首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 449 毫秒
1.
Adsorption for heavy metals via biomaterials such as fungal biomass presents a practical remediation technique for polluted water. Among all known filamentous fungi, Penicillium chrysogenum is widespread in nature and can serve as a biosorbent for heavy metals. In the current study, the ability of P. chrysogenum XJ-1 to remove copper (Cu2+) and chromium (Cr6+) from water was evaluated. The maximum biosorption capacity of XJ-1 for Cu2+ reached 42.83 ± 0.57 mg g?1 dry biomass at pH 5.0 after the equilibrium time of 1.5 h. The maximum biosorption capacity for Cr6+ at pH 3.0 reached 52.69 ± 1.68 mg g?1 dry biomass after the equilibrium time of 1.5 h. The biosorption data of XJ-1 biomass were well fitted to the Freundlich isotherm model and the pseudo-second-order Lagergren kinetic model. Laundry powder-treated and HCl-treated XJ-1 biomass significantly enhanced its adsorption capacity to Cu2+ and Cr6+, respectively. HCl and NaOH were suitable desorbents for Cu2+/Cr6+ loading biomass, respectively. Fourier transform infrared spectroscopy analyses revealed that hydroxyl, amine, and sulfonyl groups on the biosorbent contributed to binding Cu2+ and Cr6+ and that carbonyl and carboxyl groups were also vital binding sites of Cu2+. Scanning electron microscopy and energy-dispersive x-ray (SEM-EDX) analyses confirmed that considerable amounts of metals were precipitated on the cell surface of XJ-1. Our results suggested that XJ-1 might be used to purify multimetal-contaminated water. This low-cost and eco-friendly biomass of XJ-1 seems to have a broad use in the restoration of metal-contaminated water.  相似文献   

2.
In the present study the potential of a biofilter containing a mixture of dried micro-algal/bacterial biomass for removing heavy metals (Cu2+, Cd2+) from dilute electroplating waste was tested. The biomass was produced in an artificial stream using the effluent of a municipal waste water treatment plant as a nutrient source, with the additional benefit of reducing phosphorus and nitrogen loadings. Baseline batch experiments determined that optimum adsorption for both metals (80–100%) were achieved with the deionized-H2O conditioned biomass at initial pH 4.0. Other biosorption variables (contact time, initial metal concentration) were also tested. Biosorption data were fitted successfully by the Langmuir model and results showed a high affinity of the used biomass for both metals (qmax 18–31 mg metal/g.d.w). Flow-through column experiments containing Ca-alginate/biomass beads showed that metal adsorption depends also on flow-rate and volume of treated waste. Desorption of both metals with weak acids was very successful (95–100%) but the regeneration of the columns was not achieved due to the destabilization of beads.  相似文献   

3.
Summary An indigenous strain of blue green microalga, Synechococcus sp., isolated from wastewater, was immobilized onto loofa sponge discs and investigated as a potential biosorbent for the removal of cadmium from aqueous solutions. Immobilization has enhanced the sorption of cadmium and an increase of biosorption (21%) at equilibrium was noted as compared to free biomass. The kinetics of cadmium biosorption was extremely rapid, with (96%) of adsorption within the first 5 min and equilibrium reached at 15 min. Increasing initial pH or initial cadmium concentration resulted in an increase in cadmium uptake. The maximum biosorption capacity of free and loofa immobilized biomass of Synechococcus sp. was found to be 47.73 and 57.76 mg g−1 biomass respectively. The biosorption equilibrium was well described by Langmuir adsorption isotherm model. The biosorbed cadmium was desorbed by washing the immobilized biomass with dilute HCl (0.1 M) and desorbed biomass was reused in five biosorption–desorption cycles without an apparent decrease in its metal biosorption capacity. The metal removing capacity of loofa immobilized biomass was also tested in a continuous flow fixed-bed column bioreactor and was found to be highly effective in removing cadmium from aqueous solution. The results suggested that the loofa sponge-immobilized biomass of Synechococcus sp. could be used as a biosorbent for an efficient removal of heavy metal ions from aqueous solution.  相似文献   

4.
The growth and the amino acid composition of the strain Saccharomyces cerevisiae RD1 were studied in the presence of copper ions. The accumulation of biomass was inhibited with the increase of Cu2+ concentration. It should be noted that the synthesis of aromatic amino acids was promoted at lower Cu2+ concentration (100 mg·L?1), but at higher concentrations the inhibiting effect was significant. The decreases of the amino acid contents with the increase of Cu2+ concentration varied upon their type. The total amount of amino acids was much lower at 300 and 400 mg·L?1 Cu2+.  相似文献   

5.
Deng L  Zhu X  Wang X  Su Y  Su H 《Biodegradation》2007,18(4):393-402
Biosorption is an effective means of removal of heavy metals from wastewater. In this work the biosorption behavior of Cladophora fascicularis was investigated as a function of pH, amount of biosorbent, initial Cu2+ concentration, temperature, and co-existing ions. Adsorption equilibria were well described by Langmuir isotherm models. The enthalpy change for the biosorption process was found to be 6.86 kJ mol−1 by use of the Langmuir constant b. The biosorption process was found to be rapid in the first 30 min. The presence of co-existing cations such as Na+, K+, Mg2+, and Ca2+ and anions such as chloride, nitrate, sulfate, and acetate did not significantly affect uptake of Cu2+ whereas EDTA substantially affected adsorption of the metal. When experiments were performed with different desorbents the results indicated that EDTA was an efficient desorbent for the recovery of Cu2+ from biomass. IR spectral analysis suggested amido or hydroxy, C=O, and C–O could combine strongly with Cu2+.  相似文献   

6.
Solid-phase extraction (SPE) method was developed for the preconcentration of Cu2+ and Ni2+ before their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). Bacillus subtilis–immobilized Amberlite XAD-16 was used as biosorbent. Effects of critical parameters such as pH, flow rate of samples, amount of Amberlite XAD-16 and biosorbent, sample volume, eluent type, and volume and concentration of eluent on column preconcentration of Cu2+ and Ni2+ were optimized. Applicability of the method was validated through the analysis of the certified reference tea sample (NCS ZC73014). Sensitivity of ICP-OES was improved by 36.4-fold for Cu2+ and 38.0-fold for Ni2+ by SPE-ICP-OES method. Limit of quantitation (LOQ) was found to be 0.7 and 1.1 ng/ml for Cu2+ and Ni2+, respectively. Concentrations of Cu2+ and Ni2+ were determined by ICP-OES after application of developed method. Relative standard deviations (RSDs) were lower than 4.9% for Cu2+ and 7.9% for Ni2+. The Tigris River that irrigates a large agricultural part of Southeast Turkey is polluted by domestic and industrial wastes. Concentrations of Cu2+ and Ni2+ were determined in water, soil, and some edible vegetables as a biomonitor for heavy metal pollution.  相似文献   

7.
A new biosorbent was developed by coating chitosan, a naturally and abundantly available biopolymer, on to polyvinyl chloride (PVC) beads. The biosorbent was characterized by FTIR spectra, porosity and surface area analyses. Equilibrium and column flow adsorption characteristics of copper(II) and nickel(II) ions on the biosorbent were studied. The effect of pH, agitation time, concentration of adsorbate and amount of adsorbent on the extent of adsorption was investigated. The experimental data were fitted to Langmuir and Freundlich adsorption isotherms. The data were analyzed on the basis of Lagergren pseudo first order, pseudo-second order and Weber-Morris intraparticle diffusion models. The maximum monolayer adsorption capacity of chitosan coated PVC sorbent as obtained from Langmuir adsorption isotherm was found to be 87.9 mg g(-1) for Cu(II) and 120.5 mg g(-1) for Ni(II) ions, respectively. In addition, breakthrough curves were obtained from column flow experiments. The experimental results demonstrated that chitosan coated PVC beads could be used for the removal of Cu(II) and Ni(II) ions from aqueous medium through adsorption.  相似文献   

8.
Biosorption of copper by fungal melanin   总被引:1,自引:0,他引:1  
Summary Melanin obtained from Aureobasidium pullulans and Cladosporium resinae was an efficient biosorbent for copper. Copper uptake could be expressed using various adsorption isotherms; melanin from A. pullulans obeyed Freundlich and Langmuir isotherms whereas C. resinae melanin followed the BET isotherm indicating a more complex type of adsorption than in A. pullulans. In general, uptake capacities of melanin were greater than for intact biomass and the higher uptake by pigmented rather than albino biomass could be correlated with the presence of melanin. Cu2+ was less readily desorbed from melanin by dilute mineral acids than from intact biomass and again, the relative ease of Cu2+ desorption from pre-loaded pigmented or albino biomass was correlated with the presence or absence of melanin. Mg2+ and Zn2+ appeared to be the most effective cations for desorption with Na+ and K+ the least effective. The addition of melanin to a coppercontaining culture of the albino strain of A. pullulans resulted in some reduction of toxicity.  相似文献   

9.
The removal of Cu(II) from aqueous solutions by Ulothrix zonata   总被引:3,自引:0,他引:3  
In this work, adsorption of copper(II) ions on alga has been studied by using batch adsorption techniques. The equilibrium biosorption level was determined as a function of contact time at several initial metal ion concentrations. The effect of adsorbent concentration on the amount adsorbed was also investigated. The experimental adsorption data were fitted to the Langmuir adsorption model. The free energy change (deltaG0) for the adsorption process was found to be -12.60 kJ/mol. The results indicated that the biomass of Ulothrix zonata is a suitable biosorbent for both the removal and recovery of heavy metals from wastewater.  相似文献   

10.
Biosorption of copper by Sargassum fluitans biomass in fixed-bed column   总被引:1,自引:0,他引:1  
Summary The behavior of native and protonated Sargassum fluitans seaweed biomass packed in a fixed-bed was examined during a continuous removal of Cu2+ from 35 mg/L aqueous solution at pH 5.0. The capacity of native and protonated biomass, based on the dry weight of the native biomass, were determined to be 61.5 and 54.1 mg/g, respectively. During the saturation of the native biomass with heavy metal, first Na+ and K+, followed by Mg2+ and Ca2+, were eluted from the fixed-bed before the breakthrough time of the Cu2+. The pressure drop across the column varied with the ionic composition of the effluent from the bed, yielding an average permeability coefficient of 2.7 .10-12m2. The void fraction of the interstices in the bed was estimated to be 0.27. No light metals were eluted from the column containing protonated biomass, and the pressure drop remained constant throughout the saturation.  相似文献   

11.
Copper biosorption by Auricularia polytricha   总被引:2,自引:0,他引:2  
AIMS: The objective of the present study was to determine the optimum conditions for copper (Cu) biosorption by Auricularia polytricha mycelium in view of its immobilization in polyvinyl alcohol (PVA). METHODS AND RESULTS: The adsorption of Cu(II) onto A. polytricha was studied in batch with respect to initial pH, temperature, adsorption time, initial metal ion and biomass concentration. At optimal adsorption conditions, biomass was immobilized in PVA in column and a biosorption capacity of about 90% was obtained. CONCLUSIONS: Auricularia polytricha strain could successfully be used as Cu biosorbent. SIGNIFICANCE AND IMPACT OF THE STUDY: The low cost and simplicity of the technique make it suitable for the detoxification of contaminated effluents before their environmental discharge.  相似文献   

12.
The potential of alginate-immobilized Microcystis packed in a column for maximum removal of Cu2+ at different flow rates, biomass, and initial metal ion concentration was assessed in a continuous flow system. Although Cu2+ removal did occur at all the flow rates tested, it was maximum (54%) at 0.75-ml min−1 flow rate, 30 μg ml−1 initial metal ion concentration and 0.016 g biomass. Cu2+ removal was influenced by inlet metal ion concentration and biomass density. An increase in the biomass concentration from 0.016 to 0.128 g resulted in an apparent increase in percentage removal but the Cu2+ adsorbed per unit dry wt. declined. When the flow rate (0.75 ml min−1) and biomass density (0.064 g) were kept constant and the inlet metal ion concentration was varied from 10 to 150 μg ml−1, a 68% removal of Cu2+ was obtained at 50 μg ml−1 initial concentration in a time duration of 15 min. The metal-laden columns were efficiently desorbed and regenerated following elution with double distilled water (DDW) (pH 2) (89%). This was followed by 1 mm EDTA > 1 mm NTA > 0.1 mm EDTA > 1 mm HCl > 1 mm HNO3 > 5 mm CaCl2 > DDW (pH 7.0) > 1 mm NaHCO3 > 1 mm CaCl2. Of the total (2.83 mg) adsorbed Cu2+, 1.89 mg (67%) was desorbed by DDW (pH 2) within the first 20 min of elution time. Thereafter the desorption rate slowed down and only 22% (0.632 mg) desorption was obtained in the last 20 min. In contrast to water pH 2, the desorption of Cu2+ by 1 mm EDTA was very slow, the maximum being 8% after 40 min of elution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The potential of nonliving biomass of Hydrilla verticillata to adsorb Pb(II) from an aqueous solution containing very low concentrations of Pb(II) was determined in this study. Effects of shaking time, contact time, biosorbent dosage, pH of the medium, and initial Pb(II) concentration on metal-biosorbent interactions were studied through batch adsorption experiments. Maximum Pb(II) removal was obtained after 2 h of shaking. Adsorption capacity at the equilibrium increased with increasing initial Pb(II) concentration, whereas it decreased with increasing biosorbent dosage. The optimum pH of the biosorption was 4.0. Surface titrations showed that the surface of the biosorbent was positively charged at low pH and negatively charged at pH higher than 3.6. Fourier transform infrared (FT-IR) spectra of the biosorbent confirmed the involvement of hydroxyl and C?O of acylamide functional groups on the biosorbent surface in the Pb(II) binding process. Kinetic and equilibrium data showed that the adsorption process followed the pseudo-second-order kinetic model and both Langmuir and Freundlich isothermal models. The mean adsorption energy showed that the adsorption of Pb(II) was physical in nature. The monolayer adsorption capacity of Pb(II) was 125 mg g?1. The desorption of Pb(II) from the biosorbent by selected desorbing solutions were HNO3 > Na2CO3 > NaOH > NaNO3.  相似文献   

14.
Removal of Pb(II) from an aqueous environment using biosorbents is a cost-effective and environmentally benign method. The biosorption process, however, is little understood for biosorbents prepared from plant materials. In this study, the biosorption process was investigated by evaluating four adsorption models. A fixed-bed column was prepared using a biosorbent prepared from the aquatic plant Hydrilla verticillata. The effect of bed height and flow rate on the biosorption process was investigated. The objective of the study was to determine the ability of H. verticillata to biosorb Pb(II) from an aqueous environment and to understand the process, through modeling, to provide a basis to develop a practical biosorbent column. Experimental breakthrough curves for biosorption of 50 mg L?1 aqueous Pb(II) using a fixed-bed column with 1.00 cm inner diameter were fitted to the Thomas, Adams-Bohart, Belter, and bed depth service time (BDST) models to investigate the behavior of each model according to the adsorption system and thus understand the adsorption mechanism. Model parameters were evaluated using linear and nonlinear regression methods. The biosorbent removed 65% (82.39 mg g?1 of biosorbent) of Pb(II) from an aqueous solution of Pb(NO3)2 at a flow rate of 5.0 ml min?1 in a 10 cm column. Na2CO3 was used to recover the adsorbed Pb(II) ions as PbCO3 from the biosorbent. The Pb(II) was completely desorbed at a bed height of 10.0 cm and a flow rate of 5.0 ml min?1. Fourier transform infrared (FT-IR) analysis of the native biosorbent and Pb(II)-loaded biosorbent indicated that the hydroxyl groups and carboxylic acid groups were involved in the metal bonding process. The FT-IR spectrum of Pb(II)-desorbed biosorbent showed an intermediate peak shift, indicating that Pb(II) ions were replaced by Na+ ions through an ion-exchange process. Of the four models tested, the Thomas and BDST models showed good agreement with experimental data. The calculated bed sorption capacity N0 and rate constant ka were 31.7 g L?1 and 13.6 × 10?4 L mg?1 min?1 for the Ct/C0 value of 0.02. The BDST model can be used to estimate the column parameters to design a large-scale column.  相似文献   

15.
对两种多孔菌科大型真菌槐栓菌(Trametes robiniophila)和木蹄层孔菌(Fomes fomentarius)子实体生物吸附Cd2+的影响因素(包括吸附剂用量、初始pH、吸附时间、初始Cd2+浓度)和吸附特性进行分析。结果表明,槐栓菌和木蹄层孔菌对低浓度的Cd2+(10 mg/L)吸附的最适pH为6;Cd2+的去除率随吸附剂用量和吸附时间的增加而增大,槐栓菌和木蹄层孔菌均在吸附剂用量为2g/L时达到吸附平衡,槐栓菌在吸附时间为30 min时达到吸附平衡,而木蹄层孔菌在吸附时间为60 min时达到吸附平衡;槐栓菌和木蹄层孔菌对10 mg/L Cd2+的最大去除率分别为98%和94%。Langmuir等温吸附平衡模型比Freundlich等温吸附平衡模型能更好的拟合两种大型真菌对Cd2+的吸附过程;槐栓菌和木蹄层孔菌对10 mg/L Cd2+的最大吸附量分别为17.40 mg/g和8.91 mg/g。对实验数据进行动力学模型拟合可知,两种大型真菌对Cd2+的生物吸附过程均符合准二阶动力学模型。槐栓菌和木蹄层孔菌生物吸附低浓度Cd2+的化学反应机理可能为离子交换。  相似文献   

16.
Abstract

This study evaluates the biosorption of copper by aerobic biomass that was selected from surface waters of the San Pedro River in Sonora, Mexico. Using a batch system, 73% biosorption of copper was obtained in 75 minutes. Continuous biosorption assays were carried out for 133 days in an ascending flow aerobic reactor packed with zeolite (AFAR-PZ) that was inoculated with a bacterial consortium. Strains were grown until 1g L?1 of biomass was obtained. Tests using continuous biosorption were performed as follows: (i) the addition of 50 mg Cu2+ L?1 without recirculation of biomass; (ii) the addition of 20 mg Cu2+ L?1without recirculation of biomass; and (iii) the biomass were recirculated with the addition of 20 mg Cu2+ L?1 to pH 3 to 4. The fourth and fifth assays varied pH between 4 and 5, with 20 mg Cu2+ L?1and the biomass recirculated. Biosorption capacity of the first and second assays was 96% on the first day of experimentation. During the third trial 97% of biosorption was obtained during 6 days and the process was improved by varying the pH. Copper biosorption equilibrium was investigated under the same operating conditions. Langmuir adsorption isotherms were used to fit experimental data. The biosorption capacity of aerobic biomass was 3.08 mmol g?1. It was demonstrated that this biomass is capable of biosorbing copper and this method has potential for the treatment of industrial effluents contaminated with heavy metals.  相似文献   

17.
The biosorption process for removal of lead, cadmium, and zinc by Citrobacter strain MCM B-181, a laboratory isolate, was characterized. Effects of environmental factors and growth conditions on metal uptake capacity were studied. Pretreatment of biomass with chemical agents increased cadmium sorption efficiency; however, there was no significant enhancement in lead and zinc sorption capacity. Metal sorption by Citrobacter strain MCM B-181 was found to be influenced by the pH of the solution, initial metal concentration, biomass concentration, and type of growth medium. The metal sorption process was not affected by the age of the culture or change in temperature. Equilibrium metal sorption was found to fit the Langmuir adsorption model. Kinetic studies showed that metal uptake by Citrobacter strain MCM B-181 was a fast process, requiring <20 min to achieve >90% adsorption efficiency. The presence of cations reduced lead, zinc, and cadmium sorption to the extent of 11. 8%, 84.3%, and 33.4%, respectively. When biomass was exposed to multimetal solutions, metals were adsorbed in the order Co2+ < Ni2+ < Cd2+ < Cu2+ < Zn2+ < Pb2+. Among various anions tested, only phosphate and citrate were found to hamper metal sorption capacity of cells. Biosorbent beads prepared by immobilizing the Citrobacter biomass in polysulfone matrix exhibited high metal loading capacities. A new mathematical model used for batch kinetic studies was found to be highly useful in prediction of experimentally obtained metal concentration profiles as a function of time. Metal desorption studies indicated that Citrobacter beads could, in principle, be regenerated and reused in adsorption-desorption cycles. In an expanded scale trial, biosorbent beads were found to be useful in removal/recovery of metals such as lead from industrial wastewaters.  相似文献   

18.
19.
Biosorption of Heavy Metals by Marine Algae   总被引:7,自引:0,他引:7  
The ability of four different algae (three brown and one red) that have not been previously studied to adsorb Cr3+, Co2+, Ni2+, Cu2+, and Cd2+ ions was investigated. The metal uptake was dependent on the type of biosorbent, with different accumulation affinities towards the tested elements. The HCl-treated biomass decreased the metal biosorptive capacity particularly in the case of Cr3 adsorption with Laurencia obtusa. The extent of uptake of the different metals with the tested algae was assessed under different conditions such as pH, time of algal residence in solution with the metal, and concentration of algal biomass. The rate of uptake of the different metals was very fast in the first 2 h; thereafter the increase in metal uptake was insignificant. The amount of the metal uptake (5–15 mg range) increased steeply by increasing the weight of the biomass. An exception was L. obtusa, where a parallel increase of the uptake of different metals was observed on increasing the algal mass from 5 to 50 mg. Received: 21 December 1999 / Accepted: 24 April 2000  相似文献   

20.
This study investigates the equilibrium, kinetics and thermodynamics of Nickel(II) biosorption from aqueous solution by the fungal mat of Trametes versicolor (rainbow) biomass. The optimum biosorption conditions like pH, contact time, biomass dosage, initial metal ion concentration and temperaturewere determined in the batch method. The biosorbent was characterized by FTIR, SEM and BET surface area analysis. The experimental data were analyzed in terms of pseudo-first-order, pseudo-secondorder and intraparticle diffusion kinetic models, further it was observed that the biosorption process of Ni(II) ions closely followed pseudo-second-order kinetics. The equilibrium data of Ni(II) ions at 303, 313, and 323 K were fitted to the Langmuir and Freundlich isotherm models. Langmuir isotherm provided a better fit to the equilibrium data andthe maximum monolayer biosorption capacity of the T. versicolor(rainbow) biomass for Ni(II) was 212.5 mg/g at pH 4.0. The calculated thermodynamic parameters, ΔG, ΔH, and ΔS, demonstrated that the biosorption of Ni(II) ions onto the T. versicolor (rainbow) biomass was feasible, spontaneous and endothermic at 303 ~ 323 K. The performance of the proposed fungal biosorbent was also compared with that of many other reported sorbents for Nickel(II) removal and it was observed that the proposed biosorbent is effective in terms of its high sorption capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号