首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA released from eukaryotic cells by proteases/SDS or by alkali/SDS still contains distinct proteins which are not removed by these cell lysis procedures nor by subsequent phenol treatment. The proteins most tightly bound to DNA can only be isolated by degradation of DNA. In contrast to the protein-DNA complexes, the protein material isolated after degradation of DNA is sensitive to protease treatment. Moreover, the isolated protein material tends to form aggregates which are insoluble in buffers not containing detergents. They are only poorly soluble in buffers containing SDS. The partially solubilized material can be separated by SDS-polyacrylamide gel electrophoresis into two main bands. Antibodies were raised in rabbits against the polypeptides contained in these main bands. Immunofluorescence micrographs are presented of cells treated with the antibodies. The results indicate that the proteins characterized by their involvement in extremely stable protein-DNA complexes also occur independently of DNA in eukaryotic cells.  相似文献   

2.
We describe a simple and rapid method for the isolation of specific genomic DNA sequences recognized by DNA-binding proteins. This procedure consists of four steps: (1) restriction enzyme digestion and size fractionation of genomic DNA; (2) DNA--protein binding using the gel mobility-shift assay; (3) ligation of isolated DNA fragments followed by transformation of Escherichia coli; and (4) screening of recombinant clones for inserts containing specific DNA--protein binding sequences. We have used this protocol to isolate human DNA sequences, 100-200 bp in size, that are recognized by both partially purified and affinity purified proteins. Unlike other procedures designed to identify genomic target sequences, the method described does not require polymerase chain reaction or successive immunoprecipitations.  相似文献   

3.
Eukaryotic DNA binding proteins have been observed indirectly by means of filter-binding assays, mobility shifts on nondenaturing gel electrophoresis, nucleolytic protection studies, and functional analyses. Transacting factors, presumably proteins, are implicated in regulation of gene expression at the promoter and enhancer. The identification of the polypeptide or polypeptides involved in DNA recognition and binding is an important, challenging problem. A general method is presented herein for the identification of proteins that bind DNA, based directly on the property of DNA binding. A nuclear protein extract, fractionated by ion-exchange chromatography, is assayed across the column for binding activity using nondenaturing polyacrylamide gel electrophoresis. Samples of column eluate that display binding activity are then subjected to nondenaturing gel electrophoresis in the presence or absence of substrate DNA. The nondenaturing gel strips are cut out and run orthogonally on discontinuous sodium dodecyl sulfate gels for the identification of proteins. A protein that undergoes a first-dimension mobility shift to the position of DNA bound to protein is the protein that bound the DNA. We have identified a pair of polypeptides from leukemic human cells of apparent molecular weights 70 and 85 kd that bind DNA as a complex.  相似文献   

4.
We have studied the major DNA-binding protein (ICP8) from herpes simplex virus type 1 to identify its DNA-binding site. Since we obtained our protein from a cell line carrying multiple chromosomally located copies of the ICP8 gene, we first analyzed this protein to assess its similarity to the corresponding viral protein. Our protein resembled the viral protein by molecular weight, response to antibody, preference for binding single-stranded DNA, and ability to lower the melting temperature of poly(dA-dT). To define the DNA-binding domain, we subjected the protein to limited trypsin digestion and separated the peptide products on a sodium dodecyl sulfate-polyacrylamide gel. These fragments were then transferred to a nitrocellulose membrane, renatured in situ, and tested for their ability to bind DNA. From this assay, we identified four fragments which both bound DNA and exhibited the expected binding preference for single-stranded DNA. The sequence of the smallest of these fragments was determined and corresponds to a polypeptide spanning residues 300 to 849 in the intact protein. This peptide contains several regions which may be important for DNA binding based on sequence similarities in single-stranded DNA-binding proteins from other herpesviruses and, in one case, on a conserved sequence found in more distant procaryotic and eucaryotic proteins.  相似文献   

5.
Monoclonal antibodies to cruciform DNA structures   总被引:4,自引:0,他引:4  
Two monoclonal antibodies, 2D3 and 4B4, have been raised against a cruciform structure in a heteroduplex DNA molecule. Antibody binding to DNA fragments was determined by a radioimmunoassay in which DNA--antibody complexes were separated from unbound DNA by acrylamide gel electrophoresis. These antibodies seem to recognize conformational determinants specific to cruciform structures. 2D3 and 4B4 antibodies do not bind to linear double-stranded homoduplex DNA fragments, linear single-stranded DNA or single-stranded simian virus 40 DNA containing a stem--loop structure, but do bind to the original cruciform and to a different cruciform with one shortened arm. 2D3 also bound to a T-shaped double-stranded DNA molecule, while 4B4 binding to this structure was weak. The monoclonal antibodies 2D3 and 4B4 were found to be immunoglobulin G1 and immunoglobulin M, respectively.  相似文献   

6.
7.
An intracellular effect of nickel(II) which may be involved in its carcinogenic action is the alteration of normal DNA-protein binding. This effect of ionic nickel was studied in Chinese hamster ovary cells using several chromatin isolation methods in combination with SDS-polyacrylamide gel electrophoresis. DNA from cells incubated with (35S)-methionine or (35S)-cysteine to radiolabel protein was prepared by three methods: (solation of nuclei or nucleoids followed by chloroform-isoamyl alcohol (24:1 v/v) extraction and in some cases an additional extraction in the absence or presence of 2M NaCl, 40 mM EDTA or SDS; by isopycnic centrifugation through Cs2SO4 gradients containing 0.8% sarkosyl, 2.2 MCs2SO4, 1 mM NaCl and 10 mM EDTA; or by chromatin disaggregation and denaturation using 9 M urea, 2% 2-mercaptoethanol, 4% Nonidet P-40 +/- 2 M NaCl. DNA from nickel-treated cells consistently had more (35S)-methionine radioactivity associated with it than did DNA from untreated cells. This radioactivity was resistant to ribonuclease but sensitive to protease. Differential extraction using denaturing agents and high ionic strength followed by SDS-polyacrylamide gel electrophoresis revealed that most of the tightly bound proteins were nonhistone chromosomal proteins, and possibly histone 1. The enhancement of DNA-protein binding from nickel-treated cells was disrupted by SDS, suggesting that nickel ions do not function as classical bifunctional crosslinking agents. Since regulation of DNA replication and gene expression is dependent upon DNA-protein interactions, the effect of nickel in altering the extent of DNA-protein binding may interfere with this regulation and may contribute to the carcinogenic activity of nickel compounds.  相似文献   

8.
A rapid and simple method has been developed which allows detection and isolation of covalent DNA/protein adducts. The method is based upon the use of an ionic detergent, SDS, to neutralize cationic sites of weakly bound proteins thereby resulting in their dissociation off the helix. Proteins tightly or covalently bound to DNA that are not dissociable by SDS, result in the precipitation of the DNA fragment by the addition of KCl; however, free nucleic acid does not precipitate. The method is particularly useful as an analytical tool to titrate the binding of prototypic covalent binding proteins, topoisomerase I and II; thus, quantitation of topoisomerase activity is possible under defined conditions. As an analytical tool the method can be used as a general assay in the purification of as yet unidentified topoisomerases or other activities that bind DNA covalently. Moreover, the technology can be adapted for use in a preparative mode to separate covalent complexes from free DNA in a single step.  相似文献   

9.
香菇基因组高分子量DNA的提取   总被引:5,自引:0,他引:5  
介绍了一种简便快速提取香菇基因组DNA的方法,该法是对提取真菌DNA的SDS和CTAB法进行改进而成,经过修改后的SDS-CTAB法可在较短时间内高效地提取香菇基因组总DNA.制备物经琼脂糖凝胶电泳检测到大于20kb的DNA主带,基本无DNA碎带;OD260/280值显示产物纯度高,完全符合AFLP分析的要求。  相似文献   

10.
Nick translation of DNA bound to nylon membranes is described. Phage lambda DNA was digested with restriction endonuclease HindIII. The fragments were separated by agarose electrophoresis and electrophoretically transferred to Zeta-Probe nylon membranes. After being air-dried, the areas with DNA fragments attached were cut out and subjected to nick translation. The labeled fragments, removed from the membranes by a single wash step, can be used as specific hybridization probes. Currently used methods require time-consuming electroelution and often additional purification procedures if a specific DNA fragment, separated by gel electrophoresis, is to be labeled by nick translation. With the procedure described it is possible to label many DNA fragments in parallel in a time- and cost-saving manner.  相似文献   

11.
Small DNA fragments of approximately 350 bp in length, either with or without d(CG)n tracts, are ligated into underwound DNA minicircles to generate topoisomeric rings with different topological linking numbers, Lk. These minicircles, differing by an Lk of one, can be separated by acrylamide gel electrophoresis. Furthermore, electrophoresis can be used to reveal DNA double helix conformational changes that are induced by supercoiling, such as left-handed Z-DNA. When anti-Z-DNA antibodies are added to such minicircles, their binding leads to a selective retardation of the electrophoretic migration of the Z-DNA containing circles. This effect is not seen with relaxed minicircles and those with insufficient torsional stress to induce a conformational transition. Thus the technique of 'topoisomer gel retardation' presents a very sensitive assay for the identification of proteins that selectively bind to DNA conformations stabilized by negative DNA supercoiling.  相似文献   

12.
Vinculin is an adhesion plaque component localized on the cytoplasmic side of the cell membrane where stress fibers end. To detect vinculin- binding proteins, we have developed an 125I-vinculin gel overlay method. SDS PAGE was used to separate different protein preparations. After fixing the proteins in the gel with methanol-acetic acid, the SDS was removed with ethanol and the proteins renatured in buffer. The gel was then incubated with 125I-vinculin. After extensive washing to remove nonspecifically associated label, the gel was dried and autoradiographed. Chick embryo fibroblasts, their Rous sarcoma virus transformants, and HeLa cells were found to contain two proteins (Mr 220,000 and 130,000) that bound 125I-vinculin strongly and another (Mr 42,000) that bound it moderately. The 130,000-mol-wt protein was identified as vinculin itself, which suggests that it may self- associate. The 42,000-mol-wt protein was identified as actin with which vinculin is known to interact. The identity of the 220,000-mol-wt protein is not known. It is not cellular fibronectin, myosin, or filamin. When fibroblast proteins were separated into Triton X-100 soluble and insoluble fractions, most of the vinculin and the 220,000- mol-wt protein was found to be in the soluble fraction. Chicken gizzard also contained these vinculin-binding proteins along with three others of Mr 190,000, 170,000, and 100,000.  相似文献   

13.
Electrophoretic mobility of DNA through polyacrylamide as well as agarose gels is greatly increased by sodium dodecyl sulfate (SDS). DNA molecules well beyond the conventionally separable size limits are separated readily and rapidly by gel electrophoresis with SDS in a conventional static electric field. Furthermore in optimal concentration gels DNA molecules of similar molecular sizes are separated better from one another in the presence of SDS than without it. Evidence is presented that SDS may act at least in part by altering conformation of DNA. This simple and readily available means for high resolution separation of hitherto impossible sizes of DNA molecules in polyacrylamide and agarose gels in an ordinary static electric field should find general use in molecular genetic analyses. Structural analyses of DNA-protein complexes are also facilitated by virtue of the simultaneous separation of the DNA and protein components on the same gel lane.  相似文献   

14.
We examined the binding of polyomavirus large (L-T)-, middle (M-T)-, and small-tumor antigens to DNA cellulose. At pH 6.0, the majority of L-T bound to calf thymus DNA cellulose, while little or no small tumor antigen was retained under these conditions. Unexpectedly, a small but reproducible proportion of M-T bound to both native and denatured DNA cellulose. M-T encoded by polyomavirus mutant dl 8, which expressed shortened L-T and M-T, bound to DNA, indicating that the deleted sequences are not required for DNA binding. Also, M-T from transformed BMT-1 rat cells, which synthesize exclusively this polyomavirus tumor antigen, bound to DNA, indicating that its binding is not due to association with other polyomavirus-encoded proteins. Using the DNA fragment immunoassay, we found that, under conditions in which L-T bound specifically to DNA fragments containing viral regulatory sequences, no viral DNA fragments were bound by M-T. The existence of distinct subpopulations of M-T that differ in their DNA-binding properties was indicated by rebinding experiments in which M-T that had bound to DNA cellulose rebound very efficiently, while that which had not been originally retained by DNA cellulose rebound poorly. Furthermore, the M-T-pp60 c-src complex did not bind to DNA cellulose. These data suggest that polyomavirus M-T is heterogeneous, consisting of populations of molecules that differ in their interactions with DNA cellulose.  相似文献   

15.
Unexpected loss of genomic DNA from agarose gel plugs   总被引:3,自引:0,他引:3  
R B Fritz  P R Musich 《BioTechniques》1990,9(5):542, 544, 546-542, 544, 550
Intact chromosomal DNAs are routinely prepared by embedding cells in agarose plugs before lysis. The large sizes of the genomic DNAs cause their retention while other macromolecules diffuse into and out of the gel matrix during lysis, washing and restriction cleavage incubations. However, in an analysis of agarose-embedded chromosomal DNAs cleaved with restriction enzymes, fragments larger than 30 kilobases were found to have eluted from the gel plugs. Since loss of fragments from gel plugs may affect qualitative and quantitative interpretations of electrophoretic patterns, an analysis of the diffusion of DNA segments from agarose plugs was performed. The two variables monitored were the time dependence and the DNA fragment size dependence of the diffusion process. The results indicate that small fragments (less than or equal to 2 kilobases) are quickly lost from 1% agarose gel plugs; moreover, significant amounts of large DNA segments (i.e., the 48.5-kilobase lambda phage chromosome) are also lost. In addition to urging caution in the analysis of restriction cleavage data, these observations suggest that intact small organelle genomes and extrachromosomal DNAs also may be lost from genomic DNAs prepared in agarose gel plugs.  相似文献   

16.
Using phosphocellulose followed by single-stranded DNA-cellulose chromatography for purification of UvrC proteins from overproducing cells, we found that UvrC elutes at two peaks: 0.4 m KCl (UvrCI) and 0.6 m KCl (UvrCII). Both forms of UvrC have a major peptide band (>95%) of the same molecular weight and identical N-terminal amino acid sequences, which are consistent with the initiation codon being at the unusual GTG site. Both forms of UvrC are active in incising UV-irradiated, supercoiled phiX-174 replicative form I DNA in the presence of UvrA and UvrB proteins; however, the specific activity of UvrCII is one-fourth that of UvrCI. The molecular weight of UvrCII is four times that of UvrCI on the basis of results of size exclusion chromatography and glutaraldehyde cross-linking reactions, indicating that UvrCII is a tetramer of UvrCI. Functionally, these two forms of UvrC proteins can be distinguished under reaction conditions in which the protein/nucleotide molar ratio is >0.06 by using UV-irradiated, (32)P-labeled DNA fragments as substrates; under these conditions UvrCII is inactive in incision, but UvrCI remains active. The activity of UvrCII in incising UV-irradiated, (32)P- labeled DNA fragments can be restored by adding unirradiated competitive DNA, and the increased level of incision corresponds to a decreased level of UvrCII binding to the substrate DNA. The sites of incision at the 5' and 3' sides of a UV-induced pyrimidine dimer are the same for UvrCI and UvrCII. Nitrocellulose filter binding and gel retardation assays show that UvrCII binds to both UV-irradiated and unirradiated double-stranded DNA with the same affinity (K(a), 9 x 10(8)/m) and in a concentration-dependent manner, whereas UvrCI does not. These two forms of UvrC were also produced by the endogenous uvrC operon. We propose that UvrCII-DNA binding may interfere with Uvr(A)(2)B-DNA damage complex formation. However, because of its low copy number and low binding affinity to DNA, UvrCII may not interfere with Uvr(A)(2)B-DNA damage complex formation in vivo, but instead through double-stranded DNA binding UvrCII may become concentrated at genomic areas and therefore may facilitate nucleotide excision repair.  相似文献   

17.
Several antibiotics, netropsin, distamycin A, actinomycin D, Hoechst 33258 and olivomycin, which demonstrate base specificity in their DNA binding properties have been found to alter the electrophoretic mobility of DNA restriction fragments in native polyacrylamide gels. The antibiotics mostly reduced the migration of larger DNA fragments, but netropsin and Hoechst 33258 were observed to increase the migration rate of several DNA fragments of intermediate size. DNA fragments of similar molecular weight which comigrate as a single gel band can at times be separated as the result of differential mobility shifts promoted by antibiotic DNA complex formations.  相似文献   

18.
19.
20.
Salerno B  Anne G  Bryant FR 《PloS one》2011,6(9):e24305

Background

Streptococcus pneumoniae has two paralogous, homotetrameric, single-stranded DNA binding (SSB) proteins, designated SsbA and SsbB. Previous studies demonstrated that SsbA and SsbB have different solution-dependent binding mode preferences with variable DNA binding capacities. The impact of these different binding properties on the assembly of multiple SsbAs and SsbBs onto single-stranded DNA was investigated.

Methodology/Principal Findings

The complexes that were formed by the SsbA and SsbB proteins on dTn oligomers of defined lengths were examined by polyacrylamide gel electrophoresis. Complexes containing either two SsbAs or two SsbBs, or mixed complexes containing one SsbA and one SsbB, could be formed readily, provided the dTn oligomer was long enough to satisfy the full binding mode capacities of each of the bound proteins under the particular solution conditions. Complexes containing two SsbAs or two SsbBs could also be formed on shorter dTn oligomers via a “shared-strand binding” mechanism in which one or both proteins were bound using only a portion of their potential binding capacity. Mixed complexes were not formed on these shorter oligomers, however, indicating that SsbA and SsbB were incompatible for shared-strand binding. Additional experiments suggested that this shared-strand binding incompatibility may be due in part to differences in the structure of a loop region on the outer surface of the subunits of the SsbA and SsbB proteins.

Conclusion/Significance

These results indicate that the SsbA and SsbB proteins may co-assemble on longer DNA segments where independent binding is possible, but not on shorter DNA segments where coordinated interactions between adjacent SSBs are required. The apparent compatibility requirement for shared-strand binding could conceivably serve as a self-recognition mechanism that regulates the manner in which SsbA and SsbB interact in S. pneumoniae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号