首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zn‐doped CaTiO3:Eu3+ red phosphors for enhanced photoluminescence in white light‐emitting diodes (LEDs) were synthesized by a solid‐state method. The structure and morphology of the obtained phosphor samples were observed by X‐ray diffraction (XRD) and scanning electron microscopy (SEM), and the impact of Ca, Zn and Eu content on their photoluminescence properties was studied. The results indicated that Zn not only participates in the formation of defects in suitable lattice matrices but also has a role in flux in the transformation from ZnO to Zn2TiO4, which is beneficial for the enhancement of photoluminescence properties. Photoluminescence test data showed that the Zn‐doped phosphor is excited efficiently by near‐ultraviolet (NUV) light at wavelengths around 398 nm and emits an intense red light with a broad peak around 616 nm corresponding to the 5D07F2 transition of Eu3+. The intensity of this phosphor emission is three times stronger than that without Zn‐doping. Furthermore, this phosphor has very good thermal stability, high color purity and a low sintered temperature, all of which suggest its potential as a promising red phosphor for white LEDs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Intact cells are the most stable form of nature's photosynthetic machinery. Coating‐immobilized microbes have the potential to revolutionize the design of photoabsorbers for conversion of sunlight into fuels. Multi‐layer adhesive polymer coatings could spatially combine photoreactive bacteria and algae (complementary biological irradiance spectra) creating high surface area, thin, flexible structures optimized for light trapping, and production of hydrogen (H2) from water, lignin, pollutants, or waste organics. We report a model coating system which produced 2.08 ± 0.01 mmol H2 m?2 h?1 for 4,000 h with nongrowing Rhodopseudomonas palustris, a purple nonsulfur photosynthetic bacterium. This adhesive, flexible, nanoporous Rps. palustris latex coating produced 8.24 ± 0.03 mol H2 m?2 in an argon atmosphere when supplied with acetate and light. A simple low‐pressure hydrogen production and trapping system was tested using a 100 cm2 coating. Rps. palustris CGA009 was combined in a bilayer coating with a carotenoid‐less mutant of Rps. palustris (CrtI?) deficient in peripheral light harvesting (LH2) function. Cryogenic field emission gun scanning electron microscopy (cryo‐FEG‐SEM) and high‐pressure freezing were used to visualize the microstructure of hydrated coatings. A light interaction and reactivity model was evaluated to predict optimal coating thickness for light absorption using the Kubelka‐Munk theory (KMT) of reflectance and absorptance. A two‐flux model predicted light saturation thickness with good agreement to observed H2 evolution rate. A combined materials and modeling approach could be used for guiding cellular engineering of light trapping and reactivity to enhance overall photosynthetic efficiency per meter square of sunlight incident on photocatalysts. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

3.
The fast reaction technique of pulse radiolysis was used to produce free radicals in aqueous solution from alcohols, deoxyribose, cytosine, uracil, thymine, dihydrothymine and histidine. The electron transfer reactions from these radicals to p-benzoquinone was observed from the formation kinetics of the semiquinone anion ·BQ? at 430 nm and the efficiency was found to be as high as 90% or more, with k~5×109 M?1sec?1. In acid or neutral solutions in the presence of oxygen the peroxy radicals ·O2RH formed do not essentially transfer an electron to BQ, and the efficiency is <10%. The significance of these results in the fixation of radiation damage in photobiology and radiation biology are indicated. The reactions of the superoxide ·O2? radical with BQ are also presented and discussed.  相似文献   

4.
The effects of increased photon flux (100???mol?m?2 s?1), ventilation, and standard in vitro culture (40???mol?m?2 s?1) with no ventilation were investigated on the physiological and histological characteristics of microshoots of Gevuina avellana. The increase in photon flux (light treatment) produced significant improvement in the fluorescence parameters of photochemical quenching, non-photochemical quenching, electron transport rate and photochemical efficiency of PSII, compared to the ventilation and control treatments. Nursery plants showed similar values compared to the microshoots in the light treatment, indicating that the plants in the light treatment developed a management for dissipating excess light. Moreover, chlorophyll a and b concentrations increased significantly in both light and ventilation treatments. The chl a/chl b ratio decreased in the ventilation treatment compared to the control treatment. Similar results were found for soluble carbohydrates. Finally, both the photon flux increase and ventilation had a positive effect on foliar anatomy, showing a more organized mesophyll and a better development of the palisade mesophyll compared to the control treatment. The changes observed in the microshoots with regards to foliar anatomy and photochemical behavior were very similar to nursery plants.  相似文献   

5.
Results are presented from experimental studies of the parameters of two counterpropagating (colliding) plasma flows generated by discharges in crossed electric and magnetic fields. It is shown that the conversion efficiency of the energy deposited in the discharges into the energy of directed plasma flows is 0.3–0.6. For discharge current pulses with a duration of ∼10 μs, the energy flux density in the plasma flow reaches ∼10 J/cm2 and the total energy of the flow is on the order of 300 J. The density of deuterons in the flows is ∼1015 cm−3, and the flow velocity is ≤2×107 cm/s. The total number of particles carried by the flows is about 1019. The possibility of using counterpropagating plasma flows to study reactions involving light nuclei (dd, pd, dt, and dHe reactions) in the range of ultralow collision energies is discussed. __________ Translated from Fizika Plazmy, Vol. 29, No. 8, 2003, pp. 714–721. Original Russian Text Copyright ? 2003 by Dudkin, Nechaev, Padalko, Bystritsky, Stolupin, Bystritskii, Voznyak.  相似文献   

6.
A near ultraviolet excitable phosphor based on Sm3+‐doped YAl3(BO3)4 has been synthesized by modified solid‐state reaction at 1000°C. The phase purity and photoluminescence (PL) behavior of the phosphor are studied in detail using the powder X‐ray diffraction technique and PL measurements. X‐ray diffraction reveals that the phase purity of YAl3(BO3)4 critically depends upon the boric acid concentration. The phosphor has strong excitation at 406 nm in the near ultraviolet region (350–420 nm) and its emission peaks were monitored at 564, 599 and 643 nm. Further, detailed PL analysis demonstrates that the substitution of Sm3+ ions at sites of Y3+ and Al3+ ions enhances the PL efficiency of the phosphor appreciably. First, the PL efficiency of YAl3(BO3)4:Sm3+ was compared with commercial (Y,Gd)BO3:Eu3+ red phosphor. The Fourier transform infrared study provides essential information regarding the change in metal–oxygen bond vibrations of the phosphor. The morphology of the phosphor was investigated through scanning electron microscopy, which reveals that the phosphor possessed distorted spherical and rectangular shapes with average grain sizes in the range 0.5–1 µm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
CaS:Ce3+ is an efficient green‐emitting (535 nm) phosphor, excitable with blue light (450–470 nm) and was synthesized via a solid‐state reaction method by heating under a reducing atmosphere. The luminescent properties, photoluminescent (PL) excitation and emission of the phosphor were analyzed by spectrofluorophotometry. The excitation and emission peaks of the CaS:Ce3+ phosphor lay in the visible region, which made them relevant for light‐emitting diode (LED) application for the generation of white light. Judd‐Oflet parameters were calculated and revealed that green light emitted upon blue illumination. The prepared phosphor had strong blue absorption at 470 nm and a broad green emission band range from 490–590 nm with the peak at 537 nm. The characteristics of the CaS:Ce3+ phosphor make it suitable for use as a wavelength tunable green emitting phosphor for three band white LEDs pumped by a blue LED (470 nm). The Commission International de l'Eclairage co‐ordinates were calculated by a spectrophotometric method using the spectral energy distribution (0.304, 0.526) and confirm the green emission. The potential application of this phosphor is as a phosphor‐converted white light‐emitting diode. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A novel far-red emitting phosphor Sr2MgWO6: Mn4+ was fabricated using high-temperature solid-state reaction. X-ray diffraction patterns, scanning electron microscopy images, and photoluminescence excitation and photoluminescence spectra for this phosphor were analyzed in detail. The analysis revealed that its emission ranged from 600 to 800 nm and peaked at 699 nm, which was attributed to the 2Eg4A2g transition of Mn4+ under 314 nm excitation. Moreover, we introduced rare-earth Yb3+ ions into the Sr2MgWO6:Mn4+ to improve its far-red emitting intensity. The photoluminescence (PL) intensity of the Yb3+ co-doped phosphor was three times higher than that of the single-doped phosphor. Therefore charge compensation is an efficient approach to improving PL intensity. The phosphor emitted a far-red light that resembled the pigments essential for plant growth in terms of the absorption spectrum. Therefore, the obtained phosphor, Sr2MgWO6:0.006Mn4+,0.2Yb3+, had the potential to be a new type of far-red luminescent powder for indoor plant growth LEDs.  相似文献   

9.
We report the synthesis and structural characterization of Er3+,Yb3+‐doped Gd2O3 phosphor. The sample was prepared using the conventional solid‐state reaction method, which is the most suitable method for large‐scale production. The prepared phosphor sample was characterized using X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermoluminescence (TL), photoluminescence (PL) and CIE techniques. For PL studies, the excitation and emission spectra of Gd2O3 phosphor doped with Er3+ and Yb3+ were recorded. The excitation spectrum was recorded at a wavelength of 551 nm and showed an intense peak at 276 nm. The emission spectrum was recorded at 276 nm excitation and showed peaks in all blue, green and red regions, which indicate that the prepared phosphor may act as a single host for white light‐emitting diode (WLED) applications, as verified by International de I'Eclairage (CIE) techniques. From the XRD data, the calculated average crystallite size of Er3+ and Yb3+‐doped Gd2O3 phosphor is ~ 38 nm. A TL study was carried out for the phosphor using UV irradiation. The TL glow curve was recorded for UV, beta and gamma irradiations, and the kinetic parameters were also calculated. In addition, the trap parameters of the prepared phosphor were also studied using computerized glow curve deconvolution (CGCD). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A series of Eu3+‐, Ce3+‐, Dy3+‐ and Tb3+‐doped (Y,Gd)BO3 phosphors was synthesized by a solid‐state diffusion method. X‐Ray diffraction confirmed their hexagonal structure and the scanning electron microscopy results showed crystalline particles. The excitation spectra revealed that (Y,Gd)BO3 phosphors doped with Eu3+, Ce3+ , Dy3+ and Tb3+ are effectively excited with near UV‐light of 395 nm/blue light, 364, 351 and 314 nm, respectively. Photoluminescence spectra of Eu3+‐, Ce3+‐ and Tb3+/Dy3+‐doped phosphor showed intense emission of reddish orange, blue and white light, respectively. The phosphor Y0.60Gd0.38BO3:Ce0.02 showed CIE 1931 color coordinates of (0.158, 0.031) and better color purity compared with commercially available blue BAM:Eu2+ phosphor. The phosphor (Y,Gd)BO3 doped with Eu3+, Dy3+ and Tb3+ showed CIE 1931 color coordinates of (0.667, 0.332), (0.251, 0.299) and (0.333, 0.391) respectively. Significant photoluminescence characteristics of the prepared phosphors indicate that they might serve as potential candidates for blue chip and near‐UV white light‐emitting diode applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
We investigated the light reactions, CO2 assimilation, but also the chloroplast ultrastructure in the upper three functional leaves (flag, 2nd, and 3rd leaves) of the Chinese super-high-yield hybrid rice (Oryza sativa L.) Liangyoupeijiu (LYPJ) with ultraviolet-B (UV-B) treatment during reproductive development. Photosynthetic parameters showed that the upper 3 functional leaves of LYPJ entered into senescence approximately 15 days after flag leaf emergence (DAE). Leaves in UV-B treatment exhibited greater efficiency in absorbing and utilizing light energy of photosystem II (PSII), characterized by higher chlorophyll (Chl) content and the whole chain electron transport rate (ETR). However, UV-B radiation reduced activities of Ca2+-ATPase and photophosphorylation. The significantly decreased activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was greatly associated with the decline in photosynthetic efficiency. The net photosynthetic rate (P N) and stomatal conductance (g s) suffered strong reductions before 25 DAE, and afterwards showed no significant difference between control and treatment. UV-B treatment delayed chloroplasts development of flag leaves. Chloroplast membranes later swelled and disintegrated, and more stromal thylakoids were parallel to each other and were arranged in neat rows, which might be responsible for better performance of the primary light reaction. It is likely that accumulation of starch and an increase in the number of lipid droplet and translucent plastoglobuli were results of an inhibition of carbohydrate transport. Our results suggest that long-term exposure to enhanced UV-B radiation was unlikely to have detrimental effects on the absorption flux of photons and the transport of electrons, but it resulted in the decrease of photophosphorylation and Rubisco activation of LYPJ. The extent of the damage to the chloroplast ultrastructure was consistent with the degree of the inhibition of photosynthesis.  相似文献   

12.
Pure and Na+‐doped Alq3 complexes were synthesized by a simple precipitation method at room temperature, maintaining a stoichiometric ratio. These complexes were characterized by X‐ray diffraction, Fourier transform infrared (FTIR), UV/Vis absorption and photoluminescence (PL) spectra. The X‐ray diffractogram exhibits well‐resolved peaks, revealing the crystalline nature of the synthesized complexes, FTIR confirms the molecular structure and the completion of quinoline ring formation in the metal complex. UV/Vis absorption and PL spectra of sodium‐doped Alq3 complexes exhibit high emission intensity in comparison with Alq3 phosphor, proving that when doped in Alq3, Na+ enhances PL emission intensity. The excitation spectra of the synthesized complexes lie in the range 242–457 nm when weak shoulders are also considered. Because the sharp excitation peak falls in the blue region of visible radiation, the complexes can be employed for blue chip excitation. The emission wavelength of all the synthesized complexes lies in the bluish green/green region ranging between 485 and 531 nm. The intensity of the emission wavelength was found to be elevated when Na+ is doped into Alq3. Because both the excitation and emission wavelengths fall in the visible region of electromagnetic radiation, these phosphors can also be employed to improve the power conversion efficiency of photovoltaic cells by using the solar spectral conversion principle. Thus, the synthesized phosphors can be used as bluish green/green light‐emitting phosphors for organic light‐emitting diodes, flat panel displays, solid‐state lighting technology – a step towards the desire to reduce energy consumption and generate pollution free light. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Inverse bremsstrahlung heating and thermal electron-impact ionization of a metal cluster are analyzed with account for the spatial structure of the electromagnetic field. It is shown that, for a femtosecond IR radiation pulse with an intensity of ~1018 W/cm2 and for an iron cluster with an optimum radius of ~25 nm, the electron temperature is higher than 1 keV. In this case, the L shell of the ions is highly stripped. The X-ray bremsstrahlung yield from clusters with a radius greater than the skin depth is estimated.  相似文献   

14.
Direct white light emitting phosphors play a significant role in the display industry due to their ability to improve the quality, efficiency, and versatility of lighting sources used in most of the displays. The currently investigated phosphor SrZr2CaLa2O8:Eu3+ was prepared by a conventional solid-state reaction method. It has been observed that the stoichiometric ratio of all precursors plays an important role in determining the characteristics of the final phosphor. From X-ray diffraction (XRD) analysis, the phosphor was observed to have a hexagonal phase and a crystal size of ~28 nm. Scanning electron microscopy (SEM) observations revealed a cluster of rod-like structures with an average diameter of ~0.2 μm. The excitation peak maximum observed at 280 nm is due to charge transfer between Eu3+-O2− ions. The energy transitions 7F05L6 and 7F05D2 are responsible for the appearance of other excitation peaks at ultraviolet (UV) (395 nm), blue (~467 nm), green (~540 nm), orange (~590 nm), and red (~627 nm) attributed to 5D07FJ (J = 0–4) transitions of europium ion (Eu3+). The Commercial International de I'Eclairage (CIE) chromaticity coordinates were estimated to be (0.37, 0.0.33) and (0.67, 0.33) for the emissions corresponding to 395 and 590 nm, respectively. The characteristic emissions of Eu3+ ions allow this novel phosphor to be used to generate direct white light in light-emitting diodes (LEDs), which is otherwise difficult to achieve in single-component systems.  相似文献   

15.
The luminescence of novel rare earth ( Tb 3 + , Eu 3 + and Dy 3 + )‐activated Ba 2 Sr 2 Al 2 O 7 phosphors for solid‐state lighting is presented. The aluminate phosphors were synthesized using a one‐step combustion method. X‐Ray diffraction, scanning electron microscopy and photoluminescence characterizations were performed to understand the mechanism of excitation and the corresponding emission in the as‐prepared phosphor, as characterized the phase purity and microstructure. Improvements in the luminescence properties of the phosphors with rare earth concentration were observed. The phosphor hue could be tuned from blue, green and red by proper selection of rare earth ions in typical concentrations. Effective absorption in the near‐ultraviolet region was observed, which makes the phosphor a potential candidate for ultraviolet light‐emitting diodes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The variation of the rate of cyclic electron transport around Photosystem I (PS I) during photosynthetic induction was investigated by illuminating dark-adapted spinach leaf discs with red + far-red actinic light for a varied duration, followed by abruptly turning off the light. The post-illumination re-reduction kinetics of P700+, the oxidized form of the photoactive chlorophyll of the reaction centre of PS I (normalized to the total P700 content), was well described by the sum of three negative exponential terms. The analysis gave a light-induced total electron flux from which the linear electron flux through PS II and PS I could be subtracted, yielding a cyclic electron flux. Our results show that the cyclic electron flux was small in the very early phase of photosynthetic induction, rose to a maximum at about 30 s of illumination, and declined subsequently to <10% of the total electron flux in the steady state. Further, this cyclic electron flow, largely responsible for the fast and intermediate exponential decays, was sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethyl urea, suggesting an important role of redox poising of the cyclic components for optimal function. Significantly, our results demonstrate that analysis of the post-illumination re-reduction kinetics of P700+ allows the quantification of the cyclic electron flux in intact leaves by a relatively straightforward method.  相似文献   

17.
Operational monitoring of global terrestrial gross primary production (GPP) and net primary production (NPP) is now underway using imagery from the satellite‐borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Evaluation of MODIS GPP and NPP products will require site‐level studies across a range of biomes, with close attention to numerous scaling issues that must be addressed to link ground measurements to the satellite‐based carbon flux estimates. Here, we report results of a study aimed at evaluating MODIS NPP/GPP products at six sites varying widely in climate, land use, and vegetation physiognomy. Comparisons were made for twenty‐five 1 km2 cells at each site, with 8‐day averages for GPP and an annual value for NPP. The validation data layers were made with a combination of ground measurements, relatively high resolution satellite data (Landsat Enhanced Thematic Mapper Plus at ~30 m resolution), and process‐based modeling. There was strong seasonality in the MODIS GPP at all sites, and mean NPP ranged from 80 g C m?2 yr?1 at an arctic tundra site to 550 g C m?2 yr?1 at a temperate deciduous forest site. There was not a consistent over‐ or underprediction of NPP across sites relative to the validation estimates. The closest agreements in NPP and GPP were at the temperate deciduous forest, arctic tundra, and boreal forest sites. There was moderate underestimation in the MODIS products at the agricultural field site, and strong overestimation at the desert grassland and at the dry coniferous forest sites. Analyses of specific inputs to the MODIS NPP/GPP algorithm – notably the fraction of photosynthetically active radiation absorbed by the vegetation canopy, the maximum light use efficiency (LUE), and the climate data – revealed the causes of the over‐ and underestimates. Suggestions for algorithm improvement include selectively altering values for maximum LUE (based on observations at eddy covariance flux towers) and parameters regulating autotrophic respiration.  相似文献   

18.
A blue CaMgSi2O6:Eu2+ phosphor was prepared by the solid‐state reaction method and the phosphor characterized in terms of crystal structure, particle size, photoluminescence (PL), thermoluminescence (TL) and mechanoluminescence (ML) properties using X‐ray diffraction (XRD), transmission electron microscopy (TEM), PL spectroscopy, TLD reader and ML impact technique. The XRD result shows that phosphor is formed in a single phase and has a monoclinic structure with the space group C2/c. Furthermore, the PL excitation spectra of Eu2+‐doped CaMgSi2O6 phosphor showed a strong band peak at 356 nm and the PL emission spectrum has a peak at 450 nm. The depths and frequency factors of trap centers were calculated using the TL glow curve by deconvolution method in which the trap depths were found to be 0.48 and 0.61 eV. The formation of CaMgSi2O6:Eu2+ phosphor was confirmed by Fourier transform infrared spectroscopy. The ML intensity increased linearly with the impact velocity of the piston used to deform the phosphor. It was shown that the local piezoelectricity‐induced electron bombardment model is responsible for the ML emission. Finally, the optical properties of CaMgSi2O6:Eu2+ phosphors are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Land use and land cover changes greatly influence surface energy balance and consequently climate, and are likely to be associated with the persistent predictions of warming and drying throughout the Mediterranean and other regions. We specifically address the question of how the high radiation load and suppressed latent heat flux, intrinsic to dry regions, interact with land use changes and climate in these environments. We use for this purpose a detailed 6‐year (2003–2008) study of the redistribution of the radiation load in an open‐canopy pine forest. The results show that compared with the background shrubland, there was a 23.8 W m?2 increase in shortwave radiation load on the forest (to a mean annual net solar radiation of 211 W m?2) associated with a decrease in albedo of 0.1. Surface (skin) temperature in the forest was lower than in the shrubland (by ~5 °C on average) due to an efficient ‘convector effect’ and the production of a large sensible heat flux (up to 926 W m?2 in summer), which effectively shifted heat from the canopy to the overlying boundary layer. The cooler forest skin temperature resulted in suppression of upwelling longwave radiation (by 25 W m?2, annual average), further increasing the forest radiation load (mean annual net radiation of 116 and 67 W m?2 for forest and shrubland, respectively). This suppression also resulted in a local ‘canopy greenhouse effect’, where upwelling longwave radiation from the ground to the canopy was larger than from the canopy to the atmosphere (by up to 150 W m?2 in summer) and was associated with ~3 °C warming below the canopy. The ability of the dry productive forest to deal with the high radiation load indicates the potential for afforestation in dry areas.  相似文献   

20.
The novel red‐emitting phosphors KxSr1?2xMoO4:Pr3+x (0.00 ≤ x ≤ 0.04) were prepared by solid‐state reaction. The crystallization and particle sizes of samples were investigated by powder X‐ray diffraction (XRD) and transmission electron microscopy (TEM). TEM images were in good agreement with the theoretical calculation data from the XRD patterns. Photoluminescence analysis indicated that there were three excitation peaks under 430–500 nm, and all samples showed the intensely red emission at 648 nm corresponding to the 3P03F2 transition of Pr3+. The concentrations of doping ions, temperature and polyethylene glycol in the phosphor system can significantly influence the intensity of the red emission. The photoluminescence spectral intensity reached its maximum at x = 0.02. The results showed that the investigated phosphor is a potential red phosphor for white light‐emitting diodes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号