首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Somatotrophs from male rat anterior pituitary were used to investigate the formation of secretory granules. When enzymatically dispersed cells were incubated with cationized ferritin (CF) for 15 min, CF labeled immature secretory granules, but not mature granules of somatotrophs. Most immature granules labeled by CF transformed to the mature types within 120 min. This indicates that the fusion of endocytic vesicles with the immature granules occurs during the maturation process of secretory granules. The internalized CF was distributed not only in the immature secretory granules, but also in the peripheral region of trans Golgi cisternae or GERL. Enzyme cytochemistry revealed that acid phosphatase-positive cisternae (GERL) were the main site for secretory granule formation, and was devoid of thiamine pyrophosphatase (TPPase) activity. A small number of secretory granules were also present in the peripheral regions of TPPase-positive Golgi cisternae. The granule-forming sites, however, lacked TPPase activity, while the remaining region of the same cisterna showed the positive enzyme activity. This indicates that the granule-forming region at the periphery of Golgi cisterna is different from the remaining part of the same cisterna in terms of cytochemical properties. This probably results from the insertion of endocytic vesicle membrane, since the same granule-forming sites preferentially fused with CF-labeled small vesicles which lacked cytochemical TPPase activity. Taken together. Our results suggest that the membrane of secretory granules is modified during the granule formation, at least partly by the fusion of endocytic small vesicles with Golgi cisternae (or GERL), and with immature secretory granules.  相似文献   

2.
Two phosphatase activities, which have been reported to be associated with the Golgi apparatus in several cellular types, have been cytochemically demonstrated in rat epiphyseal cartilage. This was the case for thiamine pyrophosphatase (TPPase) which was detected in Golgi trans face cisternae and also in nascent or immature secretory granules of chondrocytes. beta-Nicotinamide adenine dinucleotide phosphatase (beta-NADPase), on the other hand, was localized mainly in the endoplasmic reticulum region of both proliferative and hypertrophic chondrocytes. Most of the beta-NADPase reaction was shown to be associated with the cytoplasmic side of the rough endoplasmic reticulum membranes and also partially dispersed throughout the cytosol background. We suggest that beta NADPase in chondrocytes could be an enzyme with different properties from that described in other secretory cells.  相似文献   

3.
Thiamine pyrophosphatase (TPPase), nucleoside diphosphatase (NDPase), and glucose-6-phosphatase (G-6-Pase) were localized by the cerium technique in guinea pig pinealocytes and compared with the corresponding lead technique. NDPase and TPPase were also compared at different pH values using the cerium technique. Vibratome sections of perfusion-fixed tissue were incubated with cerium chloride or lead nitrate. Substrates used were thiamine pyrophosphate (for TPPase), sodium inosine diphosphate (NDPase), and disodium glucose-6-phosphate (G-6-Pase). The 1-2 trans saccules of the Golgi apparatus showed TPPase and NDPase activity but none for G-6-Pase. The endoplasmic reticulum (ER) cisternae and perinuclear space had NDPase and G-6-Pase activity but not TPPase. The abluminal plasmalemma of endothelial cells and the plasmalemma of Schwann cells demonstrated TPPase and NDPase activity but the luminal plasmalemma of the endothelial cells and the plasmalemma of pinealocyte processes showed only NDPase activity. TPPase was active at all pH values tested, but NDPase was most active at pH values of 6.5 and 7.0. Lead phosphate precipitate was frequently seen in nuclei, perinuclear space, ER cisternae, and "synaptic" vesicles when lead was used as the capturing agent. These sites were usually not labeled when cerium was used.  相似文献   

4.
The three-dimensional structure of the Golgi apparatus and its components has been analyzed in sections of pancreatic acinar cells by using stereopairs of electron microscope photographs. Pancreatic tissue fixed in glutaraldehyde was postfixed in reduced osmium, and the sections were stained with lead citrate. Tissues were also treated to demonstrate phosphatase activity (i.e., nicotinamide adenine dinucleotide phosphatase, NADPase; thiamine pyrophosphatase, TPPase; cytidine monophosphatase, CMPase). The following stacked components were observed along the branching, anastomotic, continuous, ribbonlike Golgi apparatus. 1) On the cis-face of the Golgi stack there was a tubular membranous network known to be osmiophilic and referred to as the cis-osmiophilic tubular network or cis-element. 2) A first, poorly fenestrated saccule, unreactive for the phosphatases tested, was slightly distended in places and contained a fluffy granulofilamentous material. 3) The subjacent three or four saccules, reactive for NADPase and/or TPPase, showed dilated portions containing a granulofilamentous secretory material similar to that filling the rest of the saccule. They also showed nondilated portions perforated with large fenestrations, some of which were in register and formed wells containing 80-nm vesicles. The dilated portions of these saccules were present at random along the length of the saccules and were not located exclusively at their edges. 4) The remaining one or two elements of the stack, CMPase positive, showed dilated spheroidal portions or prosecretory granules containing a homogeneous secretory material and flattened fenestrated regions free of secretory material and having the appearance of networks of narrow membranous tubules. 5) Lastly on the trans-aspect of the stack there were detached prosecretory granules reactive for CMPase and surrounded by a corona of small vesicles, and smooth-surfaced spherical CMPase-negative granules having a denser content that were identified as fully formed secretion granules; there were also occasional free trans-tubular networks strongly reactive for CMPase that appeared to undergo fragmentation and numerous small vesicles free from acid-phosphatase activity. These various images were interpreted as indicating that prosecretory granules formed in relation to two or three fenestrated saccules on the trans-side of the stack. Such granules, following their detachment from the trans-face of the stack, their separation from trans-tubular networks, and condensation of their content, yielded mature secretion granules.  相似文献   

5.
The vasopressin-producing neurons of the hypothalamo-neurohypophysial system are a particularly good model with which to consider the relationship between the Golgi apparatus nd GERL and their roles in secretory granule production because these neurons increase their synthesis and secretion of vasopressin in response to hyperosmotic stress. Enzyme cytochemical techniques for acid phosphatase (AcPase) and thiamine pyrophosphatase (TPPase) activities were used to distinguish GERL from the Golgi apparatus in cell bodies of the supraoptic nucleus from normal mice, mice hyperosmotically stressed by drinking 2% salt water, and mice allowed to recover for 5-10 d from hyperosmotic stress. In nonincubated preparations of control supraoptic perikarya, immature secretory granules at the trans face of the Golgi apparatus were frequently attached to a narrow, smooth membrane cisterna identified as GERL. Secretory granules were occasionally seen attached to Golgi saccules. TPPase activity was present in one or two of the trans Golgi saccules; AcPase activity appeared in GERL and attached immature secretory granules, rarely in the trans Golgi saccules, and in secondary lysosomes. As a result of hyperosmotic stress, the Golgi apparatus hypertrophied, and secretory granules formed from all Golgi saccules and GERL. Little or no AcPase activity could be demonstrated in GERL, whereas all Golgi saccules and GERL-like cisternae were TPPase positive. During recovery, AcPase activity in GERL returned to normal; however, the elevated TPPase activity and secretory granule formation seen in GERL-like cisternae and all Golgi saccules during hyperosmotic stress persisted. These results suggest that under normal conditions GERL is the predominant site for the secretory granule formation, but during hyperosmotic stress, the Golgi saccules assume increased importance in this function. The observed cytochemical modulations in Golgi saccules and GERL suggest that GERL is structurally and functionally related to the Golgi saccules.  相似文献   

6.
We have studied by electron microscopy and immunocytochemistry the formation of secretory granules containing adrenocorticotropic hormone (ACTH) in murine pituitary cells of the AtT20 line. The first compartment in which condensed secretory protein appears is a complex reticular network at the extreme trans side of the Golgi stacks beyond the TPPase-positive cisternae. Condensed secretory protein accumulates in dilated regions of this trans Golgi network. Examination of en face and serial sections revealed that "condensing vacuoles" are in fact dilations of the trans Golgi network and not detached vacuoles. Only after presumptive secretory granules have reached an advanced stage of morphological maturation do they detach from the trans Golgi network. Frequently both the dilations of the trans Golgi network containing condensing secretory protein and the detached immature granules in the peri-Golgi region have surface coats which were identified as clathrin by immunocytochemistry. Moreover both are the site of budding (or fusion) of coated vesicles, some of which contain condensed secretory protein. The mature granules below the plasma membrane do not, however, have surface coats. Immunoperoxidase labeling with an antiserum specific for ACTH and its precursor polypeptide confirmed that many of the coated vesicles associated with the trans Golgi network contain ACTH. The involvement of the trans Golgi network and coated vesicles in the formation of secretory granules is discussed.  相似文献   

7.
Using an antibody revealed by the protein A-gold technique, we have studied the distribution of clathrin antigenic sites in the Golgi area of pancreatic B-cells. Golgi compartments showing an immunolabelling comprised extensive segments of cisternae, typical coated vesicles, dilated extremities of cisternae with condensing secretory material, and newly formed secretory granules. Most of the labelled membranes were observed at the trans Golgi pole while little immunoreactivity was found on the cis pole.  相似文献   

8.
Summary Cytochemical studies were performed to clarify the occurrence of an internal polarity of the Golgi apparatus and the relationship between this organelle and GERL in many kinds of cells having different morphologies and functions. The fine structural localizations of thiamine pyrophosphatase (TPPase) and acid phosphatase (AcPase) were examined in anterior pituitary cells, thyroid epithelial cells, gastric chief and parietal cells, duodenal absorptive epithelial cells, hepatocytes, adrenal cortical and medullary cells of mice, and thyroid epithelial cells of domestic fowls. TPPase activity is usually localized in the cisternae of 1–3 stacks and vesicles on the trans-side of the Golgi apparatus of all the cells examined, and in some immature secretory granules of anterior pituitary cells and of gastric chief cells. Rigid lamellae and multivesicular bodies are rarely positive to this reaction, in several kinds of cells. AcPase activity was usually demonstrable in the cisternae of 1–3 stacks and vesicles on the trans-side of the Golgi apparatus, and also in rigid lamellae, coated vesicles, multivesicular bodies and lysosomes in all varieties of cells studied. Some immature secretory granules are positive to the AcPase reaction in anterior pituitary cells and gastric chief cells. The areas positive for both enzyme activities were partially or almost completely overlapping in all the cells examined, though there were minor variations among them. The grades of overlap are classified into three types. Prolonged osmication was performed on thyroid epithelial cells, duodenal absorptive epithelial cells, hepatocytes, adrenal cortical cells, Leydig cells, the epithelial cells of the vas deferens and the theca cells of mice. Cisternae of 1–3 stacks on the cis-side of the Golgi apparatus of all the cells examined were stained with osmium tetroxide. In all these cells we observed that the Golgi apparatus has an internal polarity and that GERL is a part of this organelle in cytochemical respects.This study was supported by grants from the Japan Ministry of Education  相似文献   

9.
The distribution of thiamine pyrophosphatase (TPPase) and acid phosphatase (AcPase) has been examined in resting parotid acinar cells as well as during decreased and increased secretory granule production. In resting acinar cells, TPPase activity was restricted to the trans Golgi saccules and AcPase activity was localized in GERL and immature secretory granules. Although secretory granule production is diminished during ethionine intoxication, no significant alteration in the distribution of either TPPase or AcPase was noted. However, marked changes in enzyme localization, especially of TPPase, occurred during accelerated secretory granule production. The alterations were essentially the same for all of the conditions studied (recovery from ethionine treatment, recovery from a protein depletion diet, secretory stimulation with isoproterenol, and postnatal maturation of the parotid gland). During maximal secretory granule production, TPPase activity was localized not only in the trans Golgi saccules, but also in GERL-like cisternae and immature secretory granules. The immature secretory granules were often in continuity with the GERL-like cisternae. At the same time that the TPPase activity was increased, the AcPase activity was frequently diminished. These modulations in enzyme activity provide evidence that GERL is derived from the trans Golgi saccule.  相似文献   

10.
Tetsuko Noguchi 《Protoplasma》1976,87(1-3):163-178
Summary Organelles in resting and growing cells ofMicrasterias americana were examined using electron microscopy after cytochemical procedures for four kinds of phosphatases, acid phosphatase (ACPase), alkaline phosphatase (ALPase), thiamine pyrophosphatase (TPPase), and inosine diphosphatase (IDPase), and osmium tetroxide reduction. Special attention was paid to activities in the Golgi apparatus.In resting cells, positive reactions for ACPase and TPPase were observed in all cisternae of the dictyosome, especially in the peripheral parts. A positive IDPase reaction was seen in one central cisterna and was frequent in the distal-most cisterna. Reduction of osmium tetroxide was seen in the proximal cisternae.In early growing cells, the dictyosomes gave positive reactions for ACPase in the proximal cisternae and the distal cisterna, while in late growing cells only in proximal cisternae. Both in early and late growing cells, the dictyosomes were positive for TPPase and IDPase in the distal cisternae and vesicles derived from the distal cisternae, and for the reduction of osmium tetroxide in the proximal cisternae. ALPase activity was detected in the growing cell wall but not in the dictyosome.  相似文献   

11.
The three-dimensional structure of the Golgi apparatus and its components has been analyzed in thin and thick sections of mucous cells of mouse Brunner's glands by using low- and high-voltage electron microscopes and a stereoscopic approach. In thick sections of glands impregnated with osmium or treated to detect nicotinamide adenine dinucleotide phosphatase (NADPase) or thiamine pyrophosphatase (TPPase) activity, the Golgi apparatus appeared, at low magnification, as a continuous network located in the supranuclear region. At higher magnifications and in thin sections of tissue postfixed with reduced osmium and stained with lead citrate or treated to demonstrate phosphatase activity, the following components were observed: on the cis-face of the Golgi stacks, an osmiophilic tubular network referred to as the cis-element; a cis-saccular-compartment composed of a distended porous saccule slightly reactive for NADPase and three or four underlying NADPase-positive, flattened, poorly fenestrated saccules; a trans-saccular-compartment consisting of four to six TPPase-positive saccules or sacculo-tubular elements, prosecretory granules, and "peeling off" trans-tubular networks. The saccules of the cis-compartment were often perforated by large pores in register. The cavities thus formed in the stacks were called wells and were pan-shaped with a mouth directed toward the cis-face of the stacks and a bottom closed by TPPase-positive saccules. The wells always contained 80-nm vesicles. The saccules of the trans-compartment were involved in the formation of secretory granules according to the following proposed sequence of transformation. The secretion product appeared initially as a granular material evenly distributed throughout a slightly distended, poorly fenestrated saccule. These saccules appeared to transform into fenestrated elements with irregular pores and with parts of them taking on the appearance of a tubular network; they were thus referred to as sacculotubular elements. The secretory material initially distributed throughout these elements accumulated in nodular dilatations randomly distributed along the tubular portions of the elements. The dilatations, considered as prosecretory granules, increased in size as they drained the secretory material from the rest of the sacculotubular elements. Such prosecretory granules, large and irregular in shape, "peeled off" from the stacks of saccules with residual saccular or tubular structures still attached to them, some of the latter forming trans-tubular networks. The prosecretory granules detached from such membranous residues, condensed, and finally transformed into spherical secretion granules.  相似文献   

12.
H Fujita  H Okamoto 《Histochemistry》1979,64(3):287-295
The fine structural localization of thiamine pyrophosphatase (TPPase) and acid phosphatase (AcPase) was examined in pancreatic acinar cells of fasting and fed mice. The results were not affected by these conditions. TPPase activity was positive in two and sometimes three cisternae of the inner Golgi lamellae as well as in the condensing vacuoles of the trans area, but negative in the rigid lamellae and small vesicles of the trans area. AcPase activity was demonstrated in two and sometimes three cisternae of inner Golgi lamellae, condensing vacuoles, rigid lamellae, lysosomes and smooth or coated vesicles in the trans area. The inner Golgi lamellae and the condensing vacuoles were positive for both enzyme activities. From these facts, the lysosome is considered to be formed not only in the GERL system but also through the rough endoplasmic reticulum-Golgi apparatus route. It is reasonable to consider that Novikoff's GERL is not independent from the Golgi apparatus but represents a part of this organelle.  相似文献   

13.
The present electron microscopic cytochemical investigation was undertaken to characterize the alterations in the golgi apparatus and GERL of rat parotid acinar cells during ethionine intoxication and recovery. Although the Golgi apparatus and GERL were reduced in size, and some broadening of the Golgi saccules occurred as the result of ethionine treatment, the relative localization of thiamine pyrophosphatase (TPPase) activity in the Golgi saccules, and acid phosphatase activity (AcPase) in GERL, remained unchanged. Shortly after ethionine treatment was stopped, a dramatic redistribution of enzyme activities was noted. Within the first 24 hours of recovery, the Golgi apparatus began to enlarge, and the content of secretory granules increased. By day 3 of recovery, cisternae morphologically identifiable as GERL and forming secretory granules possessed TPPase activity, while AcPase activity was virtually undetectable. After seven days of recovery, the Golgi apparatus and GERL appeared both morphologically and cytochemically normal. The enzyme modulation observed during recovery may be correlated with increased secretory granule production. Furthermore, the presence of TPPase activity in GERL and forming secretory granules lends support to the suggestion that GERL may be derived from the trans Golgi saccule.  相似文献   

14.
The structure and cytochemistry of the Golgi apparatus and GERL of rat parotid acinar cells was studied after in vivo secretory stimulation with isoproterenol. Discharge of mature secretory granules was complete within 1 hr after isoproterenol injection, but immature granules in the Golgi region or near the lumen were not released. At early times (1-5 hr) after isoproterenol, acid phosphatase (AcPase) activity was markedly increased in GERL and immature secretory granules compared to uninjected controls. GERL appeared increased in extent and numerous continuities with immature granules were observed. Reaccumulation of mature secretory granules was first evident at 5 hr, and was almost complete by 16 hr after isoproterenol. Thiamine pyrophosphatase (TPPase) activity, normally restricted to the trans Golgi saccules, was frequently present in immature granules during this time. Narrow cisternae resembling GERL, occasionally in continuity with immature granules, also contained TPPase reaction product. By 16-24 hr after stimulation, the activity and distribution of AcPase and TPPase were similar to control cells. These results demonstrate the dynamic nature of the Golgi apparatus and GERL in parotid acinar cells, and emphasize the close structural and functional relationship between these two structures.  相似文献   

15.
Colchicine administered to adult rats at a dosage of 0.5 mg/100 g of body weight effected a disorganization of the Golgi apparatus in pancreatic acinar cells. The results obtained after various periods of treatment (10 min to 6 h) showed (a) changes in all components of the Golgi complex, and (b) occurrence of large vacuoles that predominated in cytoplasmic areas outside the Golgi region. The alterations in Golgi stacks concerned elements of the proximal and distal side: (a) accumulation of transport vesicles, (b) formation of small, polymorphic secretion granules, and (c) alterations in the cytochemical localization of enzymes and reaction product after osmification. Transport vesicles accumulated and accompanied short, dilated cisternae, which lack mostly the reaction products of thiamine pyrophosphatase, inosine diphosphatase, and acid phosphatase, and osmium deposits after prolonged osmification. After 4 to 6 h of treatment, accumulated transport vesicles occupied extensive cellular areas; stacked cisternae were not demonstrable in these regions. The changes on the distal Golgi side included GERL elements: condensing vacuoles were diminished; they were substituted by small, polymorphic zymogen granules, which appeared to be formed by distal Golgi cisternae and by rigid lamellae. Unusually extended coated regions covered condensing vacuoles, rigid lamellae, and polymorphic secretion granules. A cytochemical distinction between Golgi components and GERL was possible neither in controls nor after colchicine treatment. The cytochemical alterations in Golgi components were demonstrable 20-30 min following administration of colchicine; at 45 min, initial morphological changes--augmentation of transport vesicles and formation of polymorphic zymogen granules--became apparent. 20 min after administration of colchicine, conspicuous groups of large vacuoles occurred. They were located mostly in distinct fields between cisternae of the endoplasmic reticulum, and were accompanied by small osmium--reactive vesicles. Stacked cisternae were not demonstrable in these fields. Vacuoles and vesicles were devoid of reaction products of thiamine pyrophosphatase, inosine diphosphatase, and acid phosphatase. The results provide evidence that formation of stacked Golgi cisternae is impaired after colchicine treatment. The colchicine--induced disintegration of the Golgi complex suggests a regulatory function of microtubules in the organization of the Golgi apparatus.  相似文献   

16.
T Akisaka 《Histochemistry》1982,76(4):539-546
The cytochemical distribution of thiamine pyrophosphatase (TPPase) activity in Meckel's cartilage cells of the mouse embryo has been studied during the endochondral ossification. All the cartilage cells contain reaction product within the Golgi apparatus. In immature chondrocytes, at the reserve cell zone, TPPase activity is restricted to several inner cisternae of independent Golgi apparatus. In mature cells at the proliferative cell zone, several Golgi complexes form a Golgi network connecting with each other by the TPPase positive tubular stalks. Golgi cisternae, condensing vacuoles and vesicles also contain reaction product. In the hypertrophic chondrocytes located in the calcifying zone, their disorganized Golgi apparatus still retain reaction product. Some chondrocytes, even those located within calcified or opened lacunae, exhibit intact structures and normal cytochemical enzyme distribution. These data indicate the possibility that some chondrocytes may survive and contribute the formation of mandible.  相似文献   

17.
Summary The cytochemical distribution of thiamine pyrophosphatase (TPPase) activity in Meckel's cartilage cells of the mouse embryo has been studied during the endochondral ossification. All the cartilage cells contain reaction product within the Golgi apparatus. In immature chondrocytes, at the reserve cell zone, TPPase activity is restricted to several inner cisternae of independent Golgi apparatus. In mature cells at the proliferative cell zone, several Golgi complexes form a Golgi network connecting with each other by the TPPase positive tubular stalks. Golgi cisternae, condensing vacuoles and vesicles also contain reaction product. In the hypertrophic chondrocytes located in the calcifying zone, their disorganized Golgi apparatus still retain reaction product. Some chondrocytes, even those located within calcified or opened lacunae, exhibit intact structures and normal cytochemical enzyme distribution. These data indicate the possibility that some chondrocytes may survive and contribute the formation of mandible.  相似文献   

18.
The morphological effects of Brefeldin A (BFA) on the parotid acinar cells of a rat were investigated at the stage of active resynthesis of secretory materials following administration of the secretogogue, isoproterenol. Incubation with BFA resulted in: a) marked dilation of the rough endoplasmic reticulum (RER), b) involution of the Golgi complex to rudimentary forms which disseminated throughout the cytoplasm, and c) agenesis of secretion granules. It appears that the primary action of BFA is inhibition of the export of secretory materials from the RER toward the Golgi complexes. Histochemical staining indicated the thiamine pyrophosphatase (TPPase) positive saccules of the Golgi stack to undergo degradation in autophagic vacuoles. In contrast, small vesicles showing the osmium reducing activity characteristic of cis elements, including osmium negative vesicles, continued to be present throughout a 4-h period of investigation, indicating the cis and, most likely, medial elements to be the components of the rudimentary Golgi complexes. On removal of the drug, a large number of transport vesicles appeared immediately from the RER and carried secretory materials to the rudimentary Golgi complex, so that the organelles were rapidly reconstructed within 30-60 min, followed by the reaccumulation of secretory granules by 90 min. It is thus indicated that the size and configuration of the Golgi complex is regulated by a dynamic equilibrium of the transport of secretory materials, and that the rudimentary Golgi complex containing cis and probably medial elements may function as the smallest units of the Golgi complex for full development as seen under normal conditions.  相似文献   

19.
Phosphatase cytochemistry was used to distinguish between the Golgi apparatus and GERL (considered as a specialized region of endoplasmic reticulum [ER] at the inner [trans] aspect of the Golgi stack) in pancreatic exocrine cells of guinea pig, rat, rabbit, and hamster. The trans element of the Golgi stack exhibits thiamine pyrophosphatase (TPPase) but no acid phosphatase (AcPase) activity. In contrast, GERL shows AcPase but no TPPase activity. The nascent secretory granules, or condensing vacuoles, are expanded cisternal portions of GERL. Continuities of condensing vacuoles with rough ER are suggested, and it is proposed that some secretory components may have direct access to the condensing vacuoles from ER. Connections of Golgi apparatus with GERL were not seen.  相似文献   

20.
To delineate the traffic route through the Golgi apparatus followed by newly synthesized lysosomal enzymes, we subfractionated the Golgi apparatus of rat liver by preparative free-flow electrophoresis into cisternae fractions of increasing content of trans face markers and decreasing contents of markers for the cis face. NADPase was used to mark median cisternae. Beta-Hexosaminidase, the high mannose oligosaccharide processing enzyme, alpha-mannosidase II, the two enzymes involved in the biosynthesis of the phosphomannosyl recognition marker, and the phosphomannosyl receptor itself decreased in specific activity or amount from cis to trans. Additionally, these activities were observed in a fraction consisting predominantly of cisternae, vesicles and tubules derived from trans-most Golgi apparatus elements. These results, along with preliminary pulse-labeling kinetic data for the phosphomannosyl receptor, suggest that lysosomal enzymes enter the Golgi apparatus at the cis face, are phosphorylated, and appear in trans face vesicles by a route whereby the phosphomannosyl receptor bypasses at least some median and/or trans Golgi apparatus cisternae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号