首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A microorganism with the ability to catalyze the resolution of racemic phenyloxirane was isolated and identified as Aspergillus niger SQ-6. Chiral capillary electrophoresis was successfully applied to separate both phenyloxirane and phenylethanediol. The epoxide hydrolase (EH) involved in this resolution process was (R)-stereospecific and constitutively expressed. When whole cells were used during the biotransformation process, the optimum temperature and pH for stereospecific vicinal diol production were 35°C and 7.0, respectively. After a 24-h conversion, the enantiomer excess of (R)-phenylethanediol produced was found to be >99%, with a conversion rate of 56%. In fed-batch fermentations at 30°C for 44 h, glycerol (20 g L−1) and corn steep liquor (CSL) (30 g L−1) were chosen as the best initial carbon and nitrogen sources, and EH production was markedly improved by pulsed feeding of sucrose (2 g L−1 h−1) and continuous feeding of CSL (1 g L−1 h−1) at a fermentation time of 28 h. After optimization, the maximum dry cell weight achieved was 24.5±0.8 g L−1; maximum EH production was 351.2±13.1 U L−1 with a specific activity of 14.3±0.5 U g−1. Partially purified EH exhibited a temperature optimum at 37°C and pH optimum at 7.5 in 0.1 M phosphate buffer. This study presents the first evidence for the existence of a predicted epoxide racemase, which might be important in the synthesis of epoxide intermediates.  相似文献   

2.
The efficacy of lipase from Aspergillus niger MTCC 2594 as an additive in laundry detergent formulations was assessed using response surface methodology (RSM). A five-level four-factorial central composite design was chosen to explain the washing protocol with four critical factors, viz. detergent concentration, lipase concentration, buffer pH and washing temperature. The model suggested that all the factors chosen had a significant impact on oil removal and the optimal conditions for the removal of olive oil from cotton fabric were 1.0% detergent, 75 U of lipase, buffer pH of 9.5 and washing temperature of 25°C. Under optimal conditions, the removal of olive oil from cotton fabric was 33 and 17.1% at 25 and 49°C, respectively, in the presence of lipase over treatment with detergent alone. Hence, lipase from A. niger could be effectively used as an additive in detergent formulation for the removal of triglyceride soil both in cold and warm wash conditions.  相似文献   

3.
Three methods for the immobilization of the epoxide hydrolase from the fungus Aspergillus niger were tested. The highest immobilization yield (90%) and retention of activity (65%) were obtained by adsorption onto DEAE-cellulose compared to adsorption onto hydrophobic porous polypropylene and covalent linkage using Eupergit resin. The enzymatic properties of the immobilized enzyme were similar to those of the free enzyme with respect to the effect of temperature and pH on both activity and stability as well as the effect of solvent (DMF) on activity. The kinetic parameters were affected leading to lower K M(app) and higher Vm (app).  相似文献   

4.
Ultrasound effects on the release and activity of invertase from Aspergillus niger cultivated in a medium containing sucrose and peptone and in another with sugar-cane molasses and peptone were investigated. Irradiation was conducted for periods of 2–10 min. with waves of amplitude 20 and 40 using an ultrasound processor of 20 kHz. Product formation was determined as reducing equivalents formed by time units using 3,5-dinitrosalicylic acid. Total and specific activities of the culture supernatants were compared in the presence and absence of sonication. Both amplitudes promoted a significant increase of total invertase activity in the time periods investigated and the highest values were obtained with an amplitude of 20. Ultrasound irradiation caused cell disruption, thus releasing invertase and, after 4 min, activation of the enzyme also occurred. The best conditions for production, extraction and activation of invertase were in molasses medium containing peptone and irradiation with ultrasound waves at 20 for 8 min. This method showed high efficiency for the extraction and activation of invertase from A. niger as well as a great potential for use in industrial processes.  相似文献   

5.
Aspergillus niger K10 cultivated on 2-cyanopyridine produced high levels of an intracellular nitrilase, which was partially purified (18.6-fold) with a 24% yield. The N-terminal amino acid sequence of the enzyme was highly homologous with that of a putative nitrilase from Aspergillus fumigatus Af293. The enzyme was copurified with two proteins, the N-terminal amino acid sequences of which revealed high homology with those of hsp60 and an ubiquitin-conjugating enzyme. The nitrilase exhibited maximum activity (91.6 U mg-1) at 45°C and pH 8.0. Its preferred substrates, in the descending order, were 4-cyanopyridine, benzonitrile, 1,4-dicyanobenzene, thiophen-2-acetonitrile, 3-chlorobenzonitrile, 3-cyanopyridine, and 4-chlorobenzonitrile. Formation of amides as by-products was most intensive, in the descending order, for 2-cyanopyridine, 4-chlorobenzonitrile, 4-cyanopyridine, and 1,4-dicyanobenzene. The enzyme stability was markedly improved in the presence of d-sorbitol or xylitol (20% w/v each). p-Hydroxymercuribenzoate and heavy metal ions were the most powerful inhibitors of the enzyme.  相似文献   

6.
The chemical mechanism of action of glucose oxidase from Aspergillus niger   总被引:2,自引:0,他引:2  
Glucose oxidase from Aspergillus niger (EC 1.1.3.4) is able to catalyze the oxidation of -D-glucose with p-benzoquinone, methyl-1,4-benzoquinone, 1,2-naphthoquinone, 1,2-naphthoquinone-4-sulfonic acid, potassium ferricyanide, phenazine methosulfate, and 2,6-dichloroindophenol. In this work, the steady-state kinetic parameters, V 1/K B , for reactions of these substrates were collected from pH 2.5–8. Further, the molecular models of the enzyme's active site were constructed for the free enzyme in the oxidized state, the complex of -D-glucose with the oxidized enzyme, the complex of reduced enzyme with methyl-1,4-benzoquinone, the reduced enzyme plus 1,2-naphthoquinone-4-sulfonic acid, oxidized enzyme plus reduced 1,2-naphthoquinone-4-sulfonic acid (hydroquinone anion), and oxidized enzyme plus fully reduced 1,2-naphthoquinone-4-sulfonic acid.Combining the steady-state kinetic and structural data, it was concluded that Glu412 bound to His559, in the active site of enzyme, modulates powerfully its catalytic activity by affecting all the rate constants in the reductive and the oxidative half-reaction of the catalytic cycle. His516 is the catalytic base in the oxidative and the reductive part of the catalytic cycle. It was estimated that the pK a of Glu412 (bound to His559) in the free reduced enzyme is 3.4, and the pK a of His516 in the free reduced enzyme is 6.9.  相似文献   

7.
Summary Fifty strains were isolated from different soil samples on synthetic medium containing inulin as a sole carbon source for the production of extracellular inulinase. Of them, five isolates showed high inulinase activity and one of them was selected for identification and medium optimization studies. The isolate was identified as Aspergillus niger. Various physical and chemical parameters were optimized for inulinase production. Maximum productivity of inulinase (176 U ml−1) was achieved by employing medium containing 5% (w/v) inulin, galactose as additional carbon source, corn steep liquor and (NH4)H2PO4 as nitrogen sources, incubation period of 72 h, incubation temperature of 28 °C, pH 6.5, inoculum load at 10% (v/v) level and medium volume to flask volume ratio of 1:20 (v/v) with indented flasks.  相似文献   

8.
Intracellular reactive oxygen species (iROS) induction by HOCl was used as a novel strategy to improve enzyme productivities in Aspergillus niger growing in a bioreactor. With induced iROS, the specific intracellular activities of -amylase, protease, catalase, and glucose oxidase were increased by about 170%, 250%, 320%, and 260%, respectively. The optimum specific iROS level for achieving maximum cell concentration and enzyme production was about 15 mmol g cell–1. The type of iROS inducing the enzyme production was identified to be a derivative of the superoxide radical.  相似文献   

9.
Crude rapeseed oil and post-refining fatty acids were used as substrates for oxalic acid production by a mutant of Aspergillus niger. Both the final concentration and the yield of the product were highest at pH 4 to 5. With a medium containing 50 g lipids l–1, production reached a maximum of 68 g oxalic acid l–1 after 7 d. A high yield of the product (up to 1.4 g oxalic acid g–1 lipids consumed) was achieved with oil and fatty acids combined.  相似文献   

10.
The fungal strain, Aspergillus niger SA1, isolated from textile wastewater sludge was screened for its decolorization ability for four different textile dyes. It was initially adapted to higher concentration of dyes (10–1,000 mg l−1) on solid culture medium after repeated sub-culturing. Maximum resistant level (mg l−1) sustained by fungal strain against four dyes was in order of; Acid red 151 (850) > Orange II (650) > Drimarene blue K2RL (550) > Sulfur black (500). The apparent dye removal for dyes was seen largely due to biosorption/bioadsorption into/onto the fungal biomass. Decolorization of Acid red 151, Orange II, Sulfur black and Drimarine blue K2RL was 68.64 and 66.72, 43.23 and 44.52, 21.74 and 28.18, 39.45 and 9.33% in two different liquid media under static condition, whereas, it was 67.26, 78.08, 45.83 and 13.74% with 1.40, 1.73, 5.16 and 1.87 mg l−1 of biomass production under shaking conditions respectively in 8 days. The residual amount (mg l−1) of the three products (α-naphthol, sulfanilic acid and aniline) kept quite low i.e., ≤2 in case AR 151 and Or II under shaking conditions. Results clearly elucidated the role of Aspergillus niger SA1 in decolorizing/degrading structurally different dyes into basic constituents.  相似文献   

11.
Removal of non-covalently attached polysaccharides from carboxymethylcellulase (CMCase) of Aspergillus niger improved its activity but decreased its thermostability and protease resistance. The activation energy profile of the hydrolysis of carboxymethylcellulose (CMC) was triphasic with increasing values of 17,-55 and-562 kJ/mol for polysaccharide-free and 19, -21 and -207 kJ/mol for polysaccharide-complexed CMCase. The specificity constant (Vmax/Km) of polysaccharide-free CMCase was 1.41 compared to polysaccharide-complexed CMCase which was only 0.68. The polysaccharide free CMCase had lower thermostability (melting point = 82°C) and higher protease susceptibility compared to polysaccharide-complexed CMCase (melting point>100°C).The authors are with the National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan;  相似文献   

12.
The microbial hydroxylation of 10-deoxoartemisinin was investigated with the aim of obtaining preparative yields of hydroxy derivatives. During 14 d at 28°C and pH 6.5 Aspergillus niger transformed 10-deoxoartemisinin (500 mg l–1) to 15-hydroxy-10-deoxoartemisinin (26%) and 7-hydroxy-10-deoxoartemisinin (69%).  相似文献   

13.
Amyloglucosidase (AMG) was produced by Aspergillus niger in solid-state fermentation (SSF), submerged fermentation (SmF) and an aqueous, two-phase system of polyethyleneglycol (PEG) and salt. In SSF, a fed-batch mode of operation gave a yield of 64 U/ml compared with 44 U/ml in batch mode. Similar trends were observed for SmF, where fed-batch cultivation gave a yield of 102 U/ml compared with 66 U/ml in batch. Shorter cultivation times (66 h) were required for SmF than for SSF (96 h). In the aqueous, two-phase cultivation, the productivity and yield of AMG were both twice those in the control fermentation.M. Ramadas is with the Department of Biochemistry, Faculty of Medicine, University of Jaffna, Kokuvil, Sri Lanka. O. Holst and B. Mattiasson are with the Department of Biotechnology, Chemical Center, Lund University, Box 124, S-221 00 Lund, Sweden  相似文献   

14.
The induction of arabinases in Aspergillus niger N400 was studied on different simple and complex carbon sources. Sugar beet pulp was found to be an inducer of three arabinan degrading enzymes (-l-arabinofuranosidase A, -l-arabinofuranosidase B and endoarabinase). These enzymes were purified from A. niger culture fluid after growth of the fungus in medium employing sugar beet pulp as the carbon source and were characterised both physico-chemically (Mw 83 000, 67 000, 43 000 Da and, pI 3.3, 3.5 and 3.0 for -l-arabinofuranosidases A and B and endo-arabinase, respectively) and kinetically (K m on p-nitrophenyl--l-arabinofuranoside 0.68 and 0.52 mM for -l-arabinofuranosidases A and B, resp.; K m on sugar beet arabinan 0.24 and 3.7 g/l for -l-arabinofuranosidase B and endoarabinase, resp.). The amino acid compositions of the three enzymes were determined also. The enzymic properties were compared with those of arabinases purified from a commerical A. niger enzyme preparation. Differences were found though the kinetic data suggest considerable similarity between the enzymes from the different sources. Antibodies raised in mice against the three enzymes were found to be highly specific and no crossreactivity with other proteins present in culture filtrates was observed. A mixture of these antibodies has been used to analyze specific induction of these individual enzymes on simple and complex substrates by Western blotting.Abbreviation PNA p-nitrophenyl--l-arabinofuranoside  相似文献   

15.
Aspergillus niger van Teighem, isolated in our laboratory from samples of rotten wood logs, produced extracellular phytase having a high specific activity of 22,592 units (mg protein)–1 . The enzyme was purified to near homogeneity using ion-exchange and gel-filtration chromatography. The molecular properties of the purified enzyme suggested the native phytase to be oligomeric, with a molecular weight of 353 kDa, the monomer being 66 kDa. The purified enzyme exhibited maximum activity at pH 2.5 and 52–55°C. The enzyme retained 97% activity after a 24-h incubation at 55°C in the presence of 10 mM glycine, while 87% activity was retained when no thermoprotectant was added. Phytase activity was not affected by most metal ions, inhibitors and organic solvents. Non-ionic and cationic detergents (0.1–5%) stabilise the enzyme, while the anionic detergent (SDS), even at a 0.1% level, severely inhibited enzyme activity. The chaotropic agents guanidinium hydrochloride, urea, and potassium iodide (0.5–8 M), significantly affected phytase activity. The maximum hydrolysis rate (Vmax) and apparent Michaelis-Menten constant (Km) were 1,074 IU/mL and 606 M, respectively, with a catalytic turnover number of 3×105 s–1 and catalytic efficiency of 3.69×108 M–1 s–1.  相似文献   

16.
Pentylferulate synthesis was achieved at high yields (50–60%) with Aspergillus niger feruloyl esterase using a water-in-oil microemulsion system. The initial rate of synthesis decreased by 15–20% when the water content of the microemulsion was increased from 1.8 to 2.4% (v/v), although a concomitant decrease in conversion was not observed. The enzyme stability was significantly higher in the microemulsion than in an aqueous solution.  相似文献   

17.
18.
Different concentrations of sucrose (3–25% w/v) and peptone (2–5% w/v) were studied in the formulation of media during the cultivation of Aspergillus japonicus-FCL 119T and Aspergillus niger ATCC 20611. Moreover, cane molasses (3.5–17.5% w/v total sugar) and yeast powder (1.5–5% w/v) were used as alternative nutrients for both strains’ cultivation. These media were formulated for analysis of cellular growth, β-Fructosyltransferase and Fructooligosaccharides (FOS) production. Transfructosylating activity (U t ) and FOS production were analyzed by HPLC. The highest enzyme production by both the strains was 3% (w/v) sucrose and 3% (w/v) peptone, or 3.5% (w/v) total sugars present in cane molasses and 1.5% (w/v) yeast powder. Cane molasses and yeast powder were as good as sucrose and peptone in the enzyme and FOS (around 60% w/w) production by studied strains.  相似文献   

19.
Exopectinase (exo-p) and endopectinase (endo-p) production by Aspergillus niger CH4 in solid state culture was studied at initial glucose concentrations of 100, 250, 350 and 450 g/l. The highest activity of exo-p (35 U/g) was produced at 72 and 120 h in the medium containing 100 and 250 g glucose/l, respectively. The maximum endo-p activity (9 U/g) was produced at 72 h in the medium with 250 g glucose/l. The reduction in pectinase production at 350 and 450 g/l initial glucose concentration was due neither to repression of the synthesis of the enzyme nor to the glucose consumption rate of the strain but due to a drastic drop in pH of the medium.S. Solis-Pereyra, E. Favela-Torres, M. Gutiérrez-Rojas, G. Saucedo-Castañeda and G. Viniegra-González are with the Departamento de Biotecnologia, Universidad Autónoma Metropolitana, A.P. 55-535, C.P. 09340, México D.F., México; S. Roussos is with the Laboratoire de Biotechnologie, ORSTOM, B.P. 5045, 34032, Montpellier Cedex, France, and P. Gunasekaran is with the Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625-021, India.  相似文献   

20.
Three Aspergillus nigerstrains were grown in submerged and solid state fermentation systems with sucrose at 100 g l–1. Average measurements of all strains, liquid vs solid were: final biomass (g l–1), 11 ± 0.3 vs 34 ± 5; maximal enzyme titres (U l–1) 1180 ± 138 vs 3663 ± 732; enzyme productivity (U l–1h–1) 20 ± 2 vs 87 ± 33 and enzyme yields (U/gX) 128 ± 24 vs 138 ± 72. Hence, better productivity in solid-state was due to a better mould growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号