首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nuclear protein kinase NI (NI kinase) was purified from NB-15 mouse neuroblastoma cells by phosphocellulose column and casein affinity column chromatography. The purified NI kinase exhibited (i) an apparent subunit molecular weight of about 37,000, (ii) autophosphorylation, and (iii) insensitivity to inhibition by heparin. When NI kinase was added to heat-treated neuroblastoma nuclei in the presence of [gamma-32P] ATP, two proteins with apparent subunit molecular weights of 11,000 and 10,000 were prominently phosphorylated. Other protein kinases tested including the nuclear protein kinase NII, Type I cAMP-dependent protein kinase, and protein kinase C did not catalyze the phosphorylation of these two proteins. The NI kinase-catalyzed phosphorylation of these two proteins was completely inhibited by 1 mM spermine. In contrast, 10 mM putrescine, 2 mM spermidine, 5 mM arginine, and 10 mM NH4Cl, had no inhibitory effect on this phosphorylation reaction. Our study also indicated that the phosphorylation of the 11,000- and 10,000-dalton proteins occurred in the nuclear matrix fraction but not in heterogeneous nuclear ribonucleoproteins, high mobility group proteins, or histone fractions. We have previously reported that spermine specifically inhibits the endogenous phosphorylation of an 11,000-dalton nuclear protein in various mammalian cell lines (Chen, K. Y., and Verma, R. (1984) Biochem. Biophys. Res. Commun. 118, 710-716). The present study suggests that the 11,000- and 10,000-dalton nuclear proteins may be native substrates of nuclear protein kinase NI and that their phosphorylation can be affected by physiological concentrations of spermine.  相似文献   

2.
The phosphorylation of several proteins in isolated nuclei from Pisum sativum L. was stimulated by spermine. Although spermine increased the general protein phosphorylation by 10 to 20%, it increased the phosphorylation of a 47 kilodalton polypeptide by 150%. By comparison other polyamines, spermidine, putrescine, and cadavarine had far less effect on the phosphorylation of the 47 kilodalton or any other polypeptide. Sodium fluoride was able to inhibit the phosphorylation of the 47 kilodalton polypeptide in the control, implying the participation of protein phosphatase(s) in the phosphorylation of nuclear proteins. Spermine stimulated the phosphorylation of the 47 kilodalton polypeptide over the controls, even in the presence of NaF. This result indicates that spermine probably activates a nuclear kinase, a conclusion supported also by thiophosphorylation data. The inability of ethyleneglycol-bis (β-amino-ethyl ether)-N, N′-tetraacetic acid and Compound 48/80, a calmodulin antagonist, to inhibit this spermine stimulated phosphorylation renders improbable any role of calcium and calmodulin in mediating this response.  相似文献   

3.
Effect of polyamines on ADP-ribosylation by chick-embryo-liver nuclei   总被引:1,自引:0,他引:1  
Effects of polyamines on poly(ADP-ribose) formation and DNA synthesis in the chick-embryo-liver nuclei were investigated. When 14-day chick-embryo-liver nuclei were incubated with [3H]NAD in the presence of 1 mM spermine, 2.5 mM spermidine, or 3.5 mM putrescine, a 9-fold increase in poly)ADP-ribose) formation was observed. Nuclei treated with nuclease showed high poly(ADP-ribose) synthetase activity as spermine-treated nuclei. However, no further increase in the polymer formation by polyamines was detected in the nuclease-treated nuclei. We found that an increase in the polymer formation by spermine was the result of an increase in both chain length and chain number of the polymer at 2.3- and 6-fold, respectively. The major ADP-ribosylated proteins were determined as two non-histone proteins of Mr 130 000 and 70 000. The experiment of DNA synthesis with nuclei ADP-ribosylated in the presence of spermine showed a 7-fold increase in [3H]dTMP incorporation into the acid-inaoluble fraction. A similar stimulation was also found with nuclei treated with other polysmines, spermidine and putrescine, in the presence of NAD. These results indicate that DNA synthesis in growing tissues containing polyamines at high levels, such as is the case with tumors and the fetus, is stimulated by polyamine-mediated ADP-ribosylation of the nuclear proteins.  相似文献   

4.
We have previously demonstrated that spermine stimulates the phosphorylation of a 47 kilodalton nuclear polypeptide from pea plumules (N Datta, LK Hardison, SJ Roux 1986 Plant Physiol 82: 681-684) In this paper we report that spermine stimulates the activity of a cyclic AMP independent casein kinase, partially purified from a chromatin fraction of pea plumule nuclei. This effect of spermine was substrate specific; i.e. with casein as substrate, spermine stimulated the kinase activity, and with phosvitin as substrate, spermine completely inhibited the activity. The stimulation by spermine of the casein kinase was, in part, due to the lowering of the Mg2+ requirement of the kinase. Heparin could partially inhibit this casein kinase activity and spermine completely overcame this inhibition. By further purification of the casein kinase extract on high performance liquid chromatography, we fractionated it into an NI and an NII kinase. Spermine stimulated the NII kinase by 5- to 6-fold but had no effect on the NI kinase. Using [γ-32P]GTP, we have shown that spermine promotes the phosphorylation of the 47 kilodalton polypeptide(s) in isolated nuclei, at least in part by stimulating an NII kinase.  相似文献   

5.
In vitro phosphorylation of total nuclear proteins from soybean (Glycine max L) nodules formed by Bradyrhizobium japonicum 61A76 showed several differences in comparison with those from uninfected roots or embryonic-axes nuclei. Three types of protein phosphorylations were observed in nodule nuclei: Ca(2+)- and calmodulin-independent, Ca(2+)- and calmodulin-dependent, and Ca(2+)-dependent but calmodulin-independent. In addition, Ca(2+)-dependent dephosphorylation of some nuclear proteins was observed in nodule nuclei. The first and second types of phosphorylations were also present in root nuclei, but the trifluoperazine-insensitive and Ca(2+)-dependent phosphorylation (indicating calmodulin independence) occurs only in nodules. The latter appears to phosphorylate a nodule-specific protein of 65 kilodaltons and this protein was purified from other nuclear phosphorylated proteins. In addition, some nuclear proteins from uninfected tissue were found to be phosphorylated or dephosphorylated by kinases or phosphatases that originated from the nodule nuclei. These data suggest that some activities of nuclear factors in nodules may be regulated by specific phosphorylation or dephosphorylation during symbiotic interactions with rhizobia.  相似文献   

6.
The dependence of cell proliferation on nuclear protein phosphorylation was studied with exponential-phase and stationary-phase cultures of Chinese-hamster ovary cells. Nuclear proteins were fractionated, according to their DNA-binding affinities, by using sequential extractions of isolated nuclei with increasing concentrations of NaCl. When viable whole cells were labelled with H332PO4, phosphorylation of nuclear proteins was found to be lower in quiescent cells than in proliferating cells. Phosphorylation of nuclear proteins soluble in 0.30M-NaCl (less than 50% of these proteins bind to DNA) was greater than for those proteins soluble in higher salt concentrations (80-100% of these proteins bind to DNA). Cyclic AMP enhanced the phosphorylation of nuclear proteins soluble in 0.3 m-NaCl by 40-50%, and this stimulation was independent of cell growth. Cyclic AMP also increased the phosphorylation of nuclear proteins soluble in 0.6M-NaCl and 2.0M-NaCl by 40-50% in exponential-phase cultures, but not in stationary-phase cultures. Several examples of specific phosphorylation in response to cyclic AMP were observed, including a 35000-mol.wt. protein in the 0.30 M-NaCl-soluble fraction and several proteins larger than 100000 molecular weight within this fraction. A major peptide of molecular weight approx. 31000 extracted with 0.6M-NaCl was also phosphorylated. Its phosphorylation was independent of cyclic AMP in exponential-phase cultures, and it was not phosphorylated in plateau-phase cells. These changes in cell-growth-dependent phosphorylation occurred in the absence of any apparent qualitative changes in the nuclear protein molecular-weight distributions. These data demonstrate that (1) phosphorylation of nuclear proteins is dependent on the culture's proliferative status, (2) both cyclic AMP-dependent and cyclic AMP-independent specific phosphorylation occurs, and (3) the cyclic AMP-dependent growth-independent phosphorylation that occurs does not appear to be a modification of DNA-binding proteins, whereas the cyclic AMP-dependent growth-dependent phosphorylation does involve modification of DNA binding proteins.  相似文献   

7.
The effect of polyamines (putrescine, spermidine and spermine) on endogenous protein phosphorylation in mouse neuroblastoma cells was investigated by using techniques of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The results indicated that spermine at 1mM completely inhibited the phosphorylation of the 11,000-dalton and 120,000-dalton proteins in nuclear fractions. The inhibition of the phosphorylation of the 11,000-dalton but not the 120,000-dalton protein by spermine was also observed in five other cell lines examined and appeared to be a general phenomenon. The inhibitory effect of spermine on the phosphorylation of the 11,000-dalton protein was specific, other cations such as ammonium chloride, arginine, putrescine, cyclen and trien were ineffective at equal molar or much higher concentrations.  相似文献   

8.
Partial activation of Mucor rouxii cAMP-dependent protein kinase by cAMP was obtained when kemptide was used as substrate, but complete activation was attained with cAMP plus protamine or histone. Full activation could not be achieved by increasing kemptide or cAMP concentration. Complete activation by cAMP could be obtained by addition of 10 microM polylysine, 10 microM lysine-rich histone or 0.5 mM spermine plus spermidine. The degree of stimulation could be up to 5-fold, depending on the amount of enzyme in the assay. The same concentrations of polycations increased 1.5-2.3-fold the Vmax of kemptide phosphorylation by the free catalytic subunits of both Mucor and bovine heart protein kinases; 10 microM polyarginine inhibited completely the activity of both enzymes.  相似文献   

9.
The platelet-derived growth factor (PDGF) stimulated the phosphorylation of a nuclear protein of 64 kDa (pp64) in nuclei of nontransformed normal rat kidney (NRK) cells. Low levels of phosphorylation of pp64 were observed in nuclei of serum-starved NRK cells. Fetal calf serum (FCS), PDGF, and homodimeric v-sis and PDGF A-chain protein enhanced the incorporation of 32P into pp64 over 4-fold within 30 min and over 8-fold within 2 h of exposure of NRK cells to the growth factors. In contrast, constitutive phosphorylation of 32P-labeled pp64 in nuclei of NRK cells transformed by the simian sarcoma virus (SSV) was high and only minimally stimulated by PDGF and FCS. 32P-Labeled pp64 was isolated from nuclei of PDGF-stimulated nontransformed NRK cells; the 32P of pp64 was labile in 1 M KOH, and pp64 was not significantly recognized by anti-phosphotyrosine antisera, suggesting that the PDGF-induced phosphorylation of pp64 occurred on serine or on threonine residues. However, pp64 from SSV-transformed NRK cell nuclei was significantly stable to base hydrolysis and was immunoprecipitated with anti-phosphotyrosine antisera, suggesting that pp64 from SSV-transformed cell nuclei is phosphorylated also on tyrosine. FCS, PDGF, and PDGF A- and B-chain homodimers thus stimulate the rapid time-dependent phosphorylation of a 64-kDa nuclear protein shortly after stimulation of responsive cells. The growth factor-stimulated phosphorylation of pp64 and the constitutive high levels of pp64 phosphorylation in cells transformed by SSV suggest important roles for pp64 and perhaps regulated nuclear protein kinases and phosphatases in cell division and proliferation.  相似文献   

10.
Polyamine-activated protein phosphatase activity in HeLa cell nuclei   总被引:2,自引:0,他引:2  
Protein phosphatase activity towards endogenous nuclear substrates in sonicates of isolated nuclei was activated 2-4-fold by spermine. Exogenous casein was dephosphorylated by these preparations only in the presence of spermine. Activation by spermine was half maximal at about 0.1 mM. Spermidine also activated, with half maximal stimulation at 1mM; putrescine activated poorly. Mg++ and Ca++ appeared to activate the same phosphatase activity but were only 50% as effective as spermine. Spermine activation was inhibited by 200 mM NaCl, 50 mM NaF, or 40 mM beta-glycerol phosphate. Nuclear phosphatase activity, with or without spermine, was inhibited 50% by inhibitor 2 of protein phosphatase 1. These observations suggest that protein phosphatase 1 is a major nuclear protein phosphatase and that its activity against endogenous nuclear substrates is activated by physiological concentrations of spermine.  相似文献   

11.
Purified rat liver nuclei were incubated in vitro with [3H]NAD. Altered patterns of ADP-ribosylation of nuclear proteins occurred with 1 mM spermidine or spermine with the latter polyamine causing the greater change. Spermine treated nuclei showed a two-fold increase in ADP-ribose incorporation into H1 histones and a decrease in the other histones. Likewise, the incorporation into the more acidic non-histone nuclear proteins was greater with spermine than spermidine. These results suggest that polyamines may exert a regulatory function by altering the pattern of ADP-ribosylation of both histone and non-histone nuclear proteins.  相似文献   

12.
Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of the phosphoinositide 3′-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.  相似文献   

13.
The polyamine, spermine (1-5 mM), when added to rat thyroid cytosol, increases the phosphorylation of a 107 kDa protein 4-fold as analyzed by sodium dodecyl sulfate polyacrylamide gradient gel electrophoresis (SDS-PAGE) and autoradiography; spermidine was less effective and putrescine was without effect. Sodium chloride, when tested at equivalent ionic strengths (4-40 mM), did not reproduce the effects of spermine. In addition to stimulating the phosphorylation of a 107 kDa protein, spermine had an apparent biphasic effect on the phosphorylation of 88 and 65 kDa proteins; maximum stimulation of approximately 60-70% was observed at 0.5-2 mM. Both basal and spermine-stimulated protein phosphorylation patterns were identical whether [gamma-32P] ATP or [gamma-32P] GTP was used as phosphate donors. Heparin (1 microgram/ml) reduced spermine-stimulated phosphorylation of the 107 kDa protein by 64%. Phosphorylation of a 107 kDa protein was not restricted to rat thyroid as spermine was found to augment the phosphorylation of 107 kDa protein(s) in mouse and beef thyroid cytosol preparations.  相似文献   

14.
Acetylcholine receptor clusters are associated with nuclei in rat myotubes   总被引:4,自引:0,他引:4  
Clustered and diffuse acetylcholine receptors are present in cultured myotubes. These clustered AChRs represent regions of myotube membrane containing high receptor density. We have studied the distribution of the AChR clusters and nuclei to determine whether there is an association in the distribution of nuclei beneath AChR clusters. AChR clusters were visualized with alpha-bungarotoxin conjugated to tetramethylrhodamine (alpha BTX-TMR) and the nuclei were stained with bisbenzimide which binds specifically to DNA. This double label procedure, and the computerized analysis of the data allowed us to determine the distribution of nuclei and AChR clusters in the same myotube. During early stages of myotube development the nuclei formed aggregates which were comprised of 4 to 10 nuclei in close apposition to one another. This association of AChR clusters with nuclear aggregates was greatest at Day 4 after plating. As the number of nuclear aggregates associated with clusters decreased the number of nuclei in the aggregates also decreased and the AChR clusters decreased in size as well as number. At all time points examined, the concentration of myotube nuclei in the cells was 3 to 12 times higher beneath areas of AChR clusters than away from clusters. Our computerized analysis shows that there is an association of the AChR clusters with the nuclear region during myotube development.  相似文献   

15.
The aim of the present study was to establish a cytofluorometric method for the simultaneous determination of protein-bound sulfhydryl-groups (PSH) and DNA in isolated cell nuclei. DNA was stained with ethidiumbromide and PSH with N-iodoacetyl-N(5-sulfo-1-naphthyl) ethylendiamine (AEDANS). Disulfide groups of nuclear proteins were determined by the same method after reduction with sodium borohydride or thioglycollic acid. The method was established by using nuclei of human lymphocytes, which then served as a biological standard for further investigations of the nuclei of different mammalian cell types: nuclei from mouse liver cells and nuclei from the cells of two human melanoma cell lines. For non-proliferating lymphocytes distinct DNA- and PSH-values could be measured. The PSH-values detected in the nuclei of the other cell types were higher by comparison and varied within the cell cycle; i.e., PSH increased during the S-phase and was almost doubled during the cell generation cycle from G1- to G2-phase. Cell line and cell cycle-dependent variations of nuclear disulfides could also be detected. These results are discussed with respect to their radiobiological implications. In conclusion, thiol groups may represent one factor determining the radiosensitivity of cells, but they are not the only decisive one.  相似文献   

16.
1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3)-induced differentiation of HL-60 leukemia cells is accompanied by a number of cellular changes including regulation of oncogene expression and induction of terminal differentiation. We investigated the mechanism by which 1,25-(OH)2D3 induces these changes. We detected 10 nuclear phosphoproteins, designated p66, p45, p36, p33, p32, p27, p22, p19, p18 and p17, that show alterations in phosphorylation within 6-40 h of 1,25-(OH)2D3 treatment. When phosphorylation reactions were performed with isolated nuclei (in vitro), three of these proteins were phosphorylated in a calcium and phospholipid dependent manner: p66, p36, and p19 P66 was phosphorylated in response to 1,25-(OH)2D3 and purified in a manner similar to that used for nuclear lamins. Western blot analysis of 2-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels confirmed its identity as lamin B. Phosphorylation of p17 and p18 decreased following 1,25-(OH)2D3 treatment. We separated p17 and p18 by SDS-PAGE and obtained N-terminal amino acid sequence to identify these phosphorproteins as histones H2b and H3, respectively. P19 and p22 were both DNA-cellulose binding proteins whose phosphorylation was altered by 1,25-(OH)2D3 treatment. Increased phosphorylation of p27 was detected using 2-dimensional SDS-PAGE. Phosphorylation of nuclear proteins in the intact cell (in vivo), revealed increases in p66, p45, p36, and p33 phosphorylation and a decrease in p17 phosphorylation following 1,25-(OH)2D3 treatment. We detected an increase in phosphorylation of p32, which was extracted with salt from nuclei and migrated on SDS-PAGE similar to histone H1. Thus, we have identified 1,25-(OH)2D3-sensitive nuclear phosphoproteins, including lamin B and several histones. We have also detected and characterized several less abundant nuclear DNA binding phosphoproteins whose phosphorylation was affected by 1,25-(OH)2D3.  相似文献   

17.
A phosphoprotein kinase (EC 2.7.1.37) KIVb, from rat liver nuclei, was purified 75-fold by phosphocellulose chromatography and gel filtration on Sephadex G-200. The enzyme, which has an apparent molecular weight of 55 000, phosphorylates casein and chromatin-bound nonhistone proteins more readily than histones or ribosomal proteins. It exhibits an absolute requirement for divalent cation with optimum activity at 15--20 mM Mg2+. Maximal kinase activity is achieved at 100 mM NaCl. The pH vs. activity curve is biphasic with optima at pH 6.5 and pH 8.0. The Km value for casein is 280 mug/ml and the Km for ATP is 6-10(-6) M. Kinase KIVb phosphorylates numerous nonhistone nuclear proteins as shown by electrophoretic analysis. The addition of kinase KIVb to reaction mixtures containing nonhistone proteins results in the phosphorylation of a spectrum of polypeptides similar to those that are phosphorylated by endogenous nuclear kinases. Nonhistone proteins bound to chromatin appear to be better substrates for KIVb than nonhistones dissociated from chromatin. A comparison of nuclear phosphoproteins phosphorylated either in the intact animal or in vitro (by the addition of kinase KIVb) indicates some differences and some similarities in the patterns of phosphorylation.  相似文献   

18.
The effects of cyclic AMP on the phosphorylation of different acidic proteins of rat liver nuclei were examined in vivo and in vitro. N6,O2′-dibutyryl cyclic AMP selectively stimulated in vivo phosphorylation of specific nuclear proteins more than twofold within 15 min after injection. Cyclic AMP caused only a small stimulation of phosphorylation of acidic proteins in isolated nuclei but the stimulation was selective for specific proteins. When isolated nuclear acidic proteins were incubated with a soluble cyclic AMP-dependent protein kinase, the cyclic nucleotide stimulated total phosphorylation about 1.7-fold. These results support the view that the regulatory effects of cyclic AMP may involve phosphorylation of acidic proteins associated with DNA in the chromatin.  相似文献   

19.
The mechanism by which an agonist, binding to a cell surface receptor, exerts an effect on events in the nucleus is not known. We have previously shown (Leach, K. L., Ruff, V. A., Wright, T. M., Pessin, M. S., and Raben, D. M. (1991) J. Biol. Chem. 266, 3215-3221) that alpha-thrombin treatment of IIC9 cells results in increased levels of cellular 1,2-diacylglycerol (DAG) and activation of protein kinase C (PKC). Here, we have examined whether changes in nuclear PKC and nuclear DAG also are induced following alpha-thrombin treatment. IIC9 cells were treated with 500 ng/ml alpha-thrombin, and nuclei were then isolated. Western blot analysis using isozyme-specific antibodies demonstrated the presence of PKC alpha, but not PKC epsilon or zeta in the nuclei of cells treated with either phorbol 12-myristate 13-acetate or alpha-thrombin. The increase in nuclear PKC alpha levels was accompanied by a 10-fold increase in nuclear PKC specific activity and stimulated phosphorylation of at least six nuclear proteins. The rise in nuclear PKC levels occurred rapidly and reached a maximum at 30-60 s, which was followed by a decline back to the control level over the next 15 min. In addition, alpha-thrombin treatment resulted in an immediate rise in DAG mass levels in the nuclear fractions. Kinetic analysis indicated that a maximum increase in DAG levels occurred 2.5-5 min after the addition of alpha-thrombin and remained elevated for at least 30 min. In cells labeled with [3H]myristic acid, alpha-thrombin treatment induced an increase in radiolabeled nuclear diglycerides, suggesting that the stimulated nuclear DAGs are derived, at least in part, from phosphatidylcholine. Our results suggest that increases in both nuclear DAG levels and PKC activity following alpha-thrombin treatment may play a role in mediating thrombin-induced nuclear responses such as changes in gene expression and cellular proliferation.  相似文献   

20.
Myogenic differentiation is characterized by permanent and irreversible cell cycle withdrawal and increased resistance to apoptosis. These functions correlate with changes in expression and activity of several cyclin-dependent kinase inhibitors, including p18, p21, and p27. In this study, we examined the requirements for p18, p21, and p27 in initiating growth arrest in multinucleated myotubes under differentiation conditions and in maintaining terminal arrest upon restimulation of differentiated myotubes with mitogenic signals. Under differentiation conditions, only p27(-/-) or p18(-/-)p27(-/-) myotubes are capable of reentering the cell cycle and synthesizing DNA at a very low frequency. Escape from cell cycle arrest was significantly greater in p18(-/-)p27(-/-) myotubes than in p27(-/-) myotubes. Stimulation of differentiated cultures with a mitogen-rich growth medium enhances p18(-/-)p27(-/-) myotube proliferation to encompass approximately half of the nuclei. p18(-/-)p21(-/-) and p21(-/-)p27(-/-) myotubes remain terminally arrested. Nuclei within individual restimulated p18(-/-)p27(-/-) myotubes can be found in all phases of the cell cycle, and a myotube can be multiphasic without any obvious deleterious effects. Increasing the time of differentiation or serum stimulation of p18(-/-)p27(-/-) myotubes neither increases the proliferation index of the myotube nuclei, nor does it alter the percentage of nuclei in each of the cell cycle phases. During the first 24 h of serum stimulation, the p18(-/-)p27(-/-) myotube nuclei that escape G0 arrest will rearrest in either S or G2 phase, without either mitosis or endoreplication. Apoptosis is increased in restimulated p18(-/-)p27(-/-) myotube nuclei, but is not specific for any cell cycle phase. These results suggest a collaborative role for p18 and p27 in initiating and maintaining G0 arrest during myogenic differentiation. While p18 and p27 appear to be essential in initiating G0 arrest in a proportion of postmitotic myotube nuclei, there must be another cell cycle inhibitor protein that functions with p18 and p27 in maintaining terminal arrest. We propose that the combined rate-limiting expressions of p18, p27, and this other inhibitor determine whether the myotube nuclei will remain postmitotic, or reenter the cell cycle, and if the nuclei escape G0 arrest, in which phase of the cell cycle the nuclei will ultimately rearrest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号