首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu P  Liu A  Yan F  Wolfe MD  Lipscomb JD  Liu HW 《Biochemistry》2003,42(40):11577-11586
The last step of the biosynthesis of fosfomycin, a clinically useful antibiotic, is the conversion of (S)-2-hydroxypropylphosphonic acid (HPP) to fosfomycin. Since the ring oxygen in fosfomycin has been shown in earlier feeding experiments to be derived from the hydroxyl group of HPP, this oxirane formation reaction is effectively a dehydrogenation process. To study this unique C-O bond formation step, we have overexpressed and purified the desired HPP epoxidase. Results reported herein provided initial biochemical evidence revealing that HPP epoxidase is an iron-dependent enzyme and that both NAD(P)H and a flavin or flavoprotein reductase are required for its activity. The 2 K EPR spectrum of oxidized iron-reconstituted fosfomycin epoxidase reveals resonances typical of S = (5)/(2) Fe(III) centers in at least two environments. Addition of HPP causes a redistribution with the appearance of at least two additional species, showing that the iron environment is perturbed. Exposure of this sample to NO elicits no changes, showing that the iron is nearly all in the Fe(III) state. However, addition of NO to the Fe(II) reconstituted enzyme that has not been exposed to O(2) yields an intense EPR spectrum typical of an S = (3)/(2) Fe(II)-NO complex. This complex is also heterogeneous, but addition of substrate converts it to a single, homogeneous S = (3)/(2) species with a new EPR spectrum, suggesting that substrate binds to or near the iron, thereby organizing the center. The fact that NO binds to the ferrous center suggests O(2) can also bind at this site as part of the catalytic cycle. Using purified epoxidase and (18)O isotopic labeled HPP, the retention of the hydroxyl oxygen of HPP in fosfomycin was demonstrated. While ether ring formation as a result of dehydrogenation of a secondary alcohol has precedence in the literature, these catalyses require alpha-ketoglutarate for activity. In contrast, HPP epoxidase is alpha-ketoglutarate independent. Thus, the cyclization of HPP to fosfomycin clearly represents an intriguing conversion beyond the scope entailed by common biological epoxidation and C-O bond formation.  相似文献   

2.
The fosfomycin resistance protein FosA is a member of a distinct superfamily of metalloenzymes containing glyoxalase I, extradiol dioxygenases, and methylmalonyl-CoA epimerase. The dimeric enzyme, with the aid of a single mononuclear Mn2+ site in each subunit, catalyzes the addition of glutathione (GSH) to the oxirane ring of the antibiotic, rendering it inactive. Sequence alignments suggest that the metal binding site of FosA is composed of three residues: H7, H67, and E113. The single mutants H7A, H67A, and E113A as well as the more conservative mutants H7Q, H67Q, and E113Q exhibit marked decreases in the ability to bind Mn2+ and, in most instances, decreases in catalytic efficiency and the ability to confer resistance to the antibiotic. The enzyme also requires the monovalent cation K+ for optimal activity. The K+ ion activates the enzyme 100-fold with an activation constant of 6 mM, well below the physiologic concentration of K+ in E. coli. K+ can be replaced by other monovalent cations of similar ionic radii. Several lines of evidence suggest that the K+ ion interacts directly with the active site. Interaction of the enzyme with K+ is found to be dependent on the presence of the substrate fosfomycin. Moreover, the E113Q mutant exhibits a kcat which is 40% that of wild-type in the absence of K+. This mutant is not activated by monovalent cations. The behavior of the E113Q mutant is consistent with the proposition that the K+ ion helps balance the charge at the metal center, further lowering the activation barrier for addition of the anionic nucleophile. The fully activated, native enzyme provides a rate acceleration of >10(15) with respect to the spontaneous addition of GSH to the oxirane.  相似文献   

3.
Ma Z  Lee JW  Helmann JD 《Nucleic acids research》2011,39(12):5036-5044
Bacillus subtilis PerR is a Fur family repressor that senses hydrogen peroxide by metal-catalyzed oxidation. PerR contains a structural Zn(II) ion (Site 1) and a regulatory metal binding site (Site 2) that, upon association with either Mn(II) or Fe(II), allosterically activates DNA binding. In addition, a third less conserved metal binding site (Site 3) is present near the dimer interface in several crystal structures of homologous Fur family proteins. Here, we show that PerR proteins with substitutions of putative Site 3 residues (Y92A, E114A and H128A) are functional as repressors, but are unexpectedly compromised in their ability to sense H(2)O(2). Consistently, these mutants utilize Mn(II) but not Fe(II) as a co-repressor in vivo. Metal titrations failed to identify a third binding site in PerR, and inspection of the PerR structure suggests that these residues instead constitute a hydrogen binding network that modulates the architecture, and consequently the metal selectivity, of Site 2. PerR H128A binds DNA with high affinity, but has a significantly reduced affinity for Fe(II), and to a lesser extent for Mn(II). The ability of PerR H128A to bind Fe(II) in vivo and to thereby respond efficiently to H(2)O(2) was restored in a fur mutant strain with elevated cytosolic iron concentration.  相似文献   

4.
Rusticyanin is a small blue copper protein isolated from Acidithiobacillus ferrooxidans with extreme acid stability and redox potential. The protein is thought to be a principal component in the iron respiratory electron transport chain in this microorganism, but its exact role in electron transfer remains controversial. The gene of rusticyanin was cloned then overexpressed in Escherichia coli, the soluble protein was purified by one-step affinity chromatography to apparent homogeneity. It was reported that Cys138, His85 and His143 were important residues for copper binding, but the significance of Cys138 was not verified so far. We constructed the mutant expression plasmids of these three residues using site-directed mutagenesis. Mutant proteins were expressed in E. coli and purified with a nickel metal affinity column. The EPR and atomic absorption spectroscopy results confirmed that Cys138 was crucial for copper binding. Removal of the sulfhydryl group of Cys138 resulted in copper loss. Mutations of His85 and His143 showed little effect on copper binding.  相似文献   

5.
A reliable model of tobacco acetohydroxy acid synthase (AHAS) was obtained by homology modeling based on a yeast AHAS X-ray structure using the Swiss-Model server. Conserved residues at the dimer interface were identified, of which the functional roles of four residues, namely H142, E143, M489, and M542, were determined by site-directed mutagenesis. Eight mutants were successfully generated and purified, five of which (H142T, M489V, M542C, M542I, and M542V) were found to be inactive under various assay conditions. The H142K mutant was moderately altered in all kinetic parameters to a similar extent. In addition, the mutant was more thermo-labile than wild type enzyme. The E143A mutant increased the Km value more than 20-fold while other parameters were not significantly changed. All mutations carried out on residue M542 inactivated the enzyme. Though showing a single band on SDS-PAGE, the M542C mutant lost its native tertiary structure and was aggregated. Except M542C, each of the other mutants showed a secondary structure similar to that of wild type enzyme. Although all the inactive mutants were able to bind FAD, the mutants M489V and M542C showed a very low affinity for FAD. None of the active mutants constructed was strongly resistant to three tested herbicides. Taken together, the results suggest that the residues of H142, E143, M489, and M542 are essential for catalytic activity. Furthermore, it seems that H142 residue is involved in stabilizing the dimer interaction, while E143 residue may be involved in binding with substrate pyruvate. The data from the site-directed mutagenesis imply that the constructed homology model of tobacco AHAS is realistic.  相似文献   

6.
Histidine residues have previously been suggested to be essential for the activity of phosphoenolpyruvate carboxylase as demonstrated by chemical modification of these residues. Although the location of these residues on the primary structure is not known, a comparison of nine phosphoenolpyruvate (P-pyruvate) carboxylases sequenced recently revealed that there are only two conserved histidine residues (His138 and His579, coordinates from the E. coli enzyme). Site-directed mutagenesis of these residues were undertaken with the E. coli P-pyruvate carboxylase and the properties of purified mutant enzymes were investigated. Mutation of His138 to asparagine (H138N) produced a protein which did not show carboxylase activity. However, this mutant enzyme catalyzed the bicarbonate-dependent dephosphorylation (Vmax = 1.4 mumol.min-1.mg-1) of the P-pyruvate. Since this reaction is due to one of the two partial reactions proposed for this enzyme, the results indicate that His138 is obligatory for the second-step reaction, i.e. the carboxylation of the enolate form of pyruvate by carboxyphosphate. Mutation of His579 to asparagine (H579N) produced an enzyme which had 69% of the wild-type carboxylase activity, but its affinity for P-pyruvate was decreased by 24-fold.  相似文献   

7.
Ferrochelatase catalyzes the terminal step in the heme biosynthetic pathway, i.e., the incorporation of Fe(II) into protoporphyrin IX. Various biochemical and biophysical methods have been used to probe the enzyme for metal binding residues and the location of the active site. However, the location of the metal binding site and the path of the metal into the porphyrin are still disputed. Using site-directed mutagenesis on Bacillus subtilis ferrochelatase we demonstrate that exchange of the conserved residues His183 and Glu264 affects the metal affinity of the enzyme. We also present the first X-ray crystal structure of ferrochelatase with iron. Only a single iron was found in the active site, coordinated in a square pyramidal fashion by two amino acid residues, His183 and Glu264, and three water molecules. This iron was not present in the structure of a His183Ala modified ferrochelatase. The results strongly suggest that the insertion of a metal ion into protoporphyrin IX by ferrochelatase occurs from a metal binding site represented by His183 and Glu264.  相似文献   

8.
Yan F  Moon SJ  Liu P  Zhao Z  Lipscomb JD  Liu A  Liu HW 《Biochemistry》2007,46(44):12628-12638
(S)-2-Hydroxypropylphosphonic acid epoxidase (HppE) is an O2-dependent, nonheme Fe(II)-containing oxidase that converts (S)-2-hydroxypropylphosphonic acid ((S)-HPP) to the regio- and enantiomerically specific epoxide, fosfomycin. Use of (R)-2-hydroxypropylphosphonic acid ((R)-HPP) yields the 2-keto-adduct rather than the epoxide. Here we report the chemical synthesis of a range of HPP analogues designed to probe the basis for this specificity. In past studies, NO has been used as an O2 surrogate to provide an EPR probe of the Fe(II) environment. These studies suggest that O2 binds to the iron, and substrates bind in a single orientation that strongly perturbs the iron environment. Recently, the X-ray crystal structure showed direct binding of the substrate to the iron, but both monodentate (via the phosphonate) and chelated (via the hydroxyl and phosphonate) orientations were observed. In the current study, hyperfine broadening of the homogeneous S = 3/2 EPR spectrum of the HppE-NO-HPP complex was observed when either the hydroxyl or the phosphonate group of HPP was enriched with 17O (I = 5/2). These results indicate that both functional groups of HPP bind to Fe(II) ion at the same time as NO, suggesting that the chelated substrate binding mode dominates in solution. (R)- and (S)-analogue compounds that maintained the core structure of HPP but added bulky terminal groups were turned over to give products analogous to those from (R)- and (S)-HPP, respectively. In contrast, substrate analogues lacking either the phosphonate or hydroxyl group were not turned over. Elongation of the carbon chain between the hydroxyl and phosphonate allowed binding to the iron in a variety of orientations to give keto and diol products at positions determined by the hydroxyl substituent, but no stable epoxide was formed. These studies show the importance of the Fe(II)-substrate chelate structure to active antibiotic formation. This fixed orientation may align the substrate next to the iron-bound activated oxygen species thought to mediate hydrogen atom abstraction from the nearest substrate carbon.  相似文献   

9.
The subclass B2 CphA (Carbapenemase hydrolysing Aeromonas) beta-lactamase from Aeromonas hydrophila is a Zn(2+)-containing enzyme that specifically hydrolyses carbapenems. In an effort to evaluate residues potentially involved in metal binding and/or catalysis (His(118), Asp(120), His(196) and His(263)) and in substrate specificity (Val(67), Thr(157), Lys(224) and Lys(226)), site-directed mutants of CphA were generated and characterized. Our results confirm that the first zinc ion is in interaction with Asp(120) and His(263), and thus is located in the 'cysteine' zinc-binding site. His(118) and His(196) residues seem to be interacting with the second zinc ion, as their replacement by alanine residues has a negative effect on the affinity for this second metal ion. Val(67) plays a significant role in the binding of biapenem and benzylpenicillin. The properties of a mutant with a five residue (LFKHV) insertion just after Val(67) also reveals the importance of this region for substrate binding. This latter mutant has a higher affinity for the second zinc ion than wild-type CphA. The T157A mutant exhibits a significantly modified activity spectrum. Analysis of the K224Q and N116H/N220G/K224Q mutants suggests a significant role for Lys(224) in the binding of substrate. Lys(226) is not essential for the binding and hydrolysis of substrates. Thus the present paper helps to elucidate the position of the second zinc ion, which was controversial, and to identify residues important for substrate binding.  相似文献   

10.
Yan F  Munos JW  Liu P  Liu HW 《Biochemistry》2006,45(38):11473-11481
(S)-2-Hydroxypropylphosphonic acid epoxidase (HppE) catalyzes the epoxide ring closure of (S)-HPP to form fosfomycin, a clinically useful antibiotic. Early investigation showed that its activity can be reconstituted with Fe(II), FMN, NADH, and O2 and identified HppE as a new type of mononuclear non-heme iron-dependent oxygenase involving high-valent iron-oxo species in the catalysis. However, a recent study showed that the Zn(II)-reconstituted HppE is active, and HppE exhibits modest affinity for FMN. Thus, a new mechanism is proposed in which the active site-bound Fe2+ or Zn2+ serves as a Lewis acid to activate the 2-OH group of (S)-HPP and the epoxide ring is formed by the attack of the 2-OH group at C-1 coupled with the transfer of the C-1 hydrogen as a hydride ion to the bound FMN. To distinguish between these mechanistic discrepancies, we re-examined the bioautography assay, the basis for the alternative mechanism, and showed that Zn(II) cannot replace Fe(II) in the HppE reaction and NADH is indispensable. Moreover, we demonstrated that the proposed role for FMN as a hydride acceptor is inconsistent with the finding that FMN cannot bind to HppE in the presence of substrate. In addition, using a newly developed HPLC assay, we showed that several non-flavin electron mediators could replace FMN in the HppE-catalyzed epoxidation. Taken together, these results do not support the newly proposed "nucleophilic displacement-hydride transfer" mechanism but are fully consistent with the previously proposed iron-redox mechanism for HppE catalysis, which is unique within the mononuclear non-heme iron enzyme superfamily.  相似文献   

11.
Recent studies on metalloregulatory proteins suggest that coordination number/geometry and metal ion availability in a host cytosol are key determinants for biological specificity. Here, we investigate the contribution that individual metal ligands of the alpha5 sensing site of Staphylococcus aureus CzrA (Asp84, His86, His97', and His100') make to in vitro metal ion binding affinity, coordination geometry, and allosteric negative regulation of DNA operator/promoter region binding. All ligand substitution mutants exhibit significantly reduced metal ion binding affinity (K(Me)) by > or =10(3) M(-1). Substitutions of Asp84 and His97 give rise to non-native coordination geometries upon metal binding and are non-functional in allosteric coupling of metal and DNA binding (DeltaG(coupling) approximately 0 kcal mol(-1)). In contrast, His86 and His100 could be readily substituted with potentially liganding (Asp, Glu) and poorly liganding (Asn, Gln) residues with significant native-like tetrahedral metal coordination geometry retained in these mutants, leading to strong functional coupling (DeltaG(coupling) > or = +3.0 kcal mol(-1)). 1H-(15)N heteronuclear single quantum coherence (HSQC) spectra of wild-type and mutant CzrAs reveal that all H86 and H100 substitution mutants undergo 4 degrees structural switching on binding Zn(II), while D84N, H97N and H97D CzrAs do not. Thus, only those variant CzrAs that retain some tetrahedral coordination geometry characteristic of wild-type CzrA upon metal binding are capable of driving 4 degrees structural conformational changes linked to allosteric regulation of DNA binding in vitro, irrespective of the magnitude of K(Me).  相似文献   

12.
Huang YC  Colman RF 《Biochemistry》2002,41(17):5637-5643
Sequence alignment predicts that His(309) of pig heart NADP-dependent isocitrate dehydrogenase is equivalent to His(339) of the Escherichia coli enzyme, which interacts with the coenzyme in the crystal structure [Hurley et al. (1991) Biochemistry 30, 8671-8688], and porcine His(315) and His(319) are close to that site. The mutant porcine enzymes H309Q, H309F, H315Q, and H319Q were prepared by site-directed mutagenesis, expressed in E. coli, and purified. The H319Q mutant has K(m) values for NADP, isocitrate, and Mn(2+) similar to those of wild-type enzyme, and V(max) = 20.1, as compared to 37.8 micromol of NADPH min(-1) (mg of protein)(-1) for wild type. Thus, His(319) is not involved in coenzyme binding and has a minimal effect on catalysis. In contrast, H315Q exhibits a K(m) for NADP 40 times that of wild type and V(max) = 16.2 units/mg of protein, with K(m) values for isocitrate and Mn(2+) similar to those of wild type. These results implicate His(315) in the region of the NADP site. Replacement of His(309) by Q or F yields enzyme with no detectable activity. The His(309) mutants bind NADPH poorly, under conditions in which wild type and H319Q bind 1.0 mol of NADPH/mol of subunit, indicating that His(309) is important for the binding of coenzyme. The His(309) mutants bind isocitrate stoichiometrically, as do wild-type and the other mutant enzymes. However, as distinguished from the wild-type enzyme, the His(309) mutants are not oxidatively cleaved by metal isocitrate, implying that the metal ion is not bound normally. Since circular dichroism spectra are similar for wild type, H315Q, and H319Q, these amino acid substitutions do not cause major conformational changes. In contrast, replacement of His(309) results in detectable change in the enzyme's CD spectrum and therefore in its secondary structure. We propose that His(309) plays a significant role in the binding of coenzyme, contributes to the proper coordination of divalent metal ion in the presence of isocitrate, and maintains the normal conformation of the enzyme.  相似文献   

13.
Site directed mutagenesis of Cys17-->Ser17 form of recombinant human granulocyte colony stimulating factor (rhG-CSF C17S) for sequential replacing of surface His(43) and His(52) with alanine was used to identify residues critical for the protein interaction with metal ions, in particular Ni(2+) chelated by dye Light Resistant Yellow 2 KT (LR Yellow 2KT)-polyethyleneglycol (PEG), and refolding after partitioning of inclusion bodies in aqueous two-phase systems. Strong binding of rhG-CSF (C17S) to PEG-LR Yellow 2KT-Cu(II) complex allowed for the adoption of affinity chromatography on Sepharose-LR Yellow 2KT-Cu(II) that appeared to be essential for the rapid isolation of mutated forms of rhG-CSF. Efficiency of that purification stage is exemplified by isolation of rhG-CSF (C17S, H43A) and rhG-CSF (C17S, H43A, H52A) mutants in correctly folded and highly purified state. Affinity partitioning of rhG-CSF histidine mutants was studied in aqueous two-phase systems containing Cu(II), Ni(II) and Hg(II) chelated by LR Yellow 2KT-PEG at pH 7.0 and Cu(II)-at pH 5.0. It was determined, that affinity of rhG-CSF mutants for metal ions decreased in the order of C17S>C17S, H43A>C17S, H43A, H52A for Cu(II), and C17S=C17S, H43A>C17S, H43A, H52A for Ni(II) ions, while affinity of all rhG-CSF mutants for Hg(II) ions was of the same order of magnitude. Influence of His(43) and His(52) mutation on protein refolding was studied by partitioning of the respective inclusion body extract in aqueous two-phase systems containing Ni(II) and Hg(II) ions. Data on rhG-CSF histidine mutant partitioning and refolding indicated, that His(52) mutation is crucial for the strength of protein interaction with chelated Ni(II) ions and refolding efficiency.  相似文献   

14.
Arabidopsis thaliana flavonol synthase (aFLS) catalyzes the production of quercetin, which is known to possess multiple medicinal properties. aFLS is classified as a 2-oxoglutarate dependent dioxygenase as it requires ferrous iron and 2-oxoglutarate for catalysis. In this study, the putative residues for binding ferrous iron (H221, D223 and H277), 2-oxoglutarate (R287 and S289) and dihydroquercetin (H132, F134, K202, F293 and E295) were identified via computational analyses. To verify the proposed roles of the identified residues, 15 aFLS mutants were constructed and their activities were examined via a spectroscopic assay designed in this study. Mutations at H221, D223, H277 and R287 completely abolished enzymes activities, supporting their importance in binding ferrous iron and 2-oxoglutarate. However, mutations at the proposed substrate binding residues affected the enzyme catalysis differently such that the activities of K202 and F293 mutants drastically decreased to approximately 10% of the wild-type whereas the H132F mutant exhibited approximately 20% higher activity than the wild-type. Kinetic analyses established an improved substrate binding affinity in H132F mutant (Km: 0.027+/-0.0028 mM) compared to wild-type (Km: 0.059+/-0.0063 mM). These observations support the notion that aFLS can be selectively mutated to improve the catalytic activity of the enzyme for quercetin production.  相似文献   

15.
Among manganese superoxide dismutases, residues His30 and Tyr174 are highly conserved, forming part of the substrate access funnel in the active site. These two residues are structurally linked by a strong hydrogen bond between His30 NE2 from one subunit and Tyr174 OH from the other subunit of the dimer, forming an important element that bridges the dimer interface. Mutation of either His30 or Tyr174 in Escherichia coli MnSOD reduces the superoxide dismutase activity to 30--40% of that of the wt enzyme, which is surprising, since Y174 is quite remote from the active site metal center. The 2.2 A resolution X-ray structure of H30A-MnSOD shows that removing the Tyr174-->His30 hydrogen bond from the acceptor side results in a significant displacement of the main-chain segment containing the Y174 residue, with local rearrangement of the protein. The 1.35 A resolution structure of Y174F-MnSOD shows that disruption of the same hydrogen bond from the donor side has much greater consequences, with reorientation of F174 having a domino effect on the neighboring residues, resulting in a major rearrangement of the dimer interface and flipping of the His30 ring. Spectroscopic studies on H30A, H30N, and Y174F mutants show that (like the previously characterized Y34F mutant of E. coli MnSOD) all lack the high pH transition of the wt enzyme. This observation supports assignment of the pH sensitivity of MnSOD to coordination of hydroxide ion at high pH rather than to ionization of the phenolic group of Y34. Thus, mutations near the active site, as in the Y34F mutant, as well as at remote positions, as in Y174F, similarly affect the metal reactivity and alter the effective pK(a) for hydroxide ion binding. These results imply that hydrogen bonding of the H30 imidazole N--H group plays a key role in substrate binding and catalysis.  相似文献   

16.
Sequences of 13 lipoxygenases from various plant and mammalian species, thus far reported, display a motif of 38 amino acid residues which includes 5 conserved histidines and a 6th histidine about 160 residues downstream. These residues occur at positions 494, 499, 504, 522, 531, and 690 in soybean lipoxygenase isozyme L-1. Since the participation of iron in the lipoxygenase reaction has been established and existing evidence based on M?ssbauer and EXAFS spectroscopy suggests that histidines may be involved in iron binding, the effect of the above residues has been examined in soybean lipoxygenase L-1. Six singly mutated lipoxygenases have been produced in which each of the His residues has been replaced with glutamine. Two additional mutants have been constructed wherein the codons for His-494 and His-504 have been replaced by serine codons. All of the mutant lipoxygenases, which were obtained by expression in Escherichia coli, have mobilities identical to that of the wild-type enzyme on denaturing gel electrophoresis and respond to lipoxygenase antibodies. The mutated proteins H499Q, H504Q, H504S, and H690Q are virtually inactive, while H522Q has about 1% of the wild-type activity. H494Q, H494S, and H531Q are about 37%, 8%, and 20% as active as the wild type, respectively. His-517 is conserved in the several lipoxygenase isozymes but not in the animal isozymes. The mutant H517Q has about 33% of the wild-type activity. The inactive mutants, H499Q, H504Q, H504S, and H690Q, become insoluble when heated for 3 min at 65 degrees C, as does H522Q. The other mutants and the wild-type are stable under these conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Aminopeptidase P (APPro) is a manganese-dependent enzyme that cleaves the N-terminal amino acid from polypeptides where the second residue is proline. APPro shares a similar fold, substrate specificity, and catalytic mechanism with methionine aminopeptidase and prolidase. To investigate the roles of conserved residues at the active site, seven mutant forms of APPro were characterized kinetically and structurally. Mutation of individual metal ligands selectively abolished binding of either or both Mn(II) atoms at the active site, and none of these metal-ligand mutants had detectable catalytic activity. Mutation of the conserved active site residues His243 and His361 revealed that both are required for catalysis. We propose that His243 stabilizes substrate binding through an interaction with the carbonyl oxygen of the requisite proline residue of a substrate and that His361 stabilizes substrate binding and the gem-diol catalytic intermediate. Sequence, structural, and kinetic analyses reveal that His350, conserved in APPro and prolidase but not in methionine aminopeptidase, forms part of a hydrophobic binding pocket that gives APPro its proline specificity. Further, peptides in which the required proline residue is replaced by N-methylalanine or alanine are cleaved by APPro, but they are extremely poor substrates due to a loss of interactions between the prolidyl ring of the substrate and the hydrophobic proline-binding pocket.  相似文献   

18.
The roles of three residues (betaHis91, betaAsp213, and betaAsn222) implicated in energy transduction in the membrane-spanning domain II of the proton-translocating pyridine nucleotide transhydrogenase of Escherichia coli have been examined using site-directed mutagenesis. All mutations affected transhydrogenation and proton pumping activities, although to various extents. Replacing betaHis91 or betaAsn222 of domain II by the basic residues lysine or arginine resulted in occlusion of NADP(H) at the NADP(H)-binding site of domain III. This was not seen with betaD213K or betaD213R mutants. It is suggested that betaHis91 and betaAsn222 interact with betaAsp392, a residue probably involved in initiating conformational changes at the NADP(H)-binding site in the normal catalytic cycle of the enzyme (M. Jeeves et al. (2000) Biochim. Biophys. Acta 1459, 248-257). The introduced positive charges in the betaHis91 and betaAsn222 mutants might stabilize the carboxyl group of betaAsp392 in its anionic form, thus locking the NADP(H)-binding site in the occluded conformation. In comparison with the nonmutant enzyme, and those of mutants of betaAsp213, most mutant enzymes at betaHis91 and betaAsn222 bound NADP(H) more slowly at the NADP(H)-binding site. This is consistent with the effect of these two residues on the binding site. We could not demonstrate by mutation or crosslinking or through the formation of eximers with pyrene maleimide that betaHis91 and betaAsn222 were in proximity in domain II.  相似文献   

19.
DNase II is an acid endonuclease that is involved in the degradation of exogenous DNA and is important for DNA fragmentation and degradation during cell death. In an effort to understand its catalytic mechanism, we constructed plasmids encoding nine different histidine (H)-to-leucine (L) mutants for porcine DNase II and examined the enzyme properties of the expressed mutant proteins. Of the mutants, all but H132L were secreted into the medium of expressing cells. Six of the mutated DNase II proteins (H41L, H109L, H206L, H207L, H274L and H322L) showed enzyme activity, whereas the H115L, H132L and H297L mutants exhibited very little activity. The H115L and H297L mutants were found to undergo correct protein folding, but were inactive. To further examine these mutants, we expressed H115A and H297A DNase II mutants; these mutants were inactive, but their DNase activities could be rescued with imidazole, indicating that His115 and His297 are likely to function as a general acid and a general base respectively in the catalytic centre of the enzyme. In contrast with the secreted mutants, the H132L mutant protein was found in cell lysates within 16 h after transfection. This protein was inactive, improperly folded and was drastically degraded via the proteosomal pathway after 24 h. The polypeptide of another substitution for His132 with lysine resulted in the misfolded form being retained in endoplasmic reticulum.  相似文献   

20.
Human serum transferrin is an iron-binding and -transport protein which carries iron from the blood stream into various cells. Iron is held in two deep clefts located in the N- and C-lobes by coordinating to four amino acid ligands, Asp 63, Tyr 95, Tyr 188, and His 249 (N-lobe numbering), and to two oxygens from carbonate. We have previously reported the effect on the iron-binding properties of the N-lobe following mutation of the ligands Asp 63, Tyr 95, and Tyr 188. Here we report the profound functional changes which result from mutating His 249 to Ala, Glu, or Gln. The results are consistent with studies done in lactoferrin which showed that the histidine ligand is critical for the stability of the iron-binding site [H. Nicholson, B. F. Anderson, T. Bland, S. C. Shewry, J. W. Tweedie, and E. N. Baker (1997) Biochemistry 36, 341-346]. In the mutant H249A, the histidine ligand is disabled, resulting in a dramatic reduction in the kinetic stability of the protein toward loss of iron. The H249E mutant releases iron three times faster than wild-type protein but shows significant changes in both EPR spectra and the binding of anion. This appears to be the net effect of the metal ligand substitution from a neutral histidine residue to a negative glutamate residue and the disruption of the "dilysine trigger" [MacGillivray, R. T. A., Bewley, M. C., Smith, C. A., He, Q.-Y., Mason, A. B., Woodworth, R. C., and Baker, E. N. (2000) Biochemistry 39, 1211-1216]. In the H249Q mutant, Gln 249 appears not to directly contact the iron, given the similarity in the spectroscopic properties and the lability of iron release of this mutant to the H249A mutant. Further evidence for this idea is provided by the preference of both the H249A and H249Q mutants for nitrilotriacetate rather than carbonate in binding iron, probably because NTA is able to provide a third ligation partner. An intermediate species has been identified during the kinetic interconversion between the NTA and carbonate complexes of the H249A mutant. Thus, mutation of the His 249 residue does not abolish iron binding to the transferrin N-lobe but leads to the appearance of novel iron-binding sites of varying structure and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号