首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Phytochemistry》1987,26(4):881-883
Germinating seeds of mung bean were treated with different concentrations of lead and mercury. Estimations of δ-aminolevulinic acid dehydratase activity, chlorophyll and protein contents were performed. The metals were found to inhibit δ-aminolevulinic acid dehydratase activity and decrease total chlorophyll content, suggesting the possible regulatory role of the enzyme in chlorophyll synthesis. The δ-aminolevulinic acid dehydratase activity was localized exclusively in chloroplasts.  相似文献   

2.
An automated procedure for the assay of semipurified and purified δ-aminolevulinic acid dehydratase (EC 4.2.1.24) has been developed based on the manual spectrophotometric method of Mauzerall and Granick (1). This method has been used to determine (a) the enzyme activity in various samples during enzyme-purification procedures, (b) the dependence of initial rates of catalysis for a fixed enzyme concentration on the substrate concentration, and (c) the variation in the level of enzyme activity during and after chemical modification.  相似文献   

3.
Addition of hemin (5–200 μM) to a rabbit reticulocyte iron-free incubation medium, resulted in a progressive inhibition of heme synthesis as measured by incorporation of (14C)-glycine. In contrast when (14C) δ-aminolevulinic acid incorporation into heme was studied, significant inhibition below that of the (14C)-glycine control only occurred with hemin concentrations greater than 100 μM. Hemin progressively inhibited cellular and mitochondrialδ-aminolevulinic acid synthetase activity, as well as cellular δ-aminolevulinic acid dehydratase activity. The results indicated that elevated levels of hemin initially control heme synthesis by feedback inhibition at the rate-limiting enzyme of heme synthesis, δ-aminolevulinic acid synthetase. Hemin inhibition of δ-aminolevulinic acid dehydratase is only significant for the entrire heme synthetic pathway when greater than one-third of this enzyme's activity is inhibited.  相似文献   

4.
Nonproliferating cultures of adult rat hepatocytes were found to lose 60–70% of cell-associated zinc during their first 24 h of incubation in standard, serum-free medium. The loss of zinc was accompanied by a profound loss (95%) in the activity of the zinc metalloenzyme, δ-aminolevulinic acid dehydratase, as well as a loss (>85%) in the cellular content of immunoreactive δ-aminolevulinic acid dehydratase protein. Restoration of cellular zinc content by the addition of zinc to the culture medium partially prevented the losses of both δ-aminolevulinic acid dehydratase activity and immunoreactive protein. Since the spontaneous, selective loss of cellular zinc appears to have specific effects on a relevant hepatic function, this culture system constitutes a novel invitro model of zinc deficiency in mature liver.  相似文献   

5.
δ-Aminolevulinic acid dehydratase (porphobilinogen synthase; 5-aminolevulinate hydro-lyase, EC 4.2.1.24) was purified from rat and rabbit erythrocytes to a homogeneous state. Specific activities were 26.0 and 26.6 units/mg protein for the rat and rabbit enzymes, respectively, and their estimated molecular weight was 280 000, each consisting of 8 subunits of Mr 35 000. In order to quantitate rat δ-aminolevulinic acid dehydratase at several stages of lead-poisoning, a radioimmunoassay technique using goat antiserum against the rat enzyme was developed for the first time. This technique was specific, reproducible and high sensitive allowing determination of 1 ng enzyme. When drinking water containing 25 mM lead acetate was given daily to rats ad lib. the δ-aminolevulinic acid dehydratase activity in the blood, assayed without any pretreatment, decreased to 8% of the control level on the next day. On the contrary, the restored enzyme activity, assayed in the presence of Zn2+ and dithiothreitol, was greater than normal by the fourth day of lead administration in bone-marrow cells and by the ninth day in the peripheral blood. The increased activity level stayed the same from the ninth day onward. The enzyme content as determined directly by the radioimmunoassay technique at this stage was about 2-fold above that the control. There was no significant difference in the number of reticulocytes and the distribution profile of different types of reticulocytes between the lead-exposed and non-exposed rats. Therefore, the increase in the amount of δ-aminolevulinic acid dehydratase in erythrocytes of lead-poisoned rats was suggested to be due to an increased rate of synthesis in the bone-marrow cells.  相似文献   

6.
δ-Aminolevulinic acid dehydratase (EC 4.2.1.24) was obtained in highly purified form from beef liver. Upon photooxidation of the enzyme in the presence of methylene blue as a sensitizer led to a loss of the enzymatic activity according to pseudo-first order kinetics. The pronounced pH dependence (pk value of 6.8) of the photooxidation rate and the results of amino acid analysis suggested that the inactivation was largely due to the modification of the histidine residue. The finding of the enzyme with little activity in the presence of diethylpyrocarbonate was consistent with such a speculation. On the basis of these results, it can be postulated that the histidine residue seems to play an important role in the enzymatic activity of δ-aminolevulinic acid dehydratase.  相似文献   

7.
1. The combined effect of methylmercury, cadmium and lead on renal enzymes of pekin ducks was studied.2. Renal acid phosphatase and glutathione S-transferase activities were not affected by heavy metal treatment.3. Renal δ-aminolevulinic acid dehydratase activity was decreased significantly in ducks treated with lead alone or when lead was co-administered with methylmercury.4. Renal cytochrome c oxidase activity was decreased significantly when methylmercury was co-administered with cadmium and/or lead.5. The findings suggest that lead had the main effect on 5-aminolevulinic acid dehydratase and methylmercury had the main effect on cytochrome c oxidase activity. Interaction effect was also observed in cytoehrome c oxidase activity.  相似文献   

8.
4,6-Dioxoheptanoic acid (succinylacetone, SA) was examined with regard to its ability to a) inhibit the second enzyme of the heme pathway, δ-aminolevulinic acid (ALA) dehydratase, b) lower the heme concentration, and c) inhibit cell growth of murine erythroleukemia (MEL) cells in culture. SA profoundly inhibited ALA dehydratase in broken cell preparations at concentrations as low as 10?7 M. The stimulation of hemoglobin production by DMSO and butyrate in MEL cells was inhibited by the addition of SA to the cell medium. When 1 mM SA was added to the medium, there was a profound inhibition of ALA dehydratase activity, and the heme concentration of cells declined progressively with each cell division. Cell growth was markedly inhibited after two cell divisions.  相似文献   

9.
Succinylacetone, a competitive inhibitor (KI = 400 μM) of δ-aminolevulinic acid dehydratase of Clostridiumtetanomorphum, is converted non-enzymatically upon incubation with δ-aminolevulinic acid to succinylacetone pyrrole, a much stronger competitive inhibitor (KI = 5 μM) of the enzyme. A similar effect is seen in vivo: when present in the growth medium at concentrations of about 1 μM, the pyrrole decreases the level of corrinoids produced by this organism by half, while succinylacetone at 200 μM causes only 19 per cent inhibition of corrinoid formation. Levulinic acid is a much weaker inhibitor in vitro and in vivo. The inhibition by succinylacetone pyrrole is considered to be due to its structural resemblance to δ-aminolevulinic acid rather than to porphobilinogen, the reaction product of δ-aminolevulinic acid dehydratase: succinylacetone, succinylacetone pyrrole, and levulinic acid all contain a succinyl group.  相似文献   

10.
Delta-aminolevulinate dehydratase, a zinc dependent enzyme   总被引:3,自引:0,他引:3  
Erythrocyte and liver tissue δ-aminolevulinate dehydratase activity was determined in rats fed a semipurified diet under controlled nutritional intake of zinc and copper. A significant decrease in enzymatic activity was observed in animals fed low zinc diet, while dietary copper had no effect. In vitro addition of zinc to the erythrocyte preparations obtained from rats on low zinc diet produced a slight increase in enzymatic activity. It appears that, even though zinc may be the metal ion activator of δ-aminolevulinate dehydratase, the requirement of this metal is at the site of synthesis of this enzyme.  相似文献   

11.
A coupled-enzyme assay for the specific and sensitive determination of δ-aminolevulinate dehydratase activity has been developed. The assay specifically measured picomole quantities of the product, porphobilinogen, by its enzymatic conversion to uroporphyrinogen I and the fluorometric detection of oxidized uroporphyrin I. The coupled-enzyme assay was linear with time and protein concentration and required less than 3 h for 20 individual determinations. Under the standard assay conditions, 10 to 100 pmol of uroporphyrin I was reliably measured, representing 0.085 to 0.850 nmol/h of δ-aminolevulinate dehydratase activity per assay. In addition, the fluorometric assay was more sensitive than either the standard or the semimicro colorimetric methods. The specificity, rapidity, and sensitivity of this new fluorometric method facilitates the reliable determination of low levels of aminolevulinate dehydratase activity in small amounts of crude tissue homogenates or in cultured cells.  相似文献   

12.
A factor that specifically inhibited δ-aminolevulinate dehydratase was found in rat bone marrow cells. The inhibitor, which was located in the supernatant fraction of the bone marrow hemolysate, was purified about 12-fold by ammonium sulfate fractionation and column chromatography on Sephadex G-75. The partially purified inhibitor was heat labile and sensitive to trypsin and was denatured by urea. It had a pH optimum of 7.5–8.0, and a molecular weight of 28,000. It inhibited the activity of δ-aminolevulinate dehydratase noncompetitively.  相似文献   

13.
Abstract The effects of gabaculin (3-amino 2,3-dihydrobenzoic acid) and laevulinic acid on the regeneration of protochlorophyllide from exogenous δ-aminolaevulinic acid in leaves of dark-grown barley (Hordeum vulgare) after a brief light treatment were compared. Gabaculin, a potent inhibitor of chlorophyll biosynthesis, did not inhibit this process showing that it affects the formation of δ-aminolaevulinic acid rather than its further metabolism. Laevulinic acid, which is an inhibitor of δ-aminolaevulinic acid dehydratase, prevented regeneration of protochlorophyllide provided pools of intermediates in the biosynthetic sequence were depleted. Formation of relatively large amounts of protochlorophyllide in some experiments suggests a lack of control in the utilization of δ-aminolaevulinic acid for protochlorophyllide synthesis.  相似文献   

14.
Chlorophyll biosynthesis in the Chlorina hybrid was affected due to the lower levels of the enzyme δ-amino levulinate dehydratase responsible for the synthesis of porphobilinogen. A comparison of the amounts of different heme containing enzymes from the etiolated and green seedlings of the Chlorina and its parents suggested that the chlorophyll and heme moiety of catalase share the same pool of porphobilinogen and that this pool is different to the one shared by peroxidase and indole acetic acid oxidase. The enzyme δ-amino levulinate dehydratase possesses two isoenzyme bands. These isoenzymes may be spatially separated and responsible for the synthesis of two pools of porphobilinogen.  相似文献   

15.
Rabbit antibody directed to homogeneously purified mouse liver δ-aminolevulinic acid dehydratase cross-reacted with the enzyme in erythrocytes, spleen, kidney and brain in the mouse. The antibody also cross-reacted with the enzyme in the rat, hamster and gerbil, but not in the rabbit, guinea pig, cattle, chick embryo, and human. In contrast, rabbit antibody against the human enzyme partially recognized the monkey enzyme, but not the enzyme in the other species. The species specificity of δ-aminolevulinic acid dehydratase in this study was consistent with the phylogenetic evolution of the species examined.  相似文献   

16.
Modification of maize δ-aminolevulinic acid dehydratase (ALAD) by diethylpyrocarbonate (DEP) caused rapid and complete inactivation of the enzyme. The inactivation showed saturation kinetics with a half inactivation time at saturating DEP equal to 0.3 min and KDEP  0.3 mM. Substrate δ-aminolevulinic acid (ALA) and competitive inhibitor levulinic acid protected against inactivation, thereby indicating that DEP modifies the active site. The modified enzyme showed an increase in absorbance at 240 nm which was lost upon treatment with 0.8 M hydroxylamine. Most of the activity lost by DEP treatment could be restored after treatment with 0.8 M hydroxylamine. The results suggest that DEP modifies 7.4 residues/mole of the enzyme. These histidine residues are essential for catalysis by ALAD.  相似文献   

17.
Mature seeds of Trapella sinensis, after removal of receptacles, were germinated for 10 days at 23°C in the dark and then were illuminated. After illumination, the activity of δ-aminolaevulinic acid (ALA) dehydratase was determined in relation to chlorophyll synthesis, and increases in dry weight of the whole or of parts of a developing seedling. Internal programming of development was related to changes in ALA dehydratase activity on the basis of porphobilinogen synthesis. Exogenously added ALA as well as an extract of Chlorella cells promoted this activity. There was an enhancement of chlorophyll formation resulting in an enhancement of the photosynthetic rate and in an increase of growth promotion by addition of Chlorella extract.  相似文献   

18.
EMD-IT-5914 (5-dimethylamino-methylene-2-oxo-4-phenyl-2,5-dihydrofurane-carbonitril-(3)) inhibited chlorophyll a formation almost completely and chlorophyll b and total carotenoids up to 80% of the control, but did not appreciably affect the activity of the enzyme system succinyl-CoA synthetase/δ-aminolevulinic acid synthetase. The activity of δ-aminolevulinic acid dehydratase was not found limiting. In contrast, the herbicide strongly inhibited the activity of porphobilinogenase, and the reaction kinetics pointed towards a non-competitive type of inhibition. The results are discussed in relation to the possible role of EMD-IT-5914 in chlorophyll biosynthesis.  相似文献   

19.
A developing chloroplast preparation obtained from greening cucumber cotyledons is able to bring about the synthesis of Mg-protoporphyrin-IX and/or Mg-protoporphyrin-IX monomethyl ester. l-glutamate, δ-aminolevulinic acid, and protoporphyrin-IX can serve as precursors for Mg-protoporphyrin synthesis. However, when δ-aminolevulinic acid or protoporpyrin are used, no Mg-protoporphyrin is formed unless l-glutamate is also added. Mg-Protoporphyrin synthesis with δ-aminolevulinic acid plus l-glutamate, or proto-porphyrin plus l-glutamate, is much more active than with l-glutamate alone. Therefore, it is apparent that l-glutamate plays a role in the Mg chelation step in chloroplasts. α-Keto-glutarate can replace l-glutamate in this role; glutamine cannot. ATP is also required for Mg chelation. The role of l-glutamate in the Mg insertion step is not yet understood, except that l-glutamate itself does not need to be converted to porphyrins in this process, because Mg-protoporphyrin can be synthesized from protoporphyrin and l-glutamate even in the presence of the δ-aminolevulinic acid dehydratase inhibitor, levulinate.  相似文献   

20.
Populations chronically exposed to arsenic in drinking water often have increased prevalence of diabetes mellitus. The purpose of this study was to compare the glucose homeostasis of male and female rats exposed to low levels of heavy metals in drinking water. Treated groups were Sprague-Dawley male and female rats exposed to drinking water from Antofagasta city, with total arsenic of 30 ppb and lead of 53 ppb for 3 months; control groups were exposed to purified water by reverse osmosis. The two treated groups in both males and females showed arsenic and lead in the hair of rats. The δ-aminolevulinic acid dehydratase was used as a sensitive biomarker of arsenic toxicity and lead. The activity of δ-aminolevulinic acid dehydratase was reduced only in treated male rats, compared to the control group. Treated males showed a significantly sustained increase in blood glucose and plasma insulin levels during oral glucose tolerance test compared to control group. The oral glucose tolerance test and the homeostasis model assessment of insulin resistance demonstrated that male rats were insulin resistant, and females remained sensitive to insulin after treatment. The total cholesterol and LDL cholesterol increased in treated male rats vs. the control, and triglyceride increased in treated female rats vs. the control. The activity of intestinal Na+/glucose cotransporter in male rats increased compared to female rats, suggesting a significant increase in intestinal glucose absorption. The findings indicate that exposure to low levels of arsenic and lead in drinking water could cause gender differences in insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号