首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M S Goligorsky 《FEBS letters》1988,240(1-2):59-64
Cytosolic Ca2+ concentration and membrane potential were monitored in individual cultured enothelial cells mechanically stimulated with a micropipette attached to the stage of a microscope. Both dimpling and poking of endothelial cells resulted in Ca2+i transients (from 63 ± 12 to 397 ± 52 nM, characterized by a refractory period of approx. 2 min) and cell depolarization. Ca2+i transients of the reduced amplitude (201 ± 41 nM) were evoked by mechanical stimulation of endothelial cells incubated in a Ca2+-free medium. Dimpling-induced Ca2+i transients were refractory to the pretreatments with pertussis toxin, colchicine, or cytochalasin B, and were not mimicked by an increase in the hydrodynamic pressure. In a co-perfusion system (endothelium: smooth muscle), both the KCl-induced depolarization and ionomycin-induced increase in Ca2+i in the endothelial cells resulted in the reduction of Ca2+i in the smooth muscle cells. The data reported are consistent with the phenomenon of vascular relaxation in response to the increased blood flow. We hypothesize that the mechanical interaction of the formed elements with the microvascular endothelium can serve as a pacemaker for the sustained relaxation of vascular smooth muscle.  相似文献   

2.
This study evaluated the relationship between regional elevation in intracellular calcium concentration ([Ca2+]i) induced by acetylcholine (ACh) and the global cellular responses in porcine tracheal smooth muscle (TSM) cells. Regional (approximately 1.5 microm3) and global (whole cell) changes in [Ca2+]i were measured in fluo-3 loaded TSM cells using real-time confocal microscopy. Regional responses appeared as propagating [Ca2+]i oscillations whereas global responses reflected the spatiotemporal integration of these regional responses. Within a region, [Ca2+]i oscillations were 'biphasic' with initial higher frequencies, followed by slower steady-state oscillations. With increasing ACh concentration, the peak (maximum value relative to 0 nM) of regional [Ca2+]i oscillations remained relatively constant, whereas both frequency and propagation velocity increased. In contrast, the global spatiotemporal integration of the regional oscillatory responses appeared as a concentration-dependent increase in peak as well as mean cellular [Ca2+]i. We conclude that the significance of ACh-induced [Ca2+]i oscillations lies in the establishment of mean [Ca2+]i level for slower Ca2+-dependent physiological processes via modulation of oscillation frequency and propagation velocity.  相似文献   

3.
4.
目的:本实验通过对平滑肌细胞行GCs快速预处理,拟证实糖皮质激素对平滑肌细胞内[Ca2+]i浓度升高有快速抑制作用,并初步探讨该现象的可能分子机制。方法:原代培养的大鼠平滑肌细胞,应用Fura-2/AM显微荧光检测技术,检测肌细胞内[Ca2+]i在受到激动剂刺激后的浓度变化;比较不同浓度地塞米松预处理后10min与对照组之间游离钙上升情况的区别。用Western blot方法,分析气道平滑肌细胞内抑制型磷脂酶C(phospho-PLCβ-ser1105)含量的变化。设立RU486及CHX对照组,排除基因组作用在该反应中的影响。结果:GCs温浴10min,能够明显降低乙酰胆碱引起的ASMCs细胞内[Ca2+]i峰值。并能够明显上调ASMCs内抑制型PLC含量。这些反应不受RU486和CHX影响。结论:GCs能够通过非基因组作用快速抑制刺激物引起的气道平滑肌的收缩反应,这一效应的实现可能是通过抑制PLC分子活性,使其下游的[Ca2+]i浓度降低实现的。  相似文献   

5.
Smooth muscle contraction is regulated by changes in cytosolic Ca2+ concentration ([Ca2+]i). In response to stimulation, Ca2+ increase in a single cell can propagate to neighbouring cells through gap junctions, as intercellular Ca2+ waves. To investigate the mechanisms underlying Ca2+ wave propagation between smooth muscle cells, we used primary cultured rat mesenteric smooth muscle cells (pSMCs). Cells were aligned with the microcontact printing technique and a single pSMC was locally stimulated by mechanical stimulation or by microejection of KCl. Mechanical stimulation evoked two distinct Ca2+ waves: (1) a fast wave (2 mm/s) that propagated to all neighbouring cells, and (2) a slow wave (20 μm/s) that was spatially limited in propagation. KCl induced only fast Ca2+ waves of the same velocity as the mechanically induced fast waves. Inhibition of gap junctions, voltage-operated calcium channels, inositol 1,4,5-trisphosphate (IP3) and ryanodine receptors, shows that the fast wave was due to gap junction mediated membrane depolarization and subsequent Ca2+ influx through voltage-operated Ca2+ channels, whereas, the slow wave was due to Ca2+ release primarily through IP3 receptors. Altogether, these results indicate that temporally and spatially distinct mechanisms allow intercellular communication between SMCs. In intact arteries this may allow fine tuning of vessel tone.  相似文献   

6.
A mathematical model of calcium dynamics in vascular smooth muscle cell (SMC) was developed based on data mostly from rat mesenteric arterioles. The model focuses on (a) the plasma membrane electrophysiology; (b) Ca2+ uptake and release from the sarcoplasmic reticulum (SR); (c) cytosolic balance of Ca2+, Na+, K+, and Cl ions; and (d) IP3 and cGMP formation in response to norepinephrine (NE) and nitric oxide (NO) stimulation. Stimulation with NE induced membrane depolarization and an intracellular Ca2+ ([Ca2+]i) transient followed by a plateau. The plateau concentrations were mostly determined by the activation of voltage-operated Ca2+ channels. NE causes a greater increase in [Ca2+]i than stimulation with KCl to equivalent depolarization. Model simulations suggest that the effect of [Na+]i accumulation on the Na+/Ca2+ exchanger (NCX) can potentially account for this difference. Elevation of [Ca2+]i within a concentration window (150-300 nM) by NE or KCl initiated [Ca2+]i oscillations with a concentration-dependent period. The oscillations were generated by the nonlinear dynamics of Ca2+ release and refilling in the SR. NO repolarized the NE-stimulated SMC and restored low [Ca2+]i mainly through its effect on Ca2+-activated K+ channels. Under certain conditions, Na+-K+-ATPase inhibition can result in the elevation of [Na+]i and the reversal of NCX, increasing resting cytosolic and SR Ca2+ content, as well as reactivity to NE. Blockade of the NCX's reverse mode could eliminate these effects. We conclude that the integration of the selected cellular components yields a mathematical model that reproduces, satisfactorily, some of the established features of SMC physiology. Simulations suggest a potential role of intracellular Na+ in modulating Ca2+ dynamics and provide insights into the mechanisms of SMC constriction, relaxation, and the phenomenon of vasomotion. The model will provide the basis for the development of multi-cellular mathematical models that will investigate microcirculatory function in health and disease.  相似文献   

7.
Phospholipase Cζ (PLCζ) is a sperm-specific PLC capable of causing repetitive intracellular Ca2+ ([Ca2+]i) release ([Ca2+]i oscillations) in mammalian eggs. Accumulating evidence suggests that PLCζ is the sperm factor responsible for inducing egg activation. Nevertheless, some sperm fractions devoid of 72-kDa PLCζ showed [Ca2+]i oscillation-inducing and PLCζ-like PLC activity (Kurokawa et al., (2005) Dev. Biol. 285, 376-392). Here, we report that PLCζ remains functional after proteolytic cleavage at the X-Y linker region. We found that N-terminal (33 and 37 kDa) and C-terminal fragments (27 kDa), presumably the result of PLCζ cleavage at the X-Y linker region, were present in fresh sperm as well as in sperm extracts and remained associated as functional complexes. Protease V8 cleaved 72-kDa PLCζ into 33/37 and 27 kDa fragments, while PLC activity and [Ca2+]i oscillation-inducing activity persisted until degradation of the fragments. Immunodepletion or affinity depletion of these fragments abolished PLC activity and [Ca2+]i oscillation-inducing activity from sperm extracts. Lastly, co-expression of cRNAs encoding residues 1-361 and 362-647 of mouse PLCζ, mimicking cleavage at the X-Y linker region, induced [Ca2+]i oscillations and embryo development in mouse eggs. Our results support the hypothesis that PLCζ is the sole mammalian sperm factor and that its linker region may have important regulatory functions during mammalian fertilization.  相似文献   

8.
Histamine stimulation of swine arterial smooth muscle is associated with a high [Ca2+]i sensitivity for increases in myosin light-chain phosphorylation. In contrast, KCl depolarization produces a relatively lower [Ca2+]i sensitivity (i.e., similar increases in [Ca2+]i induce less myosin phosphorylation). We evaluated whether 1) artifacts in the methodology for measuring [Ca2+]i or 2) true alterations in the [Ca2+]i sensitivity of myosin light-chain kinase were responsible for these apparent changes in the [Ca2+]i sensitivity of phosphorylation. The [Ca2+]i sensitivity of phosphorylation was higher with histamine stimulation regardless of whether the [Ca2+]i indicator was aequorin (which was loaded intracellularly by reversible hyperpermeabilization) or Fura 2 (which was loaded intracellularly by incubation of the tissues in Fura 2 AM). Aequorin and Fura 2 appeared to detect qualitatively similar stimulus-induced changes in [Ca2+]i with the exception that the initial response to histamine stimulation was different (histamine initially induced a large aequorin light transient and a relatively smaller increase in Fura 2 fluorescence). The [Ca2+]i sensitivity of myosin light-chain kinase extracted from KCl depolarized tissues was lower than the [Ca2+]i sensitivity of myosin light-chain kinase extracted from unstimulated or histamine stimulated tissues. These results suggest that depolarization specifically modifies myosin light-chain kinase to decrease its [Ca2+]i sensitivity. Changes in the [Ca2+]i sensitivity of myosin light-chain phosphorylation are not an artifact of the [Ca2+]i measurement technique.  相似文献   

9.
10.
Phenylephrine (PE)-induced oscillatory fluctuations in intracellular Ca2+ concentration ([Ca2+]i) of vascular smooth muscle have been observed in many blood vessels isolated from a wide variety of mammals. Paradoxically, until recently similar observations in humans have proven elusive. In this study, we report for the first time observations of adrenergically-stimulated [Ca2+]i oscillations in human mesenteric artery smooth muscle. In arterial segments preloaded with Fluo-4 AM and mounted on a myograph on the stage of a confocal microscope, we observed PE-induced oscillations in [Ca2+]i, which initiated and maintained vasoconstriction. These oscillations present some variability, possibly due to compromised health of the tissue. This view is corroborated by our ultrastructural analysis of the cells, in which we found only (5 ± 2)% plasma membrane-sarcoplasmic reticulum apposition, markedly less than measured in healthy tissue from laboratory animals. We also partially characterized the oscillations by using the inhibitory drugs 2-aminoethoxydiphenyl borate (2-APB), cyclopiazonic acid (CPA) and nifedipine. After PE contraction, all drugs provoked relaxation of the vessel segments, sometimes only partial, and reduced or inhibited oscillations, except CPA, which rarely caused relaxation. These preliminary results point to a potential involvement of the sarcoplasmic reticulum Ca2+ and inositol 1,4,5-trisphosphate receptor (IP3R) in the maintenance of the Ca2+ oscillations observed in human blood vessels.  相似文献   

11.
胞质[Ca2 ]i震荡的动力学变化在哺乳动物早期胚胎发育中发挥重要作用。卵母细胞的成熟伴随间断的、快速的[Ca2 ]i震荡的时空表达;在受精过程中精子因子诱导的反复[Ca2 ]i震荡的振幅和持续时间是卵细胞最有效的激活信号,这种信号形成自然连续的受精[Ca2 ]i波,并以长时持续[Ca2 ]i震荡形式在受精卵空间传递并持续数小时,直至受精完成;受精卵内源性的Ca2 释放所引起的[Ca2 ]i震荡形成第一次卵裂信号,启动早期胚胎的发育。精子PLCζ和cPKCs是形成受精卵[Ca2 ]波、[Ca2 ]震荡的重要因素。  相似文献   

12.
目的 :明确自发性高血压大鼠血管平滑肌细胞 (SHR VSMC)增殖与血小板源生长因子 AA(PDGF AA)、PDGF α受体表达的关系及钙信号在其中的作用。方法 :在培养的血管平滑肌细胞模型中 ,采用免疫印迹 (Westernblot)、3 H TdR及3 H Leu掺入、荧光探针标记测定单细胞内钙浓度等方法 ,观察不同来源大鼠 (SHR/WKY)VSMC ,PDGF AA、PDGF α受体和PDGF β受体表达的差异性以及在PDGF AA刺激下 ,VSMC增殖肥大反应、胞内 [Ca2 ]i变化和钙离子阻断剂 (nimodipine)对其的影响。 结果 :与WKY VSMC相比SHR VSMC中PDGF AA、PDGF α受体蛋白表达明显增加 ,而PDGF β受体蛋白表达在SHR VSMC与WKY VSMC无明显变化。在PDGF AA刺激下 ,增殖细胞核抗原 (PCNA)、3 H掺入率及胞内 [Ca2 ]i浓度在SHR VSMC明显增强 ;钙离子阻断剂 (nimodipine)明显抑制PCNA表达及3 H掺入 ,胞内 [Ca2 ]i浓度明显下降。结论 :自发性高血压大鼠VSMCPDGF A链及其α受体的自发性增高 ,可能是导致SHR VSMC异常增殖、肥大 ,从而触发血管反应性和血管构型变化的重要原因之一 ;细胞膜钙通道在调控VSMC的钙内流时起主要作用  相似文献   

13.
Communication between vascular smooth muscle cells (SMCs) allows control of their contraction and so regulation of blood flow. The contractile state of SMCs is regulated by cytosolic Ca2+ concentration ([Ca2+]i) which propagates as Ca2+ waves over a significant distance along the vessel. We have characterized an intercellular ultrafast Ca2+ wave observed in cultured A7r5 cell line and in primary cultured SMCs (pSMCs) from rat mesenteric arteries. This wave, induced by local mechanical or local KCl stimulation, had a velocity around 15 mm/s. Combining of precise alignment of cells with fast Ca2+ imaging and intracellular membrane potential recording, allowed us to analyze rapid [Ca2+]i dynamics and membrane potential events along the network of cells. The rate of [Ca2+]i increase along the network decreased with distance from the stimulation site. Gap junctions or voltage-operated Ca2+ channels (VOCCs) inhibition suppressed the ultrafast Ca2+ wave. Mechanical stimulation induced a membrane depolarization that propagated and that decayed exponentially with distance. Our results demonstrate that an electrotonic spread of membrane depolarization drives a rapid Ca2+ entry from the external medium through VOCCs, modeled as an ultrafast Ca2+ wave. This wave may trigger and drive slower Ca2+ waves observed ex vivo and in vivo.  相似文献   

14.
Kang TM  Park MK  Uhm DY 《Life sciences》2002,70(19):2321-2333
We have investigated the effects of hypoxia on the intracellular Ca2+ concentration ([Ca2+]i) in rabbit pulmonary (PASMCs) and coronary arterial smooth muscle cells with fura-2. Perfusion of a glucose-free and hypoxic (PO2<50 mmHg) external solution increased [Ca2+]i in cultured as well as freshly isolated PASMCs. However it had no effect on [Ca2+]i in freshly isolated coronary arterial myocytes. In the absence of extracellular Ca2+, hypoxic stimulation elicited a transient [Ca2+]i increase in cultured PASMCs which was abolished by the simultaneous application of cyclopiazonic acid and ryanodine, suggesting the involvement of sarcoplasmic reticulum (SR) Ca2+ store. Pretreatment with the mitochondrial protonophore, carbonyl cyanide m-chlorophenyl-hydrazone (CCCP) enhanced the [Ca2+]i rise in response to hypoxia. A short application of caffeine gave a transient [Ca2+]i rise which was prolonged by CCCP. Decay of the caffeine-induced [Ca2+]i transients was significantly slowed by treatment of CCCP or rotenone. After full development of the hypoxia-induced [Ca2+]i rise, nifedipine did not decrease [Ca2+]i. These data suggest that the [Ca2+]i increase in response to hypoxia may be ascribed to both Ca2+ release from the SR and the subsequent activation of nifedipine-insensitive capacitative Ca2+ entry. Mitochondria appear to modulate hypoxia induced Ca2+ release from the SR.  相似文献   

15.
Mitochondrial Ca(2+) uptake is usually thought to occur only when intracellular Ca(2+) concentration ([Ca(2+)](i)) is high. We investigated whether mitochondrial Ca(2+) removal participates in shaping [Ca(2+)](i) signals in arterial smooth muscle over a low [Ca(2+)](i) range. [Ca(2+)](i) was measured using fura 2-loaded, voltage-clamped cells from rat femoral arteries. Both diazoxide and carbonyl cyanide m-chlorophenylhydrazone (CCCP) depolarized the mitochondria. Diazoxide application increased resting [Ca(2+)](i), suggesting that Ca(2+) is sequestered in mitochondria. Over a low [Ca(2+)](i) range, diazoxide and CCCP slowed Ca(2+) removal rate, determined after a brief depolarization. When [Ca(2+)](i) was measured during sustained depolarization to -30 mV, CCCP application increased [Ca(2+)](i). When Ca(2+) transients were repeatedly evoked by caffeine applications, CCCP application elevated resting [Ca(2+)](i). Caffeine-induced Ca(2+) transients were compared before and after CCCP application using the half decay time, or time required to reduce increase in [Ca(2+)](i) by 50% (t((1/2))). CCCP treatment significantly increased t((1/2)). These results suggest that Ca(2+) removal to mitochondria in arterial smooth muscle cells may be important at a low [Ca(2+)](i).  相似文献   

16.
We have recently shown that sulfur dioxide (SO(2)) derivatives (bisulfite and sulfite, 1:3 M/M) modulated L-type calcium, sodium, and potassium channels in rat myocytes. The aim of this study was to investigate whether SO(2) derivatives could alter Na/Ca exchanger current and the intracellular free [Ca(2+)]. The nickel-sensitive Na/Ca exchanger current was measured in rat myocytes exposed to ramp pulses in Tyrode's solution containing ouabain, nifedipine, and +/-Ni (5 mmol/l). Myocytes were loaded with the fluorescent Ca(2+) indicator Fura-2/AM to estimate intracellular Ca(2+) concentration. SO(2) derivatives significantly inhibited both outward and inward Ni-sensitive Na/Ca exchanger currents without a shift in the reversal potential. The intracellular free [Ca(2+)] was raised by SO(2) derivatives in several concentrations. SO(2) derivatives increased [Ca(2+)](i) in rat myocytes and its mechanism might involve SO(2) derivatives significantly inhibiting Na/Ca exchanger current and enhancing L-type calcium channel.  相似文献   

17.
Sell M  Boldt W  Markwardt F 《Cell calcium》2002,32(3):105-120
The kinetics of the intracellular Ca2+ concentration ([Ca2+]i) of vascular smooth muscle cells (VSMCs) in rat small mesenteric arteries was investigated by confocal laser scanning microscopy using the fluorescent Ca2+ indicator fluo-3 AM. One micromole noradrenaline (NA) induced randomly distributed transient elevations of [Ca2+]i in several single VSMCs which were weakly temporally coupled. Higher NA concentrations of 3 or 10 microM, however, induced strongly synchronised [Ca2+]i oscillations in VSMCs. In preparations with intact endothelium, the synchronisation of [Ca2+]i signals was attenuated by acetylcholine (ACh) but augmented by the NO synthase antagonist L-NAME, pointing to a desynchronising effect of the endothelium even under basal conditions. In preparations with or without intact endothelium sodium nitroprusside (SNP) as well as the gap-junction uncoupler heptanol reversibly desynchronised the [Ca2+]i transients. The effect of ACh but not that of SNP was influenced by L-NAME. Propagated intracellular [Ca2+]i waves had a velocity of 25 microm/s. The phase shift of [Ca2+]i oscillations between single VSMCs were maximally 2s and independent of the distance of up to 90 microm between individual cells. Therefore, we consider intercellular [Ca2+]i waves to be too slow to account for the synchronisation of [Ca2+]i oscillations.We conclude that the coupling of [Ca2+]i signals in vascular smooth muscle cells is not constant but highly regulated by NA and by endothelium derived NO. Oscillations of vessel contraction at high sympathetic tone may be induced by synchronisation of [Ca2+]i transients of distinct VSMCs whereas endothelium derived NO inhibits vasomotion by desynchronising [Ca2+]i transients of single VSMCs.  相似文献   

18.
19.
The molecular mechanisms underlying hypoxic responses in pulmonary and systemic arteries remain obscure. Here we for the first time report that acute hypoxia significantly increased total PKC and PKCepsilon activity in pulmonary, but not mesenteric arteries, while these two tissues showed comparable PKCepsilon protein expression and activation by the PKC activator phorbol 12-myristate 13-acetate. Hypoxia induced an increase in intracellular reactive oxygen species (ROS) generation in isolated pulmonary artery smooth muscle cells (PASMCs), but not in mesenteric artery SMCs. Inhibition of mitochondrial ROS generation with rotenone, myxothiazol, or glutathione peroxidase-1 overexpression prevented hypoxia-induced increases in total PKC and PKCepsilon activity in pulmonary arteries. The inhibitory effects of rotenone were reversed by exogenous hydrogen peroxide. A PKCepsilon translocation peptide inhibitor or PKCepsilon gene deletion decreased hypoxic increase in [Ca(2+)](i) in PASMCs, whereas the conventional PKC inhibitor GO6976 had no effect. These data suggest that acute hypoxia may specifically increase mitochondrial ROS generation, which subsequently activates PKC, particularly PKCepsilon, contributing to hypoxia-induced increase in [Ca(2+)](i) and contraction in PASMCs.  相似文献   

20.
Ca microdomains in smooth muscle   总被引:1,自引:0,他引:1  
In smooth muscle, Ca2+ controls diverse activities including cell division, contraction and cell death. Of particular significance in enabling Ca2+ to perform these multiple functions is the cell's ability to localize Ca2+ signals to certain regions by creating high local concentrations of Ca2+ (microdomains), which differ from the cytoplasmic average. Microdomains arise from Ca2+ influx across the plasma membrane or release from the sarcoplasmic reticulum (SR) Ca2+ store. A single Ca2+ channel can create a microdomain of several micromolar near (200 nm) the channel. This concentration declines quickly with peak rates of several thousand micromolar per second when influx ends. The high [Ca2+] and the rapid rates of decline target Ca2+ signals to effectors in the microdomain with rapid kinetics and enable the selective activation of cellular processes. Several elements within the cell combine to enable microdomains to develop. These include the brief open time of ion channels, localization of Ca2+ by buffering, the clustering of ion channels to certain regions of the cell and the presence of membrane barriers, which restrict the free diffusion of Ca2+. In this review, the generation of microdomains arising from Ca2+ influx across the plasma membrane and the release of the ion from the SR Ca2+ store will be discussed and the contribution of mitochondria and the Golgi apparatus as well as endogenous modulators (e.g. cADPR and channel binding proteins) will be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号