首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The Pô River basin of northern Italy is the home of distinctive and endemic morphological forms of brown trout Salmo trutta. We used PCR-direct sequencing and RFLP techniques to study variation in the mitochondrial control region of 225 trout in order to assess genetic relatedness among 18 populations from that region. The distribution analysis of these genotypes among north Italian populations confirmed the phylogenetic differentiation of marbled trout Salmo trutta marmoratus populations and the postglacial origin of S. t. fario. Extensive genetic heterogeneity was observed among morphologically identical S. t. fario populations. Introgression with domestic strains of Atlantic basin origin was detected in all forms. In order to assess the phylogenetic congruence detected in coding and noncoding regions of the mitochondrial genome, we also analysed sequence variation in segments of the cytochrome b and ATPase subunit VI genes among representatives of all variants detected in the analysis of the control region. Variation in protein coding genes was only slightly less than that observed in the control region of the same individuals, both in terms of number of variants detected and of pairwise sequence divergence estimates among variants. Phylogenetic analysis based on protein coding genes sequences identified the same phylogenetic groupings defined by the control region analysis and also allowed a partial resolution of their phyletic relationships that was previously unresolved. However, coding and noncoding segments differed substantially in the transition-transversion ratio (17:0 in coding segments vs. 17:6 in control region segments).  相似文献   

3.
《Fly》2013,7(2):75-81
Body pigmentation in insects and other organisms is typically variable within and between species and is often associated with fitness. Regulatory variants with large effects at bab1, t and e affect variation in abdominal pigmentation in several populations of Drosophila melanogaster. Recently, we performed a genome wide association (GWA) analysis of variation in abdominal pigmentation using the inbred, sequenced lines of the Drosophila Genetic Reference Panel (DGRP). We confirmed the large effects of regulatory variants in bab1, t and e; identified 81 additional candidate genes; and validated 17 candidate genes (out of 28 tested) using RNAi knockdown of gene expression and mutant alleles. However, these analyses are imperfect proxies for the effects of segregating variants. Here, we describe the results of an extreme quantitative trait locus (xQTL) GWA analysis of female body pigmentation in an outbred population derived from light and dark DGRP lines. We replicated the effects on pigmentation of 28 genes implicated by the DGRP GWA study, including bab1, t and e and 7 genes previously validated by RNAi and/or mutant analyses. We also identified many additional loci. The genetic architecture of Drosophila pigmentation is complex, with a few major genes and many other loci with smaller effects.  相似文献   

4.
The polymorphism of exon 2 of the DAB genes (major histocompatibility complex [MHC] class IIB) was investigated for the first time in the freshwater cyprinid fish species, Squalius cephalus, in the wide range of its distribution in Europe. We identified 111 different MHC class IIB variants in 15 chub populations distributed from Finland to Spain. The sequence analysis showed that many structurally important amino acid sites that were conserved among tetrapods were also conserved in chub. The analysis of recombination indicated that it does not play an important role in producing and maintaining the variation of DAB genes analyzed in the present study. The exon 2 was shown to be subjected to intense positive selection. Phylogenetic analysis and sequence identities suggest the presence of two class IIB loci (DAB1-like and DAB3-like) in chub. Nevertheless, the presence of three DAB3-like sequence variants in several individuals indicates the duplication of the DAB3 gene. A contrasting selection pattern was found in DAB1-like and DAB3-like genes, which suggests the potential functional differences between these genes. Some DAB sequence variants were shared among the populations of different mtDNA lineages. The phylogenetic analyses did not confirm any biogeographical pattern of the genetic structure of MHC IIB in chub, which is in line with balancing selection and trans-species polymorphism in MHC genes. Nevertheless, cluster analysis based on the presence/absence of DAB sequence variants in the populations showed the phylogeophraphical pattern corresponding to the mtDNA lineages, which indicates that neutral selection can partially explain the MHC IIB evolution in chub.  相似文献   

5.
6.
Exceptional longevity (EL) is a rare phenotype that can cluster in families, and co‐segregation of genetic variation in these families may point to candidate genes that could contribute to extended lifespan. In this study, for the first time, we have sequenced a total of seven exomes from exceptionally long‐lived siblings (probands ≥ 103 years and at least one sibling ≥ 97 years) that come from three separate families. We have focused on rare functional variants (RFVs) which have ≤ 1% minor allele frequency according to databases and that are likely to alter gene product function. Based on this, we have identified one candidate longevity gene carrying RFVs in all three families, APOB. Interestingly, APOB is a component of lipoprotein particles together with APOE, and variants in the genes encoding these two proteins have been previously associated with human longevity. Analysis of nonfamilial EL cases showed a trend, without reaching statistical significance, toward enrichment of APOB RFVs. We have also identified candidate longevity genes shared between two families (5–13) or within individual families (66–156 genes). Some of these genes have been previously linked to longevity in model organisms, such as PPARGC1A, NRG1, RAD52, RAD51, NCOR1, and ADCY5 genes. This work provides an initial catalog of genes that could contribute to exceptional familial longevity.  相似文献   

7.
The human pathogen Mycoplasma genitalium employs homologous recombination to generate antigenic diversity in the immunodominant MgpB and MgpC proteins. Only recently, some of the molecular factors involved in this process have been characterized, but nothing is known about its regulation. Here, we show that M. genitalium expresses N‐terminally truncated RecA isoforms via alternative translation initiation, but only the full‐length protein is essential for gene variation. We also demonstrate that overexpression of MG428 positively regulates the expression of recombination genes, including recA, ruvA, ruvB and ORF2, a gene of unknown function co‐transcribed with ruvAB. The co‐ordinated induction of these genes correlated with an increase of mgpBC gene variation. In contrast, cells lacking MG428 were unable to generate variants despite expressing normal levels of RecA. Similarly, deletion analyses of the recA upstream region defined sequences required for gene variation without abolishing RecA expression. The requirement of these sequences is consistent with the presence of promoter elements associated with MG428‐dependent recA induction. Sequences upstream of recA also influence the relative abundance of RecA isoforms, possibly through translational regulation. Overall, these results suggest that MG428 is a positive regulator of recombination and that precise control of recA expression is required to initiate mgpBC variation.  相似文献   

8.
The extent to which genotypic variation at a priori identified candidate genes can explain variation in complex phenotypes is a major debate in evolutionary biology. Whereas some high‐profile genes such as the MHC or MC1R clearly do account for variation in ecologically relevant characters, many complex phenotypes such as response to parasite infection may well be underpinned by a large number of genes, each of small and effectively undetectable effect. Here, we characterize a suite of novel candidate genes for variation in gastrointestinal nematode (Trichostrongylus tenuis) burden among red grouse (Lagopus lagopus scotica) individuals across a network of moors in north‐east Scotland. We test for associations between parasite load and genotypic variation in twelve genes previously identified to be differentially expressed in experimentally infected red grouse or genetically differentiated among red grouse populations with overall different parasite loads. These genes are associated with a broad physiological response including immune system processes. Based on individual‐level generalized linear models, genotypic variants in nine genes were significantly associated with parasite load, with effect sizes accounting for differences of 514–666 worms per bird. All but one of these variants were synonymous or untranslated, suggesting that these may be linked to protein‐coding variants or affect regulatory processes. In contrast, population‐level analyses revealed few and inconsistent associations with parasite load, and little evidence of signatures of natural selection. We discuss the broader significance of these contrasting results in the context of the utility of population genomics and landscape genomics approaches in detecting adaptive genomic signatures.  相似文献   

9.
Stature (adult height) is one of the most heritable human traits, yet few genes, if any, have been convincingly associated with adult height variation in the general population. Here, we selected 150 tag SNPs from eight candidate genes in the growth hormone (GH)/insulin-like growth factor-1 (IGF1) axis (GHR, GHRH, GHRHR, IGF1, IGFALS, IGFBP3, JAK2, STAT5B), and genotyped them in ∼2,200 individuals ascertained for short or tall stature. Nominally significant tag SNPs were then tested in three additional replication cohorts, including a family-based panel to rule out spurious associations owing to population stratification. Across the four height cohorts (N = 6,075 individuals), we did not observe any consistent associations between stature and common variants (≥5% minor allele frequency) in these eight genes, including a common deletion of the growth hormone receptor gene exon 3. Tests of epistatic interactions between these genes did not yield any results beyond those expected by chance. Although we have not tested all genes in the GH/IGF1 axis, our results indicate that common variation in these GH/IGF1 axis genes is not a major determinant of stature, and suggest that if common variation contributes to adult height variation in the general population, the variants are in other, possibly unanticipated genes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Non-specific lipid transfer proteins (nsLTPs) of Rosaceae fruits, such as peach, apricot, cherry, plum and apple, represent major allergens for Mediterranean atopic populations. As a first step in elucidating the genetics of nsLTPs, we directed the research reported here towards identifying the number and location of nsLTP (Mal d 3) genes in the apple genome and determining their allelic diversity. PCR cloning was initially performed on two cultivars, Prima and Fiesta, parents of a core apple mapping progeny in Europe, based on two Mal d 3 sequences (AF221502 and AJ277164) in the GenBank. This resulted in the identification of two distinct sequences (representing two genes) encoding the mature nsLTP proteins. One is identical to accession AF221502 and has been named Mal d 3.01, and the other is new and has been named Mal d 3.02. Subsequent genome walking in the upstream direction and DNA polymorphism analysis revealed that these two genes are intronless and that they could be mapped on two homoeologous segments of linkage groups 12 and 4, respectively. Further cloning and sequencing of the coding and upstream region of both Mal d 3 genes in eight cultivars was performed to identify allelic variation. Assessment of the deduced nsLTP amino acid sequences gave a total of two variants at the protein level for Mal d 3.01 and three for Mal d 3.02. The consequences of our results for allergen nomenclature and the breeding of low allergenic apple cultivars are discussed.  相似文献   

11.
Alzheimer's disease (AD) is a common and complex neurodegenerative disease. Age at onset (AAO) of AD is an important component phenotype with a genetic basis, and identification of genes in which variation affects AAO would contribute to identification of factors that affect timing of onset. Increase in AAO through prevention or therapeutic measures would have enormous benefits by delaying AD and its associated morbidities. In this paper, we performed a family‐based genome‐wide association study for AAO of late‐onset AD in whole exome sequence data generated in multigenerational families with multiple AD cases. We conducted single marker and gene‐based burden tests for common and rare variants, respectively. We combined association analyses with variance component linkage analysis, and with reference to prior studies, in order to enhance evidence of the identified genes. For variants and genes implicated by the association study, we performed a gene‐set enrichment analysis to identify potential novel pathways associated with AAO of AD. We found statistically significant association with AAO for three genes (WRN, NTN4 and LAMC3) with common associated variants, and for four genes (SLC8A3, SLC19A3, MADD and LRRK2) with multiple rare‐associated variants that have a plausible biological function related to AD. The genes we have identified are in pathways that are strong candidates for involvement in the development of AD pathology and may lead to a better understanding of AD pathogenesis.  相似文献   

12.
Molecular chaperones monitor protein homeostasis and defend against the misfolding and aggregation of proteins that is associated with protein conformational disorders. In these diseases, a variety of different aggregate structures can form. These are called prion strains, or variants, in prion diseases, and cause variation in disease pathogenesis. Here, we use variants of the yeast prions [RNQ+] and [PSI+] to explore the interactions of chaperones with distinct aggregate structures. We found that prion variants show striking variation in their relationship with Hsp40s. Specifically, the yeast Hsp40 Sis1 and its human orthologue Hdj1 had differential capacities to process prion variants, suggesting that Hsp40 selectivity has likely changed through evolution. We further show that such selectivity involves different domains of Sis1, with some prion conformers having a greater dependence on particular Hsp40 domains. Moreover, [PSI+] variants were more sensitive to certain alterations in Hsp70 activity as compared to [RNQ+] variants. Collectively, our data indicate that distinct chaperone machinery is required, or has differential capacity, to process different aggregate structures. Elucidating the intricacies of chaperone‐client interactions, and how these are altered by particular client structures, will be crucial to understanding how this system can go awry in disease and contribute to pathological variation.  相似文献   

13.
Many genes encoding synaptic proteins are associated with neurodevelopmental disorders (NDDs) such as autism spectrum disorders (ASDs), intellectual disability (ID), and epilepsy. Here we review recent studies on the synaptic effects of disease-associated rare variants identified in two families of synaptic proteins: NMDA receptors (NMDARs) and the postsynaptic adhesion molecules neuroligins (NLGNs). Many NMDAR subunit genes (GRINs) are highly intolerant to variation, and both gain-of-function (GOF) and loss-of-function (LOF) variants are implicated in disease. NLGN genes are also associated with ASDs, and in some cases, contribute to the male bias identified in these patients. Understanding the molecular basis of synaptic dysfunction of rare variants in these genes will help the design of new therapeutic approaches.  相似文献   

14.
The diverse colours of mature pepper (Capsicum spp.) fruit result from the accumulation of different carotenoids. The carotenoid biosynthetic pathway has been well elucidated in Solanaceous plants, and analysis of candidate genes involved in this process has revealed variations in carotenoid biosynthetic genes in Capsicum spp. However, the allelic variations revealed by previous studies could not fully explain the variation in fruit colour in Capsicum spp. due to technical difficulties in detecting allelic variation in multiple candidate genes in numerous samples. In this study, we uncovered allelic variations in six carotenoid biosynthetic genes, including phytoene synthase (PSY1, PSY2), lycopene β‐cyclase, β‐carotene hydroxylase, zeaxanthin epoxidase and capsanthin‐capsorubin synthase (CCS) genes, in 94 pepper accessions by single‐molecule real‐time (SMRT) sequencing. To investigate the relationship between allelic variations in the candidate genes and differences in fruit colour, we performed ultra‐performance liquid chromatography analysis using 43 accessions representing each allelic variation. Different combinations of dysfunctional mutations in PSY1 and CCS could explain variation in the compositions and levels of carotenoids in the accessions examined in this study. Our results demonstrate that SMRT sequencing technology can be used to rapidly identify allelic variation in target genes in various germplasms. The newly identified allelic variants will be useful for pepper breeding and for further analysis of carotenoid biosynthesis pathways.  相似文献   

15.
The search for longevity‐determining genes in human has largely neglected the operation of genetic interactions. We have identified a novel combination of common variants of three genes that has a marked association with human lifespan and healthy aging. Subjects were recruited and stratified according to their genetically inferred ethnic affiliation to account for population structure. Haplotype analysis was performed in three candidate genes, and the haplotype combinations were tested for association with exceptional longevity. An HRAS1 haplotype enhanced the effect of an APOE haplotype on exceptional survival, and a LASS1 haplotype further augmented its magnitude. These results were replicated in a second population. A profile of healthy aging was developed using a deficit accumulation index, which showed that this combination of gene variants is associated with healthy aging. The variation in LASS1 is functional, causing enhanced expression of the gene, and it contributes to healthy aging and greater survival in the tenth decade of life. Thus, rare gene variants need not be invoked to explain complex traits such as aging; instead rare congruence of common gene variants readily fulfills this role. The interaction between the three genes described here suggests new models for cellular and molecular mechanisms underlying exceptional survival and healthy aging that involve lipotoxicity.  相似文献   

16.
17.
18.
Adaptive genetic variation has been thought to originate primarily from either new mutation or standing variation. Another potential source of adaptive variation is adaptive variants from other (donor) species that are introgressed into the (recipient) species, termed adaptive introgression. Here, the various attributes of these three potential sources of adaptive variation are compared. For example, the rate of adaptive change is generally thought to be faster from standing variation, slower from mutation and potentially intermediate from adaptive introgression. Additionally, the higher initial frequency of adaptive variation from standing variation and lower initial frequency from mutation might result in a higher probability of fixation of the adaptive variants for standing variation. Adaptive variation from introgression might have higher initial frequency than new adaptive mutations but lower than that from standing variation, again making the impact of adaptive introgression variation potentially intermediate. Adaptive introgressive variants might have multiple changes within a gene and affect multiple loci, an advantage also potentially found for adaptive standing variation but not for new adaptive mutants. The processes that might produce a common variant in two taxa, convergence, trans‐species polymorphism from incomplete lineage sorting or from balancing selection and adaptive introgression, are also compared. Finally, potential examples of adaptive introgression in animals, including balancing selection for multiple alleles for major histocompatibility complex (MHC), S and csd genes, pesticide resistance in mice, black colour in wolves and white colour in coyotes, Neanderthal or Denisovan ancestry in humans, mimicry genes in Heliconius butterflies, beak traits in Darwin's finches, yellow skin in chickens and non‐native ancestry in an endangered native salamander, are examined.  相似文献   

19.
Summary By starch gel electrophoresis three mobility variants of a cathodic moving doublet of bands, encoded by the structural gene prxC, were detected in all organs of flowering petunias. In root tissue two of the variants showed a lower electrophoretic mobility than in other organs. During development of flower buds the PRXc enzymes showed an increase in mobility. The gene prxC was located on chromosome IV by showing linkage to the genes An3 and Dw1, by trisomic segregation, and by the construction of triply heterozygous trisomics IV. The gene order on chromosome IV is B1-An3/Dw1-prxC. It was concluded that the temporal programming difference in the expression of the alleles prxC2 and prxC3 is caused by internal site mutation. Analysis of progeny obtained by crossing of lines to the trisomic IV with genotype prxC1/C1/C2 showed differential expression of the two prxC1 alleles of the trisomic IV.  相似文献   

20.
Recent studies have highlighted an important role of structural variation (SV) in ecological and evolutionary processes, but few have studied nonmodel species in the wild. As part of our long‐term research programme on the nonmodel teleost fish Australasian snapper (Chrysophrys auratus), we aim to build one of the first catalogues of genomic variants (SNPs and indels, and deletions, duplications and inversions) in fishes and evaluate overlap of genomic variants with regions under putative selection (Tajima's D and π), and coding sequences (genes). For this, we analysed six males and six females from three locations in New Zealand and generated a high‐resolution genomic variation catalogue. We characterized 20,385 SVs and found they intersected with almost a third of all annotated genes. Together with small indels, SVs account for three times more variation in the genome in terms of bases affected compared to SNPs. We found that a sizeable portion of detected SVs was in the upper and lower genomic regions of Tajima's D and π, indicating that some of these have an effect on the phenotype. Together, these results shed light on the often neglected genomic variation that is produced by SVs and highlights the need to go beyond the mere measure of SNPs when investigating evolutionary processes, such as species diversification and adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号