首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fragment (residues His1-Val289) of the chain of human platelet glycoprotein Ib containing the von Willebrand factor and thrombin binding sites has been expressed in Chinese hamster ovary cells. The secreted soluble recombinant protein had an apparent molecular mass of 42 kD and reacted with a conformation-dependent monoclonal antibody that only binds to native GP Ib, thus demonstrating its proper folding. The rather broad band obtained after immobilization of the recombinant fragment on nitrocellulose could be resolved into a very sharp band of molecular weight of about 35 kD by growing the cells in the presence of tunicamycin, and inhibitor of N-linked glycosylation. The recombinant GP Ib fragments (with or without glycosylation) were purified by immunoaffinity chromatography. Both truncated forms bound vWF in the presence of botrocetin with comparable affinity as a proteolytic 42 kD fragment of purified human platelet GP Ib-IX. They were also retained on thrombin-Sepharose. We then selected a cell clone (B1) that produced over at least three months about 1.5 g of recombinant protein per million cells per day. Using this clone a large-scale production finally yielded milligram amounts of the functionally active recombinant human GP Ib fragment.Abbreviations ABTS 2.2-azino-di-(3-ethylbenzthiazoline sulphonate) - CHO Chinese hamster ovary - dhfr dihydrofolate reductase - GP Ib-IX glycoprotein Ib-IX complex - HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - IEF isoelectric focusing - Ig immunoglobulin - mAb monoclonal antibody - MEM minimum essential medium - PMSF phenyl-methylsulfonyl fluoride - SDS sodium dodecyl sulfate - vWF von Willebrand factor  相似文献   

2.
Apoptosis is involved in the pathogenesis of Sjögren’s syndrome (SS), an autoimmune disease affecting exocrine glands. Our recent studies revealed diminished histamine H4 receptor (H4R) expression and impaired histamine transport in the salivary gland epithelial cells in SS. The aim was now to test if nanomolar histamine and high-affinity H4R signaling affect apoptosis of human salivary gland epithelial cell. Simian virus 40-immortalized acinar NS-SV-AC cells were cultured in serum-free keratinocyte medium ± histamine H4R agonist HST-10. Expression and internalization of H4R were studied by immunofluorescence staining ± clathrin inhibitor methyl-β-cyclodextrin (MβCD). Apoptosis induced using tumor necrosis factor-α with nuclear factor-κB inhibitor IMD-0354 was studied using phase contrast microscopy, Western blot, flow cytometry and polymerase chain reaction (qRT-PCR). HST-10-stimulated H4R internalization was inhibited by MβCD. Western blotting revealed diminished phosphorylated c-Jun N-terminal kinase JNK, but unchanged levels of phosphorylated extracellular signal regulated kinase pERK1/2 in H4R-stimulated samples compared to controls. qRT-PCR showed up-regulated expression of anti-apoptotic B cell lymphoma-extra large/Bcl-xL mRNAs and proteins, whereas pro-apoptotic Bcl-2-associated X protein/BAX remained unchanged in H4R-stimulated samples. H4R stimulation diminished cleavage of PARP and flow cytometry showed significant dose-dependent inhibitory effect of H4R stimulation on apoptosis. As far as we know this is the first study showing inhibitory effect of H4R activation on apoptosis of human salivary gland cells. Diminished H4R-mediated activation may contribute to loss of immune tolerance in autoimmune diseases and in SS in particular.  相似文献   

3.
Tumor necrosis factor α (TNF-α) is a pleiotropic cytokine mediating inflammatory as well as cell death activities, and is thought to induce chondrocytic chondrolysis in inflammatory and degenerative joint diseases. Selective estrogen receptor modulators (SERMs), such as raloxifene, which are commonly used in clinical settings act as estrogen agonists or antagonists. It is assumed that estrogens have a potential role in cartilage protection; however, the precise molecular mechanism for the protective effects of estrogens is unclear. This study was designed to examine whether raloxifene inhibits TNF-α-induced apoptosis in human chondrocytes and to clarify the mechanisms involved. We also investigated the signaling pathways responsible for the anti-apoptotic effect of raloxifene. Apoptosis in chondrocytes was determined by DNA fragmentation assay and caspase-3 activation. Raloxifene significantly inhibited TNF-α-induced caspase-3 activation and cell DNA fragmentation levels in chondrocytes. The inhibitory effect of raloxifene was abolished by the estrogen receptor antagonist ICI 182,780. Extracellular signal-regulated kinase 1/2 (ERK1/2) regulates apoptosis, acting as an apoptotic or anti-apoptotic signal. TNF-α-induced apoptosis was significantly enhanced by the ERK1/2 pathway inhibitor PD98059. Raloxifene stimulated a further increase in ERK1/2 phosphorylation in TNF-α-treated chondrocytes. Furthermore, the anti-apoptotic effects of raloxifene were inhibited by PD98059. In addition, the anti-apoptotic effects of raloxifene were completely abolished in ERK1/2 siRNA-treated chondrocytes. These results suggest that raloxifene prevents caspase-3-dependent apoptosis induced by TNF-α in human chondrocytes by activating estrogen receptors and the ERK1/2 signaling pathway.  相似文献   

4.
To investigate the effect of substance P (SP) on human corneal epithelial cells (HCECs) that have been stressed by a high urea environment and to determine the relationship between SP and the protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β) signaling pathway. An in vitro model of chronic renal failure (CRF)-related dry eye was used to study HCECs that were treated with high urea concentrations. Cell proliferation was assayed using a cell counting kit-8 test. Besides, cell apoptosis was evaluated by flow cytometry. Furthermore, the effects of SP and the AKT inhibitor perifosine on the urea-treated HCECs were examined using immunofluorescence, quantitative real time polymerase chain reaction (qRT-PCR), and Western blot analysis. SP markedly reduced the number of apoptotic HCECs and decreased the cleaved caspase-3 expression levels while contributing to increased cellular proliferation (P < 0.05). The Western blot analysis and qRT-PCR experiments revealed that SP significantly increased the expression of p-AKT and p-GSK-3β (P < 0.05); additionally, these increases were attenuated after the perifosine inhibition of the AKT signaling pathway (P < 0.05). These in vitro experiments demonstrated that SP may protect against the apoptotic damage of HCECs caused by the high urea condition. The underlying mechanism may be related to the activation of the AKT/GSK-3β signaling pathway.  相似文献   

5.
Zhaofeng Zhang  Yong Li 《FEBS letters》2009,583(2):470-2541
In this study, we demonstrated effects of acetyl-l-carnitine (ALC) on insulin resistance induced by tumor necrosis factor-α (TNF-α) in rat L6 cells. TNF-α downregulated insulin-stimulated glucose uptake and increased Serine 307 phosphorylation of insulin receptor substrate-1 (IRS-1). However, the treatment of ALC improved insulin-stimulated glucose uptake via AMP-activated protein kinase (AMPK) activation in a dose-dependent manner. Together, our data suggest that ALC inhibits TNF-α-induced insulin resistance through AMPK pathway in skeletal muscle cells.  相似文献   

6.
α2-Macroglobulin (α2-M), a large molecular mass proteinase-binding protein, was identified in plasma from tuatara (Sphenodon), a rare reptile endemic to New Zealand. In this genus, α2-M constitutes 11–13% of total plasma protein (∼2.2–3.9 mg/ml). Analysis of blood samples collected at approximately monthly intervals from individual tuatara indicated that the plasma level of α2-M remains fairly constant. The subunits of tuatara α2-M have an apparent molecular mass of ∼160 kDa as determined by SDS-polyacrylamide gel electrophoresis and the intact protein is an oligomer that contains inter-chain disulfide bonds. N-terminal sequence analyses of tuatara α2-M revealed a distinct similarity to α-macroglobulins of other vertebrates and that at least two types of α2-M subunits are present in plasma of tuatara.  相似文献   

7.
Aseptic loosening caused by wear particles is a common complication after total hip arthroplasty. We investigated the effect of the quercetin on wear particle-mediated macrophage polarization, inflammatory response and osteolysis. In vitro, we verified that Ti particles promoted the differentiation of RAW264.7 cells into M1 macrophages through p-38α/β signalling pathway by using flow cytometry, immunofluorescence assay and small interfering p-38α/β RNA. We used enzyme-linked immunosorbent assays to confirm that the protein expression of M1 macrophages increased in the presence of Ti particles and that these pro-inflammatory factors further regulated the imbalance of OPG/RANKL and promoted the differentiation of osteoclasts. However, this could be suppressed, and the protein expression of M2 macrophages was increased by the presence of the quercetin. In vivo, we revealed similar results in the mouse skull by μ-CT, H&E staining, immunohistochemistry and immunofluorescence assay. We obtained samples from patients with osteolytic tissue. Immunofluorescence analysis indicated that most of the macrophages surrounding the wear particles were M1 macrophages and that pro-inflammatory factors were released. Titanium particle-mediated M1 macrophage polarization, which caused the release of pro-inflammatory factors through the p-38α/β signalling pathway, regulated OPG/RANKL balance. Macrophage polarization is expected to become a new clinical drug therapeutic target.  相似文献   

8.
Neuroglobin (NGB), an antiapoptotic protein upregulated by 17β-estradiol (E2), is part of E2/estrogen receptor α (ERα) pathway pointed to preserve cancer cell survival in presence of microenvironmental stressors including chemotherapeutic drugs. Here, the possibility that resveratrol (Res), an anticancer plant polyphenol, could increase the susceptibility of breast cancer cells to paclitaxel (Pacl) by affecting E2/ERα/NGB pathway has been evaluated. In MCF-7 and T47D (ERα-positive), but not in MDA-MB 231 (ERα-negative) nor in SK-N-BE (ERα and ERβ positive), Res decreases NGB levels interfering with E2/ERα-induced NGB upregulation and with E2-induced ERα and protein kinase B phosphorylation. Although Res treatment does not reduce cell viability by itself, this compound potentiates Pacl proapoptotic effects. Notably, the increase of NGB levels by NGB expression vector transfection prevents Pacl or Res/Pacl effects. Taken together, these findings indicate a new Res-based mechanism that acts on tumor cells impairing the E2/ERα/NGB signaling pathways and increasing cancer cell susceptibility to chemotherapeutic agent.  相似文献   

9.
Activation and translocation of protein kinases C is a key event in the regulation of T lymphocyte activation, proliferation and function. Stimulation of human peripheral blood lymphocytes with the monoclonal antibody BMA 031 raised against the T cell antigen receptor led to a bimodal activation of protein kinases C. The immediate activation and translocation of the protein kinase C isoform PKC-α was followed by activation and translocation of the protein kinase C-β isoenzyme after 90 min of stimulation. Pretreatment of the cells with cholera toxin for 90 min completely abolished activation of protein kinase C-α. In sharp contrast, activation and translocation of protein kinase C-β was not influenced by the bacterial toxin, suggesting that activation and translocation of different protein kinase C isoenzymes are regulated by distinct mechanisms of transmembrane signalling coupled to the T cell antigen receptor/CD3 complex.The expression of high affinity IL-2 receptors was completely inhibited by cholera toxin, while IL-2 synthesis and secretion were not influenced in BMA 031-stimulated human lymphocytes. Extensive control experiments have shown that the effects of cholera toxin were not mediated by its B subunit, and were independent of elevation of intracellular cAMP concentration, suggesting that cholera toxin interfered with a signalling pathway leading to activation of protein kinase C-α, which could be responsible for the inhibition of IL-2 receptor expression. This hypothesis was substantiated by the finding that upon introduction of antibodies against protein kinase C-α, IL-2 receptor gene expression was completely suppressed. The results suggest, that protein kinase C-α might be the major protein kinase C isoenzyme of a signal transduction cascade regulating IL-2 receptor expression in stimulated human lymphocytes. © 1997 Elsevier Science B.V. All rights reserved.  相似文献   

10.
Recent studies show that IL-13Rα2, a brain tumor-associated antigen for IL-13, may play a role in immunotherapy for glioblastoma. Thus, we stimulated the lymphocyte by monocyte-derived dendritic cells (DCs). The DCs were pulsed with IL-13Rα2 in vitro and then co-cultured with lymphocytes. After inducing cytotoxic T cells (CTLs) and co-culturing with U251 cells for 24 h in 96 wells, Cell Count Kit-8 (CCK-8) was added to every well equally. The optical density (OD) value was detected and recorded after 2 h. The DCs efficiently presented the antigen to the CTLs, resulting in CTLs activation and proliferation. The induced CTLs showed specific cytotoxic against U251 cells (P < 0.01). The results demonstrated that IL-13Rα2 induced CTLs could kill glioma U251 in vitro, which suggests that IL-13 Rα2 might have such an impact in vivo and thus recombinant IL-13Ra2 protein might be used as an anti-tumor vaccine, providing a promising new strategy for the treatment of brain malignant gliomas.  相似文献   

11.
MUC1 (mucin 1), a membrane-tethered mucin glycoprotein, is highly expressed on the surface of respiratory epithelial cells and plays a key role in anti-inflammatory and antiapoptotic responses against infections. However, little is known about the link between MUC1 and necroptosis in asthma. This study aimed to investigate the effects of MUC1 on TNF-α-induced necroptosis in human bronchial epithelial (16HBE) cells and the underlying molecular mechanism. Negative control and MUC1-siRNA cells were treated with TNF-α in the presence or absence of necrostatin-1 (Nec-1). Necroptosis was investigated using flow cytometry analyses, and the protein expression levels of MUC1, receptor-interacting protein kinase-1 (RIPK1), RIPK3, and phosphorylated RIPK1 were detected by western blot analysis. In addition, the interactions between RIPK and MUC1 were analyzed by coimmunoprecipitation. The results demonstrated that TNF-α could induce necroptosis of 16HBE cells, and MUC1 expression was increased upon treatment with TNF-α. The coimmunoprecipitation outcomes showed that MUC1 interacted with RIPK1 but not with RIPK3 in 16HBE cells, and the interaction was augmented by TNF-α. Furthermore, MUC1 downregulation obviously increased the TNF-α-induced necroptosis of 16HBE cells and enhanced the expression of p-RIPK1-Ser166 and RIPK3, whereas these phenomena were partially attenuated by Nec-1. These results may provide a new insight into the mechanism of severe asthma-related necroptosis and lay a foundation for the future development of new anti-inflammatory drugs for asthma.  相似文献   

12.
It has been demonstrated that apolipoprotein M (APOM) is a vasculoprotective constituent of high density lipoprotein (HDL), which could be related to the anti-atherosclerotic property of HDL. Investigation of regulation of APOM expression is of important for further exploring its pathophysiological function in vivo. Our previous studies indicated that expression of APOM could be regulated by platelet activating factor (PAF), transforming growth factors (TGF), insulin-like growth factor (IGF), leptin, hyperglycemia and etc., in vivo and/or in vitro. In the present study, we demonstrated that palmitic acid could significantly inhibit APOM gene expression in HepG2 cells. Further study indicated neither PI-3 kinase (PI3K) inhibitor LY294002 nor protein kinase C (PKC) inhibitor GFX could abolish palmitic acid induced down-regulation of APOM expression. In contrast, the peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) antagonist GSK3787 could totally reverse the palmitic acid-induced down-regulation of APOM expression, which clearly demonstrates that down-regulation of APOM expression induced by palmitic acid is mediated via the PPARβ/δ pathway.  相似文献   

13.
14.
Ascochlorin, a non-toxic prenylphenol compound derived from the fungus Ascochyta viciae, has been shown recently to have anti-cancer effects on various human cancer cells. However, the precise molecular mechanism of this anti-cancer activity remains to be elucidated. Here, we investigated the effects of ascochlorin on hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) expression in human epidermoid cervical carcinoma CaSki cells. Ascochlorin inhibited epidermal growth factor (EGF)-induced HIF-1α and VEGF expression through multiple potential mechanisms. First, ascochlorin selectively inhibited HIF-1α expression in response to EGF stimulation, but not in response to hypoxia (1% O(2)) or treatment with a transition metal (CoCl(2)). Second, ascochlorin inhibited EGF-induced ERK-1/2 activation but not AKT activation, both of which play essential roles in EGF-induced HIF-1α protein synthesis. Targeted inhibition of epidermal growth factor receptor (EGFR) expression using an EGFR-specific small interfering RNA (siRNA) diminished HIF-1α expression, which suggested that ascochlorin inhibits HIF-1α expression through suppression of EGFR activation. Finally, we showed that ascochlorin functionally abrogates in vivo tumor angiogenesis induced by EGF in a Matrigel plug assay. Our data suggest that ascochlorin inhibits EGF-mediated induction of HIF-1α expression in CaSki cells, providing a potentially new avenue of development of anti-cancer drugs that target tumor angiogenesis.  相似文献   

15.
16.

Background

Asthma is a chronic inflammatory disease of the airways but recent studies have shown that alveoli are also subject to pathophysiological changes. This study was undertaken to compare hydrogen peroxide (H2O2) concentrations in different parts of the lung using a new technique of fractioned breath condensate sampling.

Methods

In 52 children (9-17 years, 32 asthmatic patients, 20 controls) measurements of exhaled nitric oxide (FENO), lung function, H2O2 in exhaled breath condensate (EBC) and the asthma control test (ACT) were performed. Exhaled breath condensate was collected in two different fractions, representing mainly either the airways or the alveoli. H2O2 was analysed in the airway and alveolar fractions and compared to clinical parameters.

Results

The exhaled H2O2 concentration was significantly higher in the airway fraction than in the alveolar fraction comparing each single pair (p = 0.003, 0.032 and 0.040 for the whole study group, the asthmatic group and the control group, respectively). Asthma control, measured by the asthma control test (ACT), correlated significantly with the H2O2 concentrations in the alveolar fraction (r = 0.606, p = 0.004) but not with those in the airway fraction in the group of children above 12 years. FENO values and lung function parameters did not correlate to the H2O2 concentrations of each fraction.

Conclusion

The new technique of fractionated H2O2 measurement may differentiate H2O2 concentrations in different parts of the lung in asthmatic and control children. H2O2 concentrations of the alveolar fraction may be related to the asthma control test in children.  相似文献   

17.
To investigate reversal effects of pantoprazole (PPZ) on multidrug resistance (MDR) in human gastric adenocarcinoma cells in vivo and in vitro. Human gastric adenocarcinoma cell SGC7901 was cultured in RPMI‐1640 medium supplemented with 10% fetal bovine serum and antibiotics in a humidified 5% CO2 atmosphere at 37°C. Adriamycin (ADR)‐resistant cells were cultured with addition of 0.8 µg/ml of ADR maintaining MDR phenotype. ADR was used to calculate ADR releasing index; CCK‐8 Assay was performed to evaluate the cytotoxicity of anti‐tumor drugs; BCECF‐AM pH‐sensitive fluorescent probe was used to measure intracellular pH (pHi) value of cells, whereas pH value of medium was considered as extracellular pH (pHe) value; Western blotting and immunofluorescent staining analyses were employed to determine protein expressions and intracellular distributions of vacuolar H+‐ATPases (V‐ATPases), mTOR, HIF‐1α, P‐glycoprotein (P‐gp), and multidrug resistant protein 1 (MRP1); SGC7901 and SGC7901/ADR cells were inoculated in athymic nude mice. Thereafter, effects of ADR with or without PPZ pretreatment were compared by determining the tumor size and weight, apoptotic cells in tumor tissues were detected by TUNEL assay. At concentrations greater than 20 µg/ml, PPZ pretreatment reduced ADR releasing index and significantly enhanced intracellular ADR concentration of SGC7901 (P < 0.01). Similarly, PPZ pretreatment significantly decreased ADR releasing index of SGC7901/ADR dose‐dependently (P < 0.01). PPZ pretreatment also decreased cell viabilities of SGG7901 and SGC7901/ADR dose‐dependently. After 24‐h PPZ pretreatment, administration of chemotherapeutic agents demonstrated maximal cytotoxic effects on SGC7901 and SGC7901/ADR cells (P < 0.05). The resistance index in PPZ pretreatment group was significantly lower than that in non‐PPZ pretreatment group (3.71 vs. 14.80). PPZ at concentration >10 µg/ml significantly decreased pHi in SGC7901 and SGC7901/ADR cells and diminished or reversed transmembrane pH gradient (P < 0.05). PPZ pretreatment also significantly inhibited protein expressions of V‐ATPases, mTOR, HIF‐1α, P‐gp, and MRP1, and alter intracellular expressions in parent and ADR‐resistant cells (P < 0.05). In vivo experiments further confirmed that PPZ pretreatment could enhance anti‐tumor effects of ADR on xenografted tumor of nude mice and also improve the apoptotic index in xenografted tumor tissues. PPZ pretreatment enhances the cytotoxic effects of anti‐tumor drugs on SGC7901 and reverse MDR of SGC7901/ADR by downregulating the V‐ATPases/mTOR/HIF‐1α/P‐gp and MRP1 signaling pathway. J. Cell. Biochem. 113: 2474–2487, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
The efficacy of cancer chemotherapeutics is limited by side effects resulting from narrow therapeutic windows between the anticancer activity of a drug and its cytotoxicity. Thus identification of small molecules that can selectively target cancer cells has gained major interest. Cancer cells under stress utilize the Unfolded protein response (UPR) as an effective cell adaptation mechanism. The purpose of the UPR is to balance the ER folding environment and calcium homeostasis under stress. If ER stress is prolonged, tumor cells undergo apoptosis. In the present study we demonstrated an 3,3′-(Arylmethylene)-bis-1H-indole (AMBI) derivative 3,3′-[(4-Methoxyphenyl) methylene]-bis-(5-bromo-1H-indole), named as Mephebrindole (MPB) as an effective anti-cancer agent in breast cancer cells. MPB disrupted calcium homeostasis in MCF7 cells which triggered ER stress development. Detailed evaluations revealed that mephebrindole by activating p38MAPK also regulated GRP78 and eIF2α/ATF4 downstream to promote apoptosis. Studies extended to in vivo allograft mice models revalidated its anti-carcinogenic property thus highlighting the role of MPB as an improved chemotherapeutic option.  相似文献   

19.
20.
Wild-type p53 has a major role in the response and execution of apoptosis after chemotherapy in many cancers. Although high levels of wild-type p53 and hardly any TP53 mutations are found in testicular cancer (TC), chemotherapy resistance is still observed in a significant subgroup of TC patients. In the present study, we demonstrate that p53 resides in a complex with MDM2 at higher cisplatin concentrations in cisplatin-resistant human TC cells compared with cisplatin-sensitive TC cells. Inhibition of the MDM2–p53 interaction using either Nutlin-3 or MDM2 RNA interference resulted in hyperactivation of the p53 pathway and a strong induction of apoptosis in cisplatin-sensitive and -resistant TC cells. Suppression of wild-type p53 induced resistance to Nutlin-3 in TC cells, demonstrating the key role of p53 for Nutlin-3 sensitivity. More specifically, our results indicate that p53-dependent induction of Fas membrane expression (∼threefold) and enhanced Fas/FasL interactions at the cell surface are important mechanisms of Nutlin-3-induced apoptosis in TC cells. Importantly, an analogous Fas-dependent mechanism of apoptosis upon Nutlin-3 treatment is executed in wild-type p53 expressing Hodgkin lymphoma and acute myeloid leukaemia cell lines. Finally, we demonstrate that Nutlin-3 strongly augmented cisplatin-induced apoptosis and cell kill via the Fas death receptor pathway. This effect is most pronounced in cisplatin-resistant TC cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号