首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Amyloid A (AA) amyloidosis occurs spontaneously in many mammals and birds, but the prevalence varies considerably among different species, and even among subgroups of the same species. The Blue fox and the Gray fox seem to be resistant to the development of AA amyloidosis, while Island foxes have a high prevalence of the disease. Herein, we report on the identification of AA amyloidosis in the Red fox (Vulpes vulpes). Edman degradation and tandem MS analysis of proteolyzed amyloid protein revealed that the amyloid partly was composed of full‐length SAA. Its amino acid sequence was determined and found to consist of 111 amino acid residues. Based on inter‐species sequence comparisons we found four residue exchanges (Ser31, Lys63, Leu71, Lys72) between the Red and Blue fox SAAs. Lys63 seems unique to the Red fox SAA. We found no obvious explanation to how these exchanges might correlate with the reported differences in SAA amyloidogenicity. Furthermore, in contrast to fibrils from many other mammalian species, the isolated amyloid fibrils from Red fox did not seed AA amyloidosis in a mouse model.  相似文献   

2.
Protein AA was purified from the kidneys of dogs with spontaneous reactive amyloidosis. The protein had a blocked N-terminal. Sequence analysis of a peptide obtained after cyanogen bromide cleavage revealed an amino acid sequence corresponding to positions 24-42 of human AA. This region showed a strong homology to protein AA of other species. Antiserum to both human and dog protein AA reacted immunohistochemically with AA amyloid of human, dog and cow origin.  相似文献   

3.
1. The complete amino acid sequences of canine and feline amyloid A (AA) proteins were determined and compared with the sequence of human AA protein. 2. The dog and cat AA proteins were 84% homologous with human AA through residue 69. 3. Between the residues which correspond to 69 and 70 in the human sequence, the dog and cat proteins had an insertion of eight amino acids after which homology with human AA resumed. 4. While human AA commonly ends at position 76, the carboxyl termini of dog and cat AA proteins corresponded to position 86 in the sequence of the precursor protein-serum amyloid A. 5. These results are particularly interesting with respect to evolution of the serum amyloid A gene family.  相似文献   

4.
The heterogeneity of protein AA in secondary (reactive)systemic amyloidosis   总被引:5,自引:0,他引:5  
In secondary systemtic amyloidosis, amyloid fibrils have protein AA as a main subunit protein. As judged from gel chromatography and electrophoresis, this protein is rather homogeneous. In the present paper it is shown, however, that protein AA is very heterogeneous and composed of many peptides with different isoelectric points. However, their antigenic properties and amino acid compositions vary only little. It is concluded that protein AA is as heterogeneous as its postulated precursor, the acute phase reactant serum AA and that a theory that only one or a few serum protein AA's can give rise to amyloid fibrils, might be wrong.  相似文献   

5.
Amyloid fibrils from a patient with diffuse amyloid disease are dissociated in 6 m guanidine hydrochloride and fractionated by gel chromatography. Two major components are separated on Sepharose 6B. Both proteins are characterized by chromatography, immunodiffusion, discontinuous gel electrophoresis, amino acid tryptic peptide mapping and amino acid sequence analysis. The smaller of the two components is typical of the known protein AA by size (8400 daltons), amino acid composition and a 30-residue N-terminal sequence. The larger of the components (25,000 daltons) undergoes electrophoresis as a single band and appears unaffected by thiol reduction. It differs from protein AA in amino acid content and by its tryptic peptide map, although it contains an N-terminal amino acid sequence identical to protein AA when carried to 20 residues. Treatment of this larger component by mild acid hydrolysis results in the release of the 8400-dalton protein AA. Fractionation after guanidine hydrochloride treatment of this particular amyloid fibril preparation is compared to the fractionation of a typical secondary amyloid preparation that contains only protein AA as the major component. The origin and relationship of the 8,400- and 25,000-dalton protein components is discussed.  相似文献   

6.
Human serum amyloid A (SAA) is a precursor protein of the amyloid fibrils that are responsible for AA amyloidosis. Of the four human SAA genotypes, SAA1 is most commonly associated with AA amyloidosis. Furthermore, SAA1 has three major isoforms (SAA1.1, 1.3, and 1.5) that differ by single amino acid variations at two sites in their 104-amino acid sequences. In the present study, we examined the effect of amino acid variations in human SAA1 isoforms on the amyloidogenic properties. All SAA1 isoforms adopted α-helix structures at 4 °C, but were unstructured at 37 °C. Heparin-induced amyloid fibril formation of SAA1 was observed at 37 °C, as evidenced by the increased thioflavin T (ThT) fluorescence and β-sheet structure formation. Despite a comparable increase in ThT fluorescence, SAA1 molecules retained their α-helix structures at 4 °C. At both temperatures, no essential differences in ThT fluorescence and secondary structures were observed among the SAA1 isoforms. However, the fibril morphologies appeared to differ; SAA1.1 formed long and curly fibrils, whereas SAA1.3 formed thin and straight fibrils. The peptides corresponding to the central regions of the SAA1 isoforms containing amino acid variations showed distinct amyloidogenicities, reflecting their direct effects on amyloid fibril formation. These findings may provide novel insights into the influence of amino acid variations in human SAA on the pathogenesis of AA amyloidosis.  相似文献   

7.
Bovine amyloid protein AA: isolation and amino acid sequence analysis   总被引:7,自引:0,他引:7  
Amyloid-laden renal glomeruli were selectively isolated from a cow with a history of multiple organ inflammatory diseases which terminated in amyloid-induced glomerulopathy and severe proteinuria. Lyophilized amyloid fibrils obtained by water extraction procedures were dissolved in 6M guanidine hydrochloride and gel filtered on Sepharose CL6B and Sephacryl S-300 Superfine columns for slab gel electrophoresis, analytic isoelectric focusing, and amino acid sequence analyses. Electrophoresis of material from the major retarded peak of the elution profile revealed that bovine protein AA moves as one band with an apparent molecular mass of about 14,000 Daltons. Several distinct bands between approximately pH 4.0 and 5.0 were observed when this material was evaluated by analytic isoelectric focusing, thus having a pattern resembling that of human and dog protein AA. A blocked N-terminus was demonstrated when protein from the major retarded peak was subjected to amino acid sequencing, but cyanogen bromide cleavage followed by gel filtration produced 3 peptide fragments for amino acid sequence analysis. These peptides had a high degree of homology with positions 4-14, 18-24 and 25-49 of human protein AA. An apparent complete homology between bovine protein AA and protein AA from other species was apparent at positions 35-45, providing further evidence that this is a functionally significant part of the serum protein AA (SAA) molecule.  相似文献   

8.
Polymorphism of tissue and serum amyloid A (AA and SAA) proteins in the mouse   总被引:12,自引:0,他引:12  
Amino acid sequence studies of the amino terminal 25 residues of amyloid A (AA) protein and the serum precursor (SAA) induced with casein or LPS indicate differences in the sequence at position 6 and significant heterogeneity at several other positions in SAA. These findings suggest that SAA is a polymorphic serum protein and raise the possibility that only certain forms of SAA are processed to the tissue amyloid fibril.  相似文献   

9.
Recent studies clearly demonstrated that several types of pathogenic amyloid proteins acted as agents that could transmit amyloidosis by means of a prion-like mechanism. Systemic AA amyloidosis is one of the most severe complications of chronic inflammatory disorders, particularly rheumatoid arthritis. It is well known that, similar to an infectious prion protein, amyloid-enhancing factor (AEF) acts as a transmissible agent in AA amyloidosis. However, how AEF transmits AA amyloidosis in vivo remained to be fully elucidated. In the present study, we focused on finding cell-free forms of AEF and its carriers in circulation by using the murine transfer model of AA amyloidosis. We first determined that circulating cell-free AEF existed in blood and plasma in mice with systemic AA amyloidosis. Second, we established that plasma exosomes containing AA amyloid oligomers derived from serum amyloid A had AEF activity and could transmit systemic AA amyloidosis via a prion-like mechanism. These novel findings should provide insights into the transmission mechanism of systemic amyloidoses.  相似文献   

10.
B Wang  YX Tan  J Jia  A Digre  X Zhang  I Vlodavsky  JP Li 《PloS one》2012,7(7):e39899
AA-amyloidosis is a disease characterized by abnormal deposition of serum A amyloid (SAA) peptide along with other components in various organs. The disease is a complication of inflammatory conditions that cause persistent high levels of the acute phase reactant SAA in plasma. In experimental animal models, the deposited amyloid is resolved when the inflammation is stopped, suggesting that there is an efficient clearance mechanism for the amyloid. As heparan sulfate (HS) is one of the major components in the amyloid, its metabolism is expected to affect the pathology of AA amyloidosis. In this study, we investigated the effect of heparanase, a HS degradation enzyme, in resolution of the AA amyloid. The transgenic mice deficient in heparanase (Hpa-KO) produced a similar level of SAA in plasma as the wildtype control (Ctr) mice upon induction by injection of AEF (amyloid enhancing factor) and inflammatory stimuli. The induction resulted in formation of SAA amyloid 7-days post treatment in the spleen that displayed a comparable degree of amyloid load in both groups. The amyloid became significantly less in the Hpa-KO spleen than in the Ctr spleen 10-days post treatment, and was completely resolved in the Hpa-KO spleen on day 21 post induction, while a substantial amount was still detected in the Ctr spleen. The rapid clearance of the amyloid in the Hpa-KO mice can be ascribed to upregulated matrix metalloproteases (MMPs) that are believed to contribute to degradation of the protein components in the AA amyloid. The results indicate that both heparanase and MMPs play important parts in the pathological process of AA amyloidosis.  相似文献   

11.
Previous histochemical studies have suggested a close temporal relationship between the deposition of highly sulfated glycosaminoglycans (GAGs) and amyloid during experimental AA amyloidosis. In the present investigation, we extended these initial observations by using specific immunocytochemical probes to analyze the temporal and ultrastructural relationship between heparan sulfate proteoglycan (HSPG) accumulation and amyloid deposition in a mouse model of AA amyloidosis. Antibodies against the basement membrane-derived HSPG (either protein core or GAG chains) demonstrated a virtually concurrent deposition of HSPGs and amyloid in specific tissue sites regardless of the organ involved (spleen or liver) or the induction protocol used (amyloid enhancing factor + silver nitrate, or daily azocasein injections). Polyclonal antibodies to AA amyloid protein and amyloid P component also demonstrated co-localization to sites of HSPG deposition in amyloid sites, whereas no positive immunostaining was observed in these locales with a polyclonal antibody to the protein core of a dermatan sulfate proteoglycan (known as "decorin"). Immunogold labeling of HSPGs (either protein core or GAG chains) in amyloidotic mouse spleen or liver revealed specific localization of HSPGs to amyloid fibrils. In the liver, heparan sulfate GAGs were also immunolocalized to the lysosomal compartment of hepatocytes and/or Kupffer cells adjacent to sites of amyloid deposition, suggesting that these cells are involved in HSPG production and/or degradation. The close temporal and ultrastructural relationship between HSPGs and AA amyloid further implies an important role for HSPGs during the initial stages of AA amyloidosis.  相似文献   

12.
Amyloid A (AA) amyloidosis is a debilitating, often fatal, systemic amyloid disease associated with chronic inflammation and persistently elevated serum amyloid A (SAA). Elevated SAA is necessary but not sufficient to cause disease and the risk factors for AA amyloidosis remain poorly understood. Here we identify an extraordinarily high prevalence of AA amyloidosis (34%) in a genetically isolated population of island foxes (Urocyon littoralis) with concurrent chronic inflammatory diseases. Amyloid deposits were most common in kidney (76%), spleen (58%), oral cavity (45%), and vasculature (44%) and were composed of unbranching, 10 nm in diameter fibrils. Peptide sequencing by mass spectrometry revealed that SAA peptides were dominant in amyloid-laden kidney, together with high levels of apolipoprotein E, apolipoprotein A-IV, fibrinogen-α chain, and complement C3 and C4 (false discovery rate ≤0.05). Reassembled peptide sequences showed island fox SAA as an 111 amino acid protein, most similar to dog and artic fox, with 5 unique amino acid variants among carnivores. SAA peptides extended to the last two C-terminal amino acids in 5 of 9 samples, indicating that near full length SAA was often present in amyloid aggregates. These studies define a remarkably prevalent AA amyloidosis in island foxes with widespread systemic amyloid deposition, a unique SAA sequence, and the co-occurrence of AA with apolipoproteins.  相似文献   

13.
The amyloid fibril protein AA consists of a varying long N-terminal part of the precursor protein serum AA. By using synthetic peptides corresponding to human and murine protein AA segments and cyanogen bromide fragments of human protein AA, we show evidence that the amyloidogenic part of the molecule is the first 10-15 amino acid long segment. Amino acid substitutions in this part of the molecule may explain why only one of the two mouse SAA isoforms is amyloidogenic.  相似文献   

14.
Serum amyloid A protein (SAA) is an acute-phase apolipoprotein of high-density lipoprotein (HDL). Its N-terminal sequence is identical with that of amyloid A protein (AA), the subunit of AA amyloid fibrils. However, rats do not develop AA amyloidosis, and we report here that neither normal nor acute-phase rat HDL contains a protein corresponding to SAA of other species. mRNA coding for a sequence homologous with the C-terminal but not with the N-terminal part of human SAA is synthesized in greatly increased amounts in acute-phase rat liver. These observations indicate that the failure of rats to develop AA amyloid results from the absence of most of the AA-like part of their SAA-like protein, and that the N-terminal portion of SAA probably contains the lipid-binding sequences.  相似文献   

15.
The nucleotide sequences of two mink serum amyloid A (SAA) cDNA clones have been analyzed, one (SAA1) 776 base pairs long and the other (SAA2) 552 base pairs long. Significant differences were discovered when derived amino acid sequences were compared with data for apoSAA isolated from high density lipoprotein. Previous studies of mink protein SAA and amyloid protein A (AA) suggest that only one SAA isotype is amyloidogenic. The cDNA clone for SAA2 defines the "amyloid prone" isotype while SAA1 is found only in serum. Mink SAA1 has alanine in position 10, isoleucine in positions 24, 67, and 71, lysine in position 27, and proline in position 105. Residue 10 in mink SAA2 is valine while arginine and asparagine are at positions 24 and 27, respectively, all characteristics of protein AA isolated from mink amyloid fibrils. Mink SAA2 also has valine in position 67, phenylalanine in position 71, and amino acid 105 is serine. It remains unknown why these six amino acid substitutions render SAA2 more amyloidogenic than SAA1. Eighteen hours after lipopolysaccharide stimulation, mink SAA mRNA is abundant in liver with relatively minor accumulations in brain and lung. Genes encoding both SAA isotypes are expressed in all three organs while no SAA mRNA was detectable in amyloid prone organs, including spleen and intestine, indicating that deposition of AA from locally synthesized SAA is unlikely. A third mRNA species (2.2 kilobases) was identified and hybridizes with cDNA probes for mink SAA1 and SAA2. In addition to a major primary translation product (molecular mass 14,400 Da) an additional product with molecular mass 28,000 Da was immunoprecipitable.  相似文献   

16.
AA amyloidosis is the result of overproduction and aberrant processing of acute-phase serum amyloid A1 (SAA1) by hepatocytes. Proteolytic cleavage of SAA1 is believed to play a central role in AA amyloid formation. The SAA1 protein undergoes a cleavage of 18 residues consisting of the signal peptide at the N-terminal region. To better understand the mechanism behind systemic amyloidosis in the SAA1 protein, we studied the misfolding propensity of the signal peptide region. We first examined the signal peptide amino acid SAA derived from different animal species. A library of 16 peptides was designed to evaluate the propensity of aggregation. The amyloidogenic potential of each SAA1 signal peptide homolog was assessed using in silico Tango program, thioflavin T (ThT) fluorescence, transmission electron microscopy (TEM), and seeding with misfolded human SAA1 signal peptide. After 7 days of incubation, most of the SAA1 signal peptide fragments had the propensity to form fibrils at a concentration of 100 μM in 50 mM Tris buffer at 37 °C by TEM. All peptides were able to generate fibrils at a higher concentration, i.e 500 μM in 25 mM Tris buffer with 50% HFIP, by ThT. All SAA1 signal synthetic peptides designed from the different animal species had the propensity to misfold and form fibrils, particularly in species with low occurrence of systemic amyloidosis. The human SAA1 signal peptide region was capable to seed the SAA1 1–25 and 32–47 peptide regions. Characterizing fibrillar conformations are relevant for seeding intact and/or fragmented SAA, which may contribute, to the mechanism of protein misfolding. This research signifies the importance of the signal peptide region and its possible contribution to the misfolding of aggregation-prone proteins.  相似文献   

17.
Degradation and deposition of amyloid AA fibrils are tissue specific   总被引:5,自引:0,他引:5  
F Prelli  M Pras  B Frangione 《Biochemistry》1987,26(25):8251-8256
The complete amino acid sequences of two related AA proteins (Mr 9700 and 5300) derived from thyroid tissue from a patient, NOR, with the autosomal recessive disease familial Mediterranean fever were determined. Heterogeneity found at position 52 indicates these proteins are fragments of two allelic or isotypic SAA precursor molecules similarly degraded at unusual sites and deposited in the thyroid. Degradation appears to be tissue and/or enzyme(s) specific since the carboxy terminus of both fragments is Ala-Ala and is different from other AA amyloid fibrils extracted from various tissues in different patients. Electron micrographic studies reveal these fragments retain the characteristics of native amyloid fibrils under physiological conditions even after exposure to dissociating agents.  相似文献   

18.
C P Maury  K Alli  M Baumann 《FEBS letters》1990,260(1):85-87
Amyloid fibrils were isolated from the kidney of a patient with Finnish hereditary amyloidosis. After solubilization of the fibrils in guanidine-HCl, fractionation by gel filtration, and purification by reverse-phase high-performance liquid chromatography, a homogeneous amyloid protein with an apparent Mr of 9000 was obtained. The protein was subjected to enzymatic digestion by trypsin and endoproteinase Lys-C. The amino acid sequences were determined for 6 of the released peptides and they were all found to be identical to the reported, deduced primary structure of human plasma gelsoline in the region of amino acids 235-269. The results show that the amyloid fibril protein in Finnish hereditary amyloidosis represents a new type of amyloid protein that shows amino acid sequence homology with gelsoline, an actin-modulating protein.  相似文献   

19.
We have cloned and sequenced a human islet amyloid polypeptide (IAPP) cDNA. A secretory 89 amino acid IAPP protein precursor is predicted from which the 37 amino acid IAPP molecule is formed by amino- and carboxyterminal proteolytic processing. The IAPP peptide is 43-46% identical in amino acid sequence to the two members of the calcitonin gene-related peptide (CGRP) family. Evolutionary conserved proteolytic processing sites indicate that similar proteases are involved in the maturation of IAPP and CGRP and that the IAPP amyloid polypeptide is identical to the normal proteolytic product of the IAPP precursor. A synthetic peptide corresponding to a carboxyteminal fragment of human IAPP is shown to spontaneously form amyloid-like fibrils in vitro. Antibodies against this peptide cross-react with IAPP from species that develop amyloid in pancreatic islets in conjunction with age-related diabetes mellitus (human, cat, racoon), but do not cross-react with IAPP from other tested species (mouse, rat, guinea pig, dog). Thus, a species-specific structural motif in the putative amyloidogenic region of IAPP is associated with both amyloid formation and the development of age-related diabetes mellitus. This provides a new molecular clue to the pathogenesis of this disease.  相似文献   

20.
The isolation by gel filtration of a serum component (SAA), antigenically related to the major filbrillar amyloid protein (AA), associated with "secondary" amyloidosis, has been monitored by a solid phase radioimmunoassay for the AA protein to detect cross-reacting serum fractions. Evidence is presented that not all cross-reacting antigenic determinants are accessible in native SAA, since additional determinants are revealed during the isolation procedure. The native structure of SAA appears to be quite labile. SAA from freshly collected serum has a m.w. of 180,000 and co-chromatographs with IgG. However, species of higher m.w. are observed after storage of serum at 4 degrees C or upon chromatography of serum in ammonium bicarbonate. Denatured SAA has a tendency to aggregate under strong dissociating conditions. A 12.500 m.w. antigenic species (SAAL) was detected upon guanidine-HCl denaturation of SAA, by earlier studies employing double immunodiffusion. However, evidence is presented here that the major part of the antigenic acitivity after guanidine-HCl treatment was of m.w. greater than 12,500, but was unreactive in double immunodiffusion. Formic acid treatment of cross-reacting serum fractions does result in virtually complete dissociation of SAA to SAAL, however. Furthermore, Formic acid-dissociated SAAL is of comparable immunoreactivity with AA, on a molar basis, unlike SAAL obtained from SAA by guanidine-HCl denaturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号