COS cells. Thrombin and the factor V activator from Russell's viper venom process these deletion mutants as expected. The light chain deletion mutants possess essentially no procoagulant activity, nor are they activated by treatment with factor V activator from Russell's viper venom. Deletion of the second C-type domain results in essentially complete loss of phosphatidylserine-specific binding whereas the presence of the C2 domain alone (rHFV des-A3C1, which lacks the A3 and C1 domains of the light chain) results in significant phosphatidylserine-specific binding. The presence of the A3 domain alone (rHFV des-C1C2) does not mediate binding to immobilized phosphatidylserine. Increasing calcium ion concentrations result in decreased binding of recombinant human factor V and the mutant rHFV des-A3C1 to phosphatidylserine, similar to previous studies with purified plasma factor V and phospholipid vesicles. These results indicate that human factor V, similar to human factor VIII, possesses a phosphatidylserine-specific binding site within the C2 domain of the light chain.  相似文献   

8.
Summary Phosphatidylserine was found to significantly enchance the binding of phospholipid vesicles to RAW264 macrophages. We have measured the kinetics of non-specific uptake of unilamellar vesicles as a function of phosphatidylserine concentration in these model target membranes. Dimyristoylphosphatidylcholine was the principle component of these phospholipid vesicles. In most experiments, radiolabeled phospholipid and 1 mol % each of both a fluorescent phospholipid and a hapten-containing lipid headgroup were utilized. In the presence of specific anti-hapten antibody phosphatidylserine-containing vesicles are rapidly taken up via phagocytosis. The antibody-independent non-specific uptake of phosphatidylserine-free vesicles was low, as previously reported. However, the presence of 5 mol % phosphatidylserine dramatically enhanced the uptake of phospholipid vesicles by macrophages. This uptake was shown to be principally due to binding to the macrophage surface. Incubation of macrophages in the presence of sodium azide or at 4°C, conditions which are known to inhibit phagocytosis, do not influence the uptake of the lipid vesicles. Fluorescence video-intensification microscopy was used to observe the interaction of carboxyfluorescein-loaded vesicles with macrophages. Fluorescence could not be observed when using phosphatidylserine-free vesicles. However, phosphatidylserine-containing vesicles can be observed bound to the cell periphery. Intracellular fluorescence could not be observed. The binding of phosphatidylserine-containing vesicles was enhanced roughly four-fold over phosphatidylserine because the effect could not be observed with membranes containing 1 mol % or 2.5 mol% phosphatidylserine. In addition, the binding enhancement required the presence of divalent cations in the incubation medium.Abbreviations DMPC dimyristoylphosphatidylcholine - PS phosphatidylserine - DNP-PE dinitrophenyl---minocaproyl-phosphatidylethanolamime - NBDPE N-4-nitrobenzo-2-oxa-1, 3-diazole phosphatidylethanolamine - EDTA ethylenediaminetetraacetic acid  相似文献   

9.
Factor VIII binds to phospholipid membranes and to von Willebrand factor (vWf) via its second C domain, which has lectin homology. The crystal structure of the C2 domain has prompted a model in which membrane binding is mediated by two hydrophobic spikes, each composed of a pair of residues displayed on a beta-hairpin turn, and also by net positive charge and specific interactions with phospho-l-serine. To test this model, we prepared 16 factor VIII mutants in which single or multiple amino acids were changed to alanine. Mutants at Arg(2215), Arg(2220), Lys(2227), Lys(2249), Gln(2213), Asn(2217), and Phe(2196)/Thr(2197) had specific activities that were >70% of the wild type. Mutants at Arg(2209), Lys(2227), Trp(2313), and Arg(2320) were degraded within the cell. Hydrophobic spike mutants at Met(2199)/Phe(2200), Leu(2251)/Leu(2252), and Met(2199)/Phe(2200)/Leu(2251)/Leu(2252) (4-Ala) exhibited 43, 59, and 91% reduction in specific activity in the activated partial thromboplastin time assay. In a phospholipid-limiting factor Xa activation assay, these mutants had a 65, 85, and 96% reduction in specific activity. Equilibrium binding of fluorescent, sonicated phospholipid vesicles to mutants immobilized on Superose beads was measured by flow cytometry. The affinities for phospholipid were reduced approximately 20-, 30-, and >35-fold for 2199/2200, 2251/2252, and 4-Ala, respectively. A dimeric form of mature vWf bound to immobilized factor VIII and the same mutants, but the affinities of the mutants were reduced approximately 5-, 10-, and >20-fold, respectively. In a competition, solution phase enzyme-linked immunosorbent assay, plasma vWf bound factor VIII and the same mutants with the affinities for the mutants reduced >5-, >5-, and >50-fold, respectively. We conclude that the two hydrophobic spikes are constituents of both the phospholipid-binding and vWf-binding motifs. In plasma, vWf apparently binds the inherently sticky membrane-binding motif, preventing nonspecific interactions.  相似文献   

10.
Announcement     
Recently we described a saturable, high-affinity binding site for vesicular stomatitis virus (VSV) on the surface of Vero cells that appears to mediate viral infectivity. To isolate this binding site, we have extracted Vero cells with the detergent, octyl-β-d-glucopyranoside. The dialyzed detergent extract specifically inhibits the saturable, high-affinity binding of 35S-methionine-labeled VSV to Vero cells. The inhibitory activity is resistant to protease, neuraminidase and heating to 100°C. It is soluble in chloroform-methanol and inactivated by phospholipase C, suggesting that it is a phospholipid. Of various puriifed lipids tested, only phosphatidylserine was capable of totally inhibiting the high-affinity binding of VSV. The half-maximal inhibitory concentration for phosphatidylserine was 1 μM. Phosphatidylserine also inhibited VSV plaque formation by 80%–90%; Herpes simplex virus plaque formation was unaffected. Centrifugation and electron microscopy studies have shown that phosphatidylserine-containing liposomes bind to VSV. The finding that phosphatidylserine directly binds to VSV and inhibits VSV attachment and infectivity suggests that plasma membrane phosphatidylserine could function as a binding site or portion of a binding site for VSV.  相似文献   

11.
Coagulation factor VIII binds to negatively charged platelets prior to assembly with the serine protease, factor IXa, to form the factor X-activating enzyme (FX-ase) complex. The macromolecular organization of membrane-bound factor VIII has been studied by electron crystallography for the first time. For this purpose two-dimensional crystals of human factor VIII were grown onto phosphatidylserine-containing phospholipid monolayers, under near to physiological conditions (pH and salt concentration). Electron crystallographic analysis revealed that the factor VIII molecules were organized as monomers onto the lipid layer, with unit cell dimensions: a = 81.5A, b = 67.2 A, gamma = 66.5 degrees, P1 symmetry. Based on a homology-derived molecular model of the factor VIII (FVIII) A domains, the FVIII projection structure solved at 15-A resolution presents the A1, A2, and A3 domain heterotrimer tilted approximately 65 degrees relative to the membrane plane. The A1 domain is projecting on top of the A3, C1, and C2 domains and with the A2 domain protruding partially between A1 and A3. This organization of factor VIII allows the factor IXa protease and epidermal growth factor-like domain binding sites (localized in the A2 and A3 domains, respectively) to be situated at the appropriate position for the binding of factor IXa. The conformation of the lipid-bound FVIII is therefore very close to that for the activated factor VIIIa predicted in the FX-ase complex.  相似文献   

12.
The purpose of the study was to examine the phosphatidylserine translocation in human spermatozoa membrane during capacitation. Material consisted of human semen from normozoospermic men. Spermatozoa were stained with fluorescein-labelled annexin V. The presence and distribution of annexin V binding sites were analysed using the fluorescence microscope. Within first 60 min afterejaculation, 5-39% viable annexin V-positive spermatozoa were detected. The annexin V binding sites were found mainly in the midpiece. After 4 to 8 h of incubation of spermatozoa in capacitation medium (BMI), the number of cells positively stained with annexin V increased. After capacitation, the localisations of phosphatidylserine was changed and the annexin V binding sites were found also in the acrosomal region but never in the equatorial area. The process of the phosphatidylserine translocation observed during our experiments may reflect changes of the plasma membrane occurring during capacitation or, less likely, apoptosis of spermatozoa.  相似文献   

13.
Isothermal titration calorimetry was used to characterize the binding of calcium ion (Ca2+) and phospholipid to the peripheral membrane-binding protein annexin a5. The phospholipid was a binary mixture of a neutral and an acidic phospholipid, specifically phosphatidylcholine and phosphatidylserine in the form of large unilamellar vesicles. To stringently define the mode of binding, a global fit of data collected in the presence and absence of membrane concentrations exceeding protein saturation was performed. A partition function defined the contribution of all heat-evolving or heat-absorbing binding states. We find that annexin a5 binds Ca2+ in solution according to a simple independent-site model (solution-state affinity). In the presence of phosphatidylserine-containing liposomes, binding of Ca2+ differentiates into two classes of sites, both of which have higher affinity compared with the solution-state affinity. As in the solution-state scenario, the sites within each class were described with an independent-site model. Transitioning from a solution state with lower Ca2+ affinity to a membrane-associated, higher Ca2+ affinity state, results in cooperative binding. We discuss how weak membrane association of annexin a5 prior to Ca2+ influx is the basis for the cooperative response of annexin a5 toward Ca2+, and the role of membrane organization in this response.  相似文献   

14.
The interaction between purified human factor VIII and phospholipid vesicles was investigated. The binding of factor VIII to an equimolecular mixture of phosphatidylserine (PS) and phosphatidylcholine (PC) was studied by sucrose gradient ultracentrifugation (10–40% w/v saccharose in 0.01 M Tris-HCl/0.15 M NaCl buffer (pH 7). In the absence of phospholipids all factor VIII activities (VIII : C, VIII R : WF and VIII R : AG) were found in the zone of highest sucrose density including the factor VIII related protein subunit (200 000 molecular weight). In the presence of an equimolecular mixture of PS/PC VIII R : WF activity, VIII R : AG and a factor VIII related protein still migrated to the bottom of the tube, while VIII : C activity remained at the top where phospholipids were found. Thus a dissociation phenomenon between VIII : C and the other factor VIII relateda activities was apparent in the presence of phospholipids. These results also demonstrate the binding of factor VIII : C to certain active phospholipids.  相似文献   

15.
We studied the binding of fluorescein-labeled annexin V (placental anticoagulant protein I) to small unilamellar phospholipid vesicles at 0.15 M ionic strength as a function of calcium concentration and membrane phosphatidylserine (PS) content. As the mole percentage of PS in the membrane increased from 10 to 50%, the stoichiometry of binding decreased hyperbolically from 1100 mol phospholipid/mol annexin V to a limiting value of 84 mol/mol for measurements made at 1.2 mM CaCl2. Over the same range of PS content, Kd remained approximately constant at 0.036 +/- 0.011 nM. A similar hyperbolic decrease in stoichiometry was observed with vesicles containing 10 or 20% PS when the calcium concentration was increased from 0.4 to 10 mM. Thus, the density of membrane binding sites is strongly dependent on the membrane PS content and calcium concentration. The effect of calcium on annexin V-membrane binding is proposed to be due to the formation of phospholipid-calcium complexes, to which the protein binds, rather than to an allosteric effect of calcium on protein-phospholipid affinity.  相似文献   

16.
Thomas WE  Glomset JA 《Biochemistry》1999,38(11):3310-3319
We studied the influence of membrane lipids, MgCl2, and ATP on the ability of a soluble diacylglycerol kinase to bind to 100-nm lipid vesicles. The enzyme did not bind detectably to vesicles that contained phosphatidylcholine alone or to vesicles that contained 50 mol % phosphatidylcholine + 50 mol % phosphatidylethanolamine. But it did bind to vesicles that contained anionic phosphoglycerides, and maximal binding occurred (in the presence of MgCl2) when the vesicles contained anionic phosphoglycerides alone. When increasing amounts of phosphatidylcholine were included in phosphatidylserine-containing vesicles, enzyme binding to the vesicles decreased by as much as 1000-fold. However, when increasing amounts of phosphatidylethanolamine were included in phosphatidylserine-containing vesicles, little change in binding occurred until the concentration of phosphatidylserine was reduced to below 25 mol %. These results and results obtained with vesicles that contained various mixtures of anionic phosphoglycerides, phosphatidylcholine, phosphatidylethanolamine, and unesterified cholesterol provided evidence that anionic phosphoglycerides were positive effectors of binding, phosphatidylcholine was a negative effector, and phosphatidylethanolamine and unesterified cholesterol were essentially neutral diluents. Other experiments showed that diacylglycerol and some of its structural analogues also were important, positive effectors of enzyme binding and that addition of ATP to the medium increased their effects. The combined results of the study suggest that the enzyme may bind to vesicles via at least two types of binding sites: one type that requires anionic phospholipids and is enhanced by Mg2+ but inhibited by phosphatidylcholine, and one type that requires diacylglycerol and is enhanced by ATP.  相似文献   

17.
Lactadherin is a phosphatidyl-L-serine (Ptd-L-Ser)-binding protein that decorates membranes of milk fat globules. The major Ptd-l-Ser binding function of lactadherin has been localized to its C2 domain, which shares homology with the C2 domains of blood coagulation factor VIII and factor V. Correlating with this homology, purified lactadherin competes efficiently with factors VIII and V for Ptd-L-Ser binding sites, functioning as a potent anticoagulant. We have determined the crystal structure of the lactadherin C2 domain (Lact-C2) at 1.7A resolution. The bovine Lact-C2 structure has a beta-barrel core that is homologous with the factor VIII C2 (fVIII-C2) and factor V C2 (fV-C2) domains. Two loops at the end of the beta-barrel, designated spikes 1 and 3, display four water-exposed hydrophobic amino acids, reminiscent of the membrane-interactive residues of fVIII-C2 and fV-C2. In contrast to the corresponding loops in fVIII-C2 and fV-C2, spike 1 of Lact-C2 adopts a hairpin turn in which the 7-residue loop is stabilized by internal hydrogen bonds. Further, central glycine residues in two membrane-interactive loops may enhance conformability of Lact-C2 to membrane binding sites. Mutagenesis studies confirmed a membrane-interactive role for the hydrophobic and/or Gly residues of both spike 1 and spike 3. Substitution of spike 1 of fVIII-C2 into Lact-C2 also diminished binding. Computational ligand docking studies identified two prospective Ptd-l-Ser interaction sites. These results identify two membrane-interactive loops of Lact-C2 and provide a structural basis for the more efficient phospholipid binding of lactadherin as compared with factor VIII and factor V.  相似文献   

18.
We developed a method for measuring the binding affinity of annexin V for phospholipid vesicles and cells at very low levels of membrane occupancy. The annexin V-117 mutant was labeled with fluorescein iodoacetamide on its single N-terminal cysteine residue; binding to phospholipid vesicles containing phosphatidylserine (PS) and 2% rhodamine-phosphatidylethanolamine was measured by fluorescence quenching due to resonance energy transfer; binding to cells with exposed PS was measured by fluorometry after elution of bound protein. The equilibrium constant was calculated as a function of the midpoint of the calcium titration curve, the Hill coefficient, and the concentration of membrane binding sites. Calcium titrations at very low ratios of protein to membrane revealed Hill coefficients of approximately 8 for both vesicles and cells, far higher than previously measured, but as the protein-membrane ratio was increased above 3% of maximum membrane occupancy, the value of the Hill coefficient progressively decreased to a limiting value of about 2. High Hill coefficients were also observed for measurements performed at different ionic strengths and with membrane PS content varied over the range from 20 to 50%. This method allows the accurate determination of the affinity and cooperativity of annexin V-membrane binding and will be useful for the evaluation of modified annexin V derivatives intended for diagnostic and therapeutic applications.  相似文献   

19.
Annexin V (placental anticoagulant protein I) binds tightly to anionic phospholipid vesicles in the presence of calcium. Four mutant proteins were expressed in Escherichia coli in which Ala replaced one of the following residues in the third repeat of annexin V: Arg-200, His-204, Arg-206, or Lys-207. In a competitive fluorescence quenching assay, the wild-type recombinant protein had the same affinity for phosphatidylserine-containing vesicles as the placentally derived protein. The affinity of the four mutant proteins for phosphatidylserine-containing vesicles was unchanged relative to wild-type protein. We conclude that His-204 and adjacent basic residues, including the highly conserved Arg-200 residue, are not required for high-affinity phospholipid binding.  相似文献   

20.
Five different guanidinium (Gu)-derivatized agarose matrices were investigated for their potential in chromatographically resolving the Factor VIII/von Willebrand complex, VIII/vWf, fibrinogen, Fg, and fibronectin, Fn, from cryoprecipitate. Using conventional NaCl gradient methodology it was found that the order of elution of specific plasma proteins, and the yield of VIII/vWf, varied with the methods used to derivatize the agarose beads. Good yields of VIII:C (generally 30-45%) were obtained with Gu-matrices prepared by bis-oxirane coupling procedures. Cryoprecipitate binding studies showed that the capacity of Gu-Sepharose 4B, prepared by isourea modification of amino-Sepharose 4B, was 36 units VIII/vWf per ml matrix. The product, depleted of both Fg and Fn, had a specific activity of 2 units VIII:C per mg total protein, (yield 100% vWf:Ag and 47% VIII:C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号