首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A RNA-dependent DNA polymerase was isolated from a human cell line derived from the bone marrow of a patient with polycythemia vera. The purification procedure included chromatography on phosphocellulose and oligo(dT)-cellulose, and glycerol gradient centrifugation. The enzyme could be distinguished from polymerase A by salt elution from phosphocellulose, utilization of poly(rC) - oligo(dG) and its molecular size of about 70000, as determined by centrifugation. Throughout the purification procedure ribonuclease H activity was co-purified. Upon dodecylsulfate-polyacrylamide electrophoresis on microgradient gels two main bands with molecular weights of 68000 and 66000 and three minor bands were detected. The enzyme preferentially used poly(rA) - oligo(dT) as template-primer compared with poly(dA) - oligo(dT). It incorporated dGMP into polymer on poly(rC) - oligo(dG).  相似文献   

2.
3.
4.
Human cytomegalovirus. III. Virus-induced DNA polymerase.   总被引:47,自引:25,他引:22       下载免费PDF全文
Infection of WI-38 human fibroblasts with human cytomegalovirus (CMV) led to the stimulation of host cell DNA polymerase synthesis and induction of a novel virus-specific DNA polymerase. This cytomegalovirus-induced DNA polymerase was purified and separated from host cell enzymes by DEAE-cellulose and phosphocellulose column chromatographies. It can be distinguished from host cell enzymes by chromatographic behavior, template primer specificity, sedimentation property, and the requirement of salt for maximal activity. This virus-induced enzyme has a sedimentation coefficient of 9.2S and is found in both the nuclei and cytoplasm of virus-infected cells, but not in uninfected cells. This enzyme could efficiently use activated calf-thymus DNA, oly(dA)-oligo(dT)12-18, and poly(dC)-oligo(dG)12-18 as template primers, especially poly(dA)-oligo(dT)12-18, but it could not use poly(rA)-oligo(dT)12-18, poly(rC)-oligo(dG)12-18, or oligo(dT)12-18. The enzyme requires Mg2+ for maximal activity, is sensitive to p-hydroxymercuribenzoate, and is not a zinc metalloenzyme. In addition, the cytomegalovirus-induced DNA polymerase activity can be enhanced by adding 0.06 to 0.12 M NaCl or 0.03 to 0.06 M (NH4)2SO4 to the reaction mixture.  相似文献   

5.
6.
Mammary tumors induced in Sprague-Dawley Rats by the carcinogen 7,12-dimethylbenz(a)anthracene contain a DNA polymerase similar to that found in RNA tumor viruses. It has a molecular weight of 105,000 daltons and is active on the synthetic templates poly(rA):oligo(dT) and poly(rC):-oligo(dG) but is inactive on poly(dA):oligo(dT). This polymerase may be purified more than 300 fold with a 25% yield by ammonium sulfate precipitation, phosphocellulose chromatography and hydroxyapatite chromatography. A similar polymerase is also found in lactating normal rat mammary tissues.  相似文献   

7.
8.
9.
10.
The multisubunit eukaryotic initiation factor (eIF) 3 plays various roles in translation initiation that all involve interaction with 40S ribosomal subunits. eIF3 can be purified in two forms: with or without the loosely associated eIF3j subunit (eIF3j+ and eIF3j-, respectively). Although unlike eIF3j+, eIF3j- does not bind 40S subunits stably enough to withstand sucrose density gradient centrifugation, we found that in addition to the known stabilization of the eIF3/40S subunit interaction by the eIF2*GTP*Met-tRNA(i)Met ternary complex, eIF3j-/40S subunit complexes were also stabilized by single-stranded RNA or DNA cofactors that were at least 25 nt long and could be flanked by stable hairpins. Of all homopolymers, oligo(rU), oligo(dT), and oligo(dC) stimulated the eIF3/40S subunit interaction, whereas oligo(rA), oligo(rG), oligo(rC), oligo(dA), and oligo(dG) did not. Oligo(U) or oligo(dT) sequences interspersed by other bases also promoted this interaction. The ability of oligonucleotides to stimulate eIF3/40S subunit association correlated with their ability to bind to the 40S subunit, most likely to its mRNA-binding cleft. Although eIF3j+ could bind directly to 40S subunits, neither eIF3j- nor eIF3j+ alone was able to dissociate 80S ribosomes or protect 40S and 60S subunits from reassociation. Significantly, the dissociation/anti-association activities of both forms of eIF3 became apparent in the presence of either eIF2-ternary complexes or any oligonucleotide cofactor that promoted eIF3/40S subunit interaction. Ribosomal dissociation and anti-association activities of eIF3 were strongly enhanced by eIF1. The potential biological role of stimulation of eIF3/40S subunit interaction by an RNA cofactor in the absence of eIF2-ternary complex is discussed.  相似文献   

11.
Purified DNA polymerase beta of calf thymus can utilize poly(rA).oligo(dT) as efficiently as poly(dA).oligo(dT) or activated DNA as a template primer. The poly(rA).oligo(dT)-dependent activity of DNA polymerase beta was found to differ markedly from the DNA-dependent activity of the same enzyme (with either activated calf thymus DNA or poly(dA).(dT)10) in the following respects. 1) Poly(rA)-dependent activity was strongly inhibited by natural DNA from various sources or synthetic deoxypolymer duplexes at very low concentrations (less than 0.5 microgram/ml) at which the DNA-dependent activity was affected to a much smaller extent, if at all. 2) Poly(rA)-dependent activity was inhibited by N-ethylmaleimide more strongly than DNA-dependent activity measured at 37 degrees C, while it was resistant to this reagent at 26 degrees C. 3) The curves of the activity versus substrate concentration were sigmoidal in the poly(rA)-dependent reaction but hyperbolic in the activated DNA-dependent reaction. A kinetic study suggested that the association of beta-enzyme protomers may be required to copy the poly(rA) strand.  相似文献   

12.
The yeast Saccharomyces cerevisiae catalytic DNA polymerase I 180-kDa subunit and the tightly associated 86-kDa polypeptide have been purified using immunoaffinity chromatography, permitting further characterization of the DNA polymerase activity of the DNA primase-DNA polymerase protein complex. The subunits were purified to apparent homogeneity from separate overproducing yeast strains using monoclonal antibodies specifically recognizing each subunit. When the individual subunits were recombined in vitro a p86p180 physical complex formed spontaneously, as judged by immunoprecipitation of 180-kDa polypeptide and DNA polymerase activity with the anti-86-kDa monoclonal antibody. The 86-kDa subunit stabilized the DNA polymerase activity of the 180-kDa catalytic subunit at 30 degrees C, the physiological temperature. The apparent DNA polymerase processivity of 50-60 nucleotides on poly(dA).oligo(dT)12 or poly(dT).oligo(A)8-12 template-primer was not affected by the presence of the 86-kDa subunit but was reduced by increased Mg2+ concentration. The Km of the catalytic 180-kDa subunit for dATP or DNA primer terminus was unaffected by the presence of the 86-kDa subunit. The isolated 180-kDa polypeptide was sufficient to catalyze all the DNA synthesis that had been observed previously in the DNA primase-DNA polymerase protein complex. The 180-kDa subunit possessed a 3'----5'-exonuclease activity that catalyzed degradation of polynucleotides, but degradation of oligonucleotide substrates of chain lengths up to 50 was not detected. This exonuclease activity was unaffected by the presence of the 86-kDa subunit. Despite the striking physical similarity of the DNA primase-DNA polymerase protein complex in all eukaryotes examined, the data presented here indicate differences in the enzymatic properties detected in preparations of the DNA polymerase subunits isolated from S. cerevisiae as compared with the properties of preparations from Drosophila cells. In particular, the 3'----5'-exonuclease activity associated with the yeast catalytic DNA polymerase subunit was not masked by the 86-kDa subunit.  相似文献   

13.
14.
15.
16.
A gamma-like DNA polymerase devoid of DNA polymerase-alpha and -beta activities was prepared from the nuclear fraction of blastulae of the sea urchin, Hemicentrotus pulcherrimus. The enzyme sedimented at the position of an approximate sedimentation coefficient of 3.3 S under high salt conditions by sucrose gradient centrifugation. An isoelectric point was determined to be pH 5.8. The enzyme activity was sensitive to sulfhydryl blocking reagents. Poly(rA) . oligo(dT)12--18 followed by poly(dA) . oligo(dT)12--18 was effectively utilized as a template-primer. From the above results, this polymerase seems to resemble the vertebrate DNA polymerase-gamma.  相似文献   

17.
18.
19.
Polynucleotide recognition by DNA alpha-polymerase.   总被引:4,自引:1,他引:3       下载免费PDF全文
In a survey of template-primer preference of a mouse myeloma DNA alpha-polymerase, the fastest rate of DNA synthesis was with poly(dT) as template and (rA)24 as primer. Such a preference for poly(dT).oligo(rA) was not observed with other DNA polymerases of mouse origin. DNA synthesis in this system resulted in formation of oligo(dA) chains, not template-length poly(dA); thus, the average enzyme molecule bound to a poly(dT).(rA)24 complex and initiated a new oligo(dA) chain many times during the incubation. Binding experiments revealed that the alpha-polymerase had high affinity for poly(dT). Although the alpha-polymerase did not bind to poly(dl) and failed to replicate it inreactions with a base pair complementary primer, poly(dl) was replicated after a (dT) block had been grafted to its 3'-end and the oligo(rA) primer had been added. In similar experiments, the (dT) block was found to be much more effective than other 3'-terminal blocks in promoting replication of denatured calf thymus DNA. The results indicate that specific base sequences may regulate initiation of DNA syntehsis by this alpha-polymerase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号