首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blocking replication forks in the Escherichia coli chromosome by ectopic Ter sites renders the RecBCD pathway of homologous recombination and SOS induction essential for viability. In this work, we show that the E. coli helicase II (UvrD) is also essential for the growth of cells where replication forks are arrested at ectopic Ter sites. We propose that UvrD is required for Tus removal from Ter sites. The viability of a SOS non-inducible Ter-blocked strain is fully restored by the expression of the two SOS-induced proteins UvrD and RecA at high level, indicating that these are the only two SOS-induced proteins required for replication across Ter/Tus complexes. Several observations suggest that UvrD acts in concert with homologous recombination and we propose that UvrD is associated with recombination-initiated replication forks and that it removes Tus when a PriA-dependent, restarted replication fork goes across the Ter/Tus complex. Finally, expression of the UvrD homologue from Bacilus subtilis PcrA restores the growth of uvrD-deficient Ter-blocked cells, indicating that the capacity to dislodge Tus is conserved in this distant bacterial species.  相似文献   

2.
3.
In E. coli, DNA replication termination occurs at Ter sites and is mediated by Tus. Two clusters of five Ter sites are located on each side of the terminus region and constrain replication forks in a polar manner. The polarity is due to the formation of the Tus-Ter-lock intermediate. Recently, it has been shown that DnaB helicase which unwinds DNA at the replication fork is preferentially stopped at the non-permissive face of a Tus-Ter complex without formation of the Tus-Ter-lock and that fork pausing efficiency is sequence dependent, raising two essential questions: Does the affinity of Tus for the different Ter sites correlate with fork pausing efficiency? Is formation of the Tus-Ter-lock the key factor in fork pausing? The combined use of surface plasmon resonance and GFP-Basta showed that Tus binds strongly to TerA-E and G, moderately to TerH-J and weakly to TerF. Out of these ten Ter sites only two, TerF and H, were not able to form significant Tus-Ter-locks. Finally, Tus's resistance to dissociation from Ter sites and the strength of the Tus-Ter-locks correlate with the differences in fork pausing efficiency observed for the different Ter sites by Duggin and Bell (2009).  相似文献   

4.
The arrest of DNA replication in Escherichia coli is triggered by the encounter of a replisome with a Tus protein-Ter DNA complex. A replication fork can pass through a Tus-Ter complex when traveling in one direction but not the other, and the chromosomal Ter sites are oriented so replication forks can enter, but not exit, the terminus region. The Tus-Ter complex acts by blocking the action of the replicative DnaB helicase, but details of the mechanism are uncertain. One proposed mechanism involves a specific interaction between Tus-Ter and the helicase that prevents further DNA unwinding, while another is that the Tus-Ter complex itself is sufficient to block the helicase in a polar manner, without the need for specific protein-protein interactions. This review integrates three decades of experimental information on the action of the Tus-Ter complex with information available from the Tus-TerA crystal structure. We conclude that while it is possible to explain polar fork arrest by a mechanism involving only the Tus-Ter interaction, there are also strong indications of a role for specific Tus-DnaB interactions. The evidence suggests, therefore, that the termination system is more subtle and complex than may have been assumed. We describe some further experiments and insights that may assist in unraveling the details of this fascinating process.  相似文献   

5.
In the absence of RecA, expression of the Tus protein of Escherichia coli is lethal when ectopic Ter sites are inserted into the chromosome in an orientation that blocks completion of chromosome replication. Using this observation as a basis for genetic selection, an extragenic suppressor of Tus-mediated arrest of DNA replication was isolated with diminished ability of Tus to halt DNA replication. Resistance to tus expression mapped to a mutation in the stop codon of the topA gene (topA869), generating an elongated topoisomerase I protein with a marked reduction in activity. Other alleles of topA with mutations in the carboxyl-terminal domain of topoisomerase I, topA10 and topA66, also rendered recA strains with blocking Ter sites insensitive to tus expression. Thus, increased negative supercoiling in the DNA of these mutants reduced the ability of Tus-Ter complexes to arrest DNA replication. The increase in superhelical density did not diminish replication arrest by disrupting Tus-Ter interactions, as Tus binding to Ter sites was essentially unaffected by the topA mutations. The topA869 mutation also relieved the requirement for recombination functions other than recA to restart replication, such as recC, ruvA and ruvC, indicating that the primary effect of the increased negative supercoiling was to interfere with Tus blockage of DNA replication. Introduction of gyrB mutations in combination with the topA869 mutation restored supercoiling density to normal values and also restored replication arrest at Ter sites, suggesting that supercoiling alone modulated Tus activity. We propose that increased negative supercoiling enhances DnaB unwinding activity, thereby reducing the duration of the Tus-DnaB interaction and leading to decreased Tus activity.  相似文献   

6.
Shuttling of proteins between nucleus and cytoplasm in mammalian cells is facilitated by the presence of nuclear localization signals (NLS) and nuclear export signals (NES), respectively. However, we have found that Tus, an E. coli replication fork arresting protein, contains separate sequences that function efficiently as NLS and NES in mammalian cell lines, as judged by cellular location of GFP-fusion proteins. The NLS was localized to a short stretch of 9 amino acids in the carboxy-terminus of Tus protein. Alterations of any of these basic amino acids almost completely abolished the nuclear targeting. The NES comprises a cluster of leucine/hydrophobic residues located within 21 amino acids at the amino terminus of Tus. Finally, we have shown that purified GFP-Tus fusion protein or GFP-Tus NLS fusion protein, when added to the culture media, was internalized very efficiently into mammalian cells. Thus, Tus is perhaps the first reported bacterial protein to possess both NLS and NES, and has the capability to transduce protein into mammalian cells.  相似文献   

7.
Binding of the Escherichia coli Tus protein to its cognate nonpalindromic binding site on duplex DNA (a Ter sequence) is sufficient to arrest the progression of replication forks in a Ter orientation-dependent manner in vivo and in vitro. In order to probe the molecular mechanism of this inhibition, we have used a strand displacement assay to investigate the effect of Tus on the DNA helicase activities of DnaB, PriA, UvrD (helicase II), and the phi X-type primosome. When the substrate was a short oligomer hybridized to a circular single-stranded DNA, strand displacement by DnaB, PriA, and the primosome (in both directions), but not UvrD, was blocked by Tus in a polar fashion. However, no inhibition of either DnaB or UvrD was observed when the substrate carried an elongated duplex region. With this elongated substrate, PriA helicase activity was only inhibited partially (by 50%). On the other hand, both the 5'----3' and 3'----5' helicase activities of the primosome were inhibited almost completely by Tus with the elongated substrate. These results suggest that while Tus can inhibit the translocation of some proteins along single-stranded DNA in a polar fashion, this generalized effect is insufficient for the inhibition of bona fide DNA helicase activity.  相似文献   

8.
The Escherichia coli replication fork arrest complex Tus/Ter mediates site-specific replication fork arrest and homologous recombination (HR) on a mammalian chromosome, inducing both conservative “short tract” gene conversion (STGC) and error-prone “long tract” gene conversion (LTGC) products. We showed previously that bidirectional fork arrest is required for the generation of STGC products at Tus/Ter-stalled replication forks and that the HR mediators BRCA1, BRCA2 and Rad51 mediate STGC but suppress LTGC at Tus/Ter-arrested forks. Here, we report the impact of Ter array length on Tus/Ter-induced HR, comparing HR reporters containing arrays of 6, 9, 15 or 21 Ter sites—each targeted to the ROSA26 locus of mouse embryonic stem (ES) cells. Increasing Ter copy number within the array beyond 6 did not affect the magnitude of Tus/Ter-induced HR but biased HR in favor of LTGC. A “lock”-defective Tus mutant, F140A, known to exhibit higher affinity than wild type (wt)Tus for duplex Ter, reproduced these effects. In contrast, increasing Ter copy number within the array reduced HR induced by the I-SceI homing endonuclease, but produced no consistent bias toward LTGC. Thus, the mechanisms governing HR at Tus/Ter-arrested replication forks are distinct from those governing HR at an enzyme-induced chromosomal double strand break (DSB). We propose that increased spatial separation of the 2 arrested forks encountering an extended Tus/Ter barrier impairs the coordination of DNA ends generated by the processing of the stalled forks, thereby favoring aberrant LTGC over conservative STGC.  相似文献   

9.
Kaplan DL 《Current biology : CB》2006,16(17):R684-R686
The Tus-Ter protein-DNA complex of Escherichia coli blocks progression of DNA replication from only one direction at the replication terminus. As the replication fork helicase unwinds one side of Ter, a conserved cytosine flips out of the duplex and binds to Tus, thereby creating a locked complex that blocks the advancing helicase.  相似文献   

10.
Replication of genomic DNA is a universal process that proceeds in distinct stages, from initiation to elongation and finally to termination. Each stage involves multiple stable or transient interactions between protein subunits with functions that are more or less conserved in all organisms. In Escherichia coli, initiation of bidirectional replication at the origin (oriC) occurs through the concerted actions of the DnaA replication initiator protein, the hexameric DnaB helicase, the DnaC?helicase loading partner and the DnaG primase, leading to establishment of two replication forks. Elongation of RNA primers at each fork proceeds simultaneously on both strands by actions of the multimeric replicase, DNA polymerase III holoenzyme. The fork that arrives first in the terminus region is halted by its encounter with a correctly-oriented complex of the Tus replication terminator protein bound at one of several Ter sites, where it is trapped until the other fork arrives. We summarize current understanding of interactions among the various proteins that act in the different stages of replication of the chromosome of E. coli, and make some comparisons with the analogous proteins in Bacillus subtilis and the coliphages T4 and T7.  相似文献   

11.
12.
13.
DNA replication fork arrest during the termination phase of chromosome replication in Bacillus subtilis is brought about by the replication terminator protein (RTP) bound to specific DNA terminator sequences (Ter sites) distributed throughout the terminus region. An attractive suggestion by others was that crucial to the functioning of the RTP-Ter complex is a specific interaction between RTP positioned on the DNA and the helicase associated with the approaching replication fork. In support of this was the behaviour of two site-directed mutants of RTP. They appeared to bind Ter DNA normally but were ineffective in fork arrest as ascertained by in vitro Escherichia coli DnaB helicase and replication assays. We describe here a system for assessing the fork-arrest behaviour of RTP mutants in a bona fide in vivo assay in B. subtilis. One of the previously studied mutants, RTP.Y33N, was non-functional in fork arrest in vivo, as predicted. But through extensive analyses, this RTP mutant was shown to be severely defective in binding to Ter DNA, contrary to expectation. Taken in conjunction with recent findings on the other mutant (RTP.E30K), it is concluded that there is as yet no substantive evidence from the behaviour of RTP mutants to support the RTP-helicase interaction model for fork arrest. In an extension of the present work on RTP.Y33N, we determined the dissociation rates of complexes formed by wild-type (wt) RTP and another RTP mutant with various terminator sequences. The functional wtRTP-TerI complex was quite stable (half-life of 182 minutes), reminiscent of the great stability of the E. coli Tus-Ter complex. More significant were the exceptional stabilities of complexes comprising wtRTP and an RTP double-mutant (E39K.R42Q) bound to some particular terminator sequences. From the measurement of in vivo fork-arrest activities of the various complexes, it is concluded that the stability (half-life) of the whole RTP-Ter complex is not the overriding determinant of arrest, and that the RTP-Ter complex must be actively disrupted, or RTP removed, by the action of the approaching replication fork.  相似文献   

14.
The Escherichia coli replication terminator TerB was inserted in its two alternate orientations into a Bacillus subtilis fork-arrest assay plasmid. After transferring these new plasmids into B. subtilis, which could overproduce the E. coli terminator protein Tus, it was shown that the E. coli Tus-TerB complex could cause polar replication fork arrest, albeit at a very low level, in B. subtilis. A new B. subtilis-E. coli shuttle plasmid was designed to allow the insertion of either the Terl (B. subtilis) or TerB (E. coli) terminator at the same site and in the active orientation in relation to the approaching replication fork generated in either organism. Fork-arrest assays for both terminator-containing plasmids replicating in both organisms which also produced saturating levels of either the B. subtilis terminator protein (RTP) or Tus were performed. The efficiency of the Tus-TerB complex in causing fork arrest was much higher in E. coli than in B. subtilis. The efficiency of the B. subtilis RTP-Terl complex was higher in B. subtilis than in E. coli, but the effect was significantly less. Evidently a specificity feature in E. coli operates to enhance appreciably the fork-arrest efficiency of a Tus-Ter complex. The specificity effect is of less significance for an RTP-Ter complex functioning in B. subtilis.  相似文献   

15.
We describe a novel, simple and low-cost protein microarray strategy wherein the microarrays are generated by printing expression ready plasmid DNAs onto slides that can be converted into protein arrays on-demand. The printed expression plasmids serve dual purposes as they not only direct the synthesis of the protein of interest; they also serve to capture the newly synthesized proteins through a high affinity DNA-protein interaction. To accomplish this we have exploited the high-affinity binding (approximately 3-7 x 10 (-13) M) of E. coli Tus protein to Ter, a 20 bp DNA sequence involved in the regulation of E. coli DNA replication. In our system, each protein of interest is synthesized as a Tus fusion protein and each expression construct directing the protein synthesis contains embedded Ter DNA sequence. The embedded Ter sequence functions as a capture reagent for the newly synthesized Tus fusion protein. This "all DNA" microarray can be converted to a protein microarray on-demand without need for any additional capture reagent.  相似文献   

16.
H S Zhou  C Byrd    R J Meyer 《Nucleic acids research》1991,19(19):5379-5383
The E.coli Tus protein is an anti-helicase involved in the termination of chromosome replication. The binding site for this protein, ter, was cloned into derivatives of the broad host-range plasmid R1162. The ter site caused the orientation-specific termination of plasmid replication fork movement in cell extracts containing Tus. Plasmids were constructed so that two sites for initiation of R1162 replication flanked the iteron-containing domain of the origin. In these plasmids, the site next to the AT-rich region within the iteron-containing domain was more active. In addition, when ter was placed between the more active site and the iterons, initiation of replication from this site was specifically inhibited. The data support a model for entry of the essential, plasmid-encoded helicase at one side of the direct repeats, and for its movement primarily in one direction away from these repeats to activate the initiation sites for DNA replication.  相似文献   

17.
In the Escherichia coli chromosome, DNA replication forks arrested by a Tus-Ter complex or by DNA damage are reinitiated through pathways that involve RecA and numerous other recombination functions. To examine the role of recombination in the processing of replication forks arrested by a Tus-Ter complex, the requirements for recombination-associated gene products were assessed in cells carrying Ter plasmids, i.e., plasmids that contain a Ter site oriented to block DNA replication. Of the E. coli recombination functions tested, only loss of recA conferred an observable phenotype on cells containing a Ter plasmid, which was inefficient transformation and reduced ability to maintain a Ter plasmid when Tus was expressed. Given the current understanding of replication reinitiation, the simplest explanation for the restriction of Ter plasmid maintenance was a reduced ability to restart plasmid replication in a recA tus(+) background. However, we were unable to detect a difference in the efficiency of replication arrest by Tus in recA-proficient and recA-deficient cells, which suggests that the inability to restart arrested replication forks is not the cause of the restriction on growth, but is due to an additional function provided by RecA. Other explanations for restriction of Ter plasmid maintenance were examined, including plasmid multimerization, plasmid rearrangements, and copy number differences. The most likely cause of the restriction on Ter plasmid maintenance was a reduced copy number in recA cells that was detected when the copy number was measured in relation to an external control. Possibly, loss of RecA function leads to improper processing of replication forks arrested at a Ter site, leading to the generation of degradation-prone substrates.  相似文献   

18.
Two so-called Ter sites, which bind the Escherichia coli Tus protein, are located near the replication origin of plasmid R1. Inactivation of the tus gene caused a large decrease in the stability of maintenance of the R1 mini-derivative pOU47 despite the presence of a functional partition system on the plasmid. Deletion of the right Ter site caused a drop in stability similar to that observed after inactivation of the tus gene. Substitution of 2 bp required for Tus binding also caused unstable plasmid maintenance, whereas no effects on stability were observed when the left Ter site was deleted. Inactivation of the tus gene was coupled to an increased occurrence of multimeric plasmid forms as shown by gel electrophoresis of pOU47 DNA. Inactivation of the recA gene did not increase plasmid stability, suggesting that the multimerization was not mediated by RecA. Plasmid DNA was isolated from the tus strain carrying plasmid pOU47 and from a wild-type strain carrying pOU47 in which the right Ter site had been inactivated; in both cases, electron microscopy revealed the presence of multimers as well as rolling-circle structures with double-stranded tails. Thus, the right Ter site in plasmid R1 appears to stabilize the plasmid by preventing multimerization and shifts from theta to rolling-circle replication.  相似文献   

19.
The high-affinity binding of the Tus protein to specific 21-bp sequences, called Ter, causes site-specific, and polar, DNA replication fork arrest in E coli. The Tus-Ter complex serves to coordinate DNA replication with chromosome segregation in this organism. A number of recent and ongoing studies have demonstrated that Tus-Ter can be used as a heterologous tool to generate site-specific perturbation of DNA replication when reconstituted in eukaryotes. Here, we review these recent findings and explore the molecular mechanism by which Tus-Ter mediates replication fork (RF) arrest in the budding yeast, S. cerevisiae. We propose that Tus-Ter is a versatile, genetically tractable, and regulatable RF blocking system that can be utilized for disrupting DNA replication in a diverse range of host cells.  相似文献   

20.
Mulcair MD  Schaeffer PM  Oakley AJ  Cross HF  Neylon C  Hill TM  Dixon NE 《Cell》2006,125(7):1309-1319
During chromosome synthesis in Escherichia coli, replication forks are blocked by Tus bound Ter sites on approach from one direction but not the other. To study the basis of this polarity, we measured the rates of dissociation of Tus from forked TerB oligonucleotides, such as would be produced by the replicative DnaB helicase at both the fork-blocking (nonpermissive) and permissive ends of the Ter site. Strand separation of a few nucleotides at the permissive end was sufficient to force rapid dissociation of Tus to allow fork progression. In contrast, strand separation extending to and including the strictly conserved G-C(6) base pair at the nonpermissive end led to formation of a stable locked complex. Lock formation specifically requires the cytosine residue, C(6). The crystal structure of the locked complex showed that C(6) moves 14 A from its normal position to bind in a cytosine-specific pocket on the surface of Tus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号