首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat-stable and fructose-1,6-bisphosphate-activated L-lactate dehydrogenase (EC 1.1.1.27) has been purified from an extremely thermophilic bacterium, Thermus caldophilus GK24 [Taguchi, H., Yamashita, M., Matsuzawa, H. and Ohta, T. (1982) J. Biochem. (Tokyo) 91, 1343-1348]. N-terminal sequence analysis of the first 34 amino acids of the enzyme indicates that the N-terminal arm region (first 1-20 residues) known for the vertebrate L-lactate dehydrogenases is completely missing in the T. caldophilus enzyme, while there is a high homology of sequence between the regions which are considered to be part of the NAD-binding domain. The C-terminal amino acid of the enzyme was phenylalanine. Analysis of the amino acid composition showed that T. caldophilus enzyme contained much more arginine and fewer lysine than other bacterial and vertebrate L-lactate dehydrogenases. On modification reaction with 2,3-butanedione in the presence of NADH and oxamate, an enhanced activity of the T. caldophilus L-lactate dehydrogenase was obtained independently of fructose 1,6-bisphosphate, and the modified enzyme was desensitized to fructose 1,6-bisphosphate. Amino acid analysis indicated that such a desensitization in the active state was caused by the modification of only one arginine residue per the enzyme subunit. Desensitization of the enzyme was inhibited in the presence of fructose 1,6-bisphosphate. A similar desensitization was observed using 1,2-cyclohexanedione instead of 2,3-butanedione. The enzyme was irreversibly modified with 2,3-butanedione and characterized. The irreversibly modified enzyme also showed an enhanced activity independently of fructose 1,6-bisphosphate, and its pyruvate saturation curve was similar to that of the native enzyme measured in the presence of fructose 1,6-bisphosphate. Fructose 1,6-bisphosphate, which increases the thermostability of the native enzyme, did not affect that of the modified enzyme, while thermostability of the modified enzyme slightly decreased. Amino acid analysis indicated that only the arginine content was decreased by the modification. These results show that arginine residue(s) exist in the binding site for fructose 1,6-bisphosphate on the enzyme, and that the arginine residue(s) play some important role in the allosteric regulation of the enzyme activity.  相似文献   

2.
Metabolic control of hepatic gluconeogenesis during exercise.   总被引:2,自引:0,他引:2       下载免费PDF全文
Prolonged exercise increased the concentrations of the hexose phosphates and phosphoenolpyruvate and depressed those of fructose 1,6-bisphosphate, triose phosphates and pyruvate in the liver of the rat. Since exercise increases gluconeogenic flux, these changes in metabolite concentrations suggest that metabolic control is exerted, at least, at the fructose 6-phosphate/fructose 1,6-bisphosphate and phosphoenolpyruvate/pyruvate substrate cycles. Exercise increased the maximal activities of glucose 6-phosphatase, fructose 1,6-bisphosphatase, pyruvate kinase and pyruvate carboxylase in the liver, but there were no changes in those of glucokinase, 6-phosphofructokinase and phosphoenolpyruvate carboxykinase. Exercise changed the concentrations of several allosteric effectors of the glycolytic or gluconeogenic enzymes in liver; the concentrations of acetyl-CoA, ADP and AMP were increased, whereas those of ATP, fructose 1,6-bisphosphate and fructose 2,6-bisphosphate were decreased. The effect of exercise on the phosphorylation-dephosphorylation state of pyruvate kinase was investigated by measuring the activities under conditions of saturating and subsaturating concentrations of substrate. The submaximal activity of pyruvate kinase (0.5 mM-phosphoenolpyruvate), expressed as percentage of Vmax., decreased in the exercised animals to less than half that found in the controls. These changes suggest that hepatic pyruvate kinase is less active during exercise, possibly owing to phosphorylation of the enzyme, and this may play a role in increasing the rate of gluconeogenesis.  相似文献   

3.
The regulation of pyruvate kinase in isolated hepatocytes from fasted rats was studied where the intracellular level of fructose 1,6-bisphosphate was elevated 5-fold by the addition of 5 mM dihydroxyacetone. In this case, flux through pyruvate kinase was increased. The increase in flux correlated with an elevation in fructose bisphosphate levels but not with P-enolpyruvate levels which were unchanged. Pyruvate kinase was activated and its affinity for P-enolpyruvate was increased 7-fold in hepatocyte homogenates. Precipitation of the enzyme from homogenates with ammonium sulfate removed fructose 1,6-bisphosphate and activation was no longer observed. These results indicate that flux through and activity of pyruvate kinase can be controlled by the intracellular level of fructose 1,6-bisphosphate. The effect of elevated fructose 1,6-bisphosphate levels on the ability of glucagon to inactivate pyruvate kinase was also studied where only covalent enzyme modification is observed. Inactivation by maximally effective hormone concentrations was unaffected by elevated levels of fructose 1,6-bisphosphate, but the half-maximally effective concentration was increased from 0.3 to 0.8 nM. Activation of the cyclic AMP-dependent protein kinase by 0.3 nM glucagon was unaffected, but the initial rate of pyruvate kinase inactivation was suppressed. These results suggest that alterations in the level of fructose 1,6-bisphosphate can affect the ability of physiological concentrations of glucagon to inactivate pyruvate kinase by opposing phosphorylation of the enzyme. Consistent with this view was the finding that physiological concentrations of fructose 1,6-bisphosphate inhibited in vitro phosphorylation of purified pyruvate kinase. Inactivation of pyruvate kinase by 0.3 nM glucagon or 1 microM phenylephrine was also suppressed by 10 nM insulin. Insulin did not act by increasing fructose 1,6-bisphosphate levels. The antagonism to glucagon correlated well with the ability of insulin to suppress activation of the cyclic AMP-dependent protein kinase. However, no such correlation was observed with phenylephrine in the absence or presence of insulin. Thus, insulin can enhance pyruvate kinase activity by both cyclic AMP-dependent and independent mechanisms.  相似文献   

4.
1) In intact Ehrlich ascites tumour cells the anaerobic glycolytic flux rate and pattern of intermediates have been investigated at different pH values of the extracellular medium. 2) As predicted from the dependence of the lactic acid dehydrogenase equilibrium on pH a strong negative correlation between log ([lactate]/[pyruvate]) and pH has been found. 3) The steady state fluxes of glycolysis at pH 8.0 and 7.4 are rather equal, despite significant differences in the intracellular concentrations of glycolytic intermediates. At pH 8.0 the concentrations of ATP, glucose 6-phosphate, and fructose 6-phosphate are lower, and the concentrations of ADP, AMP, fructose 1,6-bisphosphate, triose phosphates, phosphoglycerates, and phosphoenolpyruvate are higher than at pH 7.4. 4) From the analysis of the pH dependent changes of metabolites it follows that different mechanisms are responsible for maintaining equal actual activities of hexokinase, phosphofructokinase and pyruvate kinase at pH 7.4 and 8.0. 5) From an application of the linear theory of enzymatic chains and a calculation of the control strength of the regulatory important enzymes results that hexokinase is evidently rate-limiting for glycolysis, and phosphofructokinase is also significantly influencing the glycolytic flux. Pyruvate kinase and glyceraldehyde phosphate dehydrogenase, on the other hand, do not significantly affect the rate of the overall glycolytic flux in ascites.  相似文献   

5.
Heat-stable fructose 1,6-bisphosphate-dependent L-lactate dehydrogenase [EC 1.1.1.27] was purified from an extremely thermophilic bacterium, Thermus aquaticus YT-1. The amino acid composition and NH2-terminal 34 amino acid sequence of the enzyme were determined. Its NH2-terminal sequence shows high homology with those of Thermus caldophilus GK24 (82% identity) and some other bacterial L-lactate dehydrogenases (44-53% identity), indicating the close phylogenic relationship of the two Thermus species. At the same time, the two Thermus L-lactate dehydrogenases were found not to be identical not only chemically but also kinetically and immunologically. Citrate activated the T. aquaticus enzyme in the weak acidic pH region, while fructose 1,6-bisphosphate did in both acidic and neutral pH regions. The maximum activity obtained with citrate at pH 5.0 was about 2.5 times higher than that in the presence of fructose 1,6-bisphosphate at pH 6.7. The enzymes modified with 2,3-butanedione, acetic anhydride and diethyl pyrocarbonate in the presence of both NADH and oxamate were desensitized to fructose 1,6-bisphosphate, and the modified enzymes were active even in the absence of fructose 1,6-bisphosphate. All of the modified enzymes examined were still activated by citrate similarly to the native enzyme. These results suggest that the mechanism of activation by citrate is different from that by fructose 1,6-bisphosphate, and that the citrate-binding site is different from the fructose 1,6-bisphosphate-binding site.  相似文献   

6.
Lactobacillus casei allosteric L-lactate dehydrogenase (L-LDH) absolutely requires fructose 1,6-bisphosphate [Fru(1,6)P2] for its catalytic activity under neutral conditions, but exhibits marked catalytic activity in the absence of Fru(1,6)P(2) under acidic conditions through the homotropic activation effect of substrate pyruvate. In this enzyme, a single amino acid replacement, i.e. that of His205 conserved in the Fru(1,6)P(2)-binding site of certain allosteric L-LDHs of lactic acid bacteria with Thr, did not induce a marked loss of the activation effect of Fru(1,6)P(2) or divalent metal ions, which are potent activators that improve the activation function of Fru(1,6)P(2) under neutral conditions. However, this replacement induced a great loss of the Fru(1,6)P(2)-independent activation effect of pyruvate or pyruvate analogs under acidic conditions, consequently indicating an absolute Fru(1,6)P(2) requirement for the enzyme activity. The replacement also induced a significant reduction in the pH-dependent sensitivity of the enzyme to Fru(1,6)P(2), through a slight decrease and increase of the Fru(1,6)P(2) sensitivity under acidic and neutral conditions, respectively, indicating that His205 is also largely involved in the pH-dependent sensitivity of L.casei L-LDH to Fru(1,6)P(2). The role of His205 in the allosteric regulation of the enzyme is discussed on the basis of the known crystal structures of L-LDHs.  相似文献   

7.
Glucagon stimulates gluconeogenesis in part by decreasing the rate of phosphoenolpyruvate disposal by pyruvate kinase. Glucagon, via cyclic AMP (cAMP) and the cAMP-dependent protein kinase, enhances phosphorylation of pyruvate kinase, phosphofructokinase, and fructose-1,6-bisphosphatase. Phosphorylation of pyruvate kinase results in enzyme inhibition and decreased recycling of phosphoenolpyruvate to pyruvate and enhanced glucose synthesis. Although phosphorylation of 6-phosphofructo 1-kinase and fructose-1,6-bisphosphatase is catalyzed in vitro by the cAMP-dependent protein kinase, the role of phosphorylation in regulating the activity of and flux through these enzymes in intact cells is uncertain. Glucagon regulation of these two enzyme activities is brought about primarily by changes in the level of a novel sugar diphosphate, fructose 2,6-bisphosphate. This compound is an activator of phosphofructokinase and an inhibitor of fructose-1,6-bisphosphatase; it also potentiates the effect of AMP on both enzymes. Glucagon addition to isolated liver systems results in a greater than 90% decrease in the level of this compound. This effect explains in large part the effect of glucagon to enhance flux through fructose-1,6-bisphosphatase and to suppress flux through phosphofructokinase. The discovery of fructose 2,6-bisphosphate has greatly furthered our understanding of regulation at the fructose 6-phosphate/fructose 1,6-bisphosphate substrate cycle.  相似文献   

8.
A comprehensive approach to (13)C tracer studies, labeling measurements by gas chromatography-mass spectrometry, metabolite balancing, and isotopomer modeling, was applied for comparative metabolic network analysis of lysine-producing Corynebacterium glutamicum on glucose or fructose. Significantly reduced yields of lysine and biomass and enhanced formation of dihydroxyacetone, glycerol, and lactate in comparison to those for glucose resulted on fructose. Metabolic flux analysis revealed drastic differences in intracellular flux depending on the carbon source applied. On fructose, flux through the pentose phosphate pathway (PPP) was only 14.4% of the total substrate uptake flux and therefore markedly decreased compared to that for glucose (62.0%). This result is due mainly to (i) the predominance of phosphoenolpyruvate-dependent phosphotransferase systems for fructose uptake (PTS(Fructose)) (92.3%), resulting in a major entry of fructose via fructose 1,6-bisphosphate, and (ii) the inactivity of fructose 1,6-bisphosphatase (0.0%). The uptake of fructose during flux via PTS(Mannose) was only 7.7%. In glucose-grown cells, the flux through pyruvate dehydrogenase (70.9%) was much less than that in fructose-grown cells (95.2%). Accordingly, flux through the tricarboxylic acid cycle was decreased on glucose. Normalized to that for glucose uptake, the supply of NADPH during flux was only 112.4% on fructose compared to 176.9% on glucose, which might explain the substantially lower lysine yield of C. glutamicum on fructose. Balancing NADPH levels even revealed an apparent deficiency of NADPH on fructose, which is probably overcome by in vivo activity of malic enzyme. Based on these results, potential targets could be identified for optimization of lysine production by C. glutamicum on fructose, involving (i) modification of flux through the two PTS for fructose uptake, (ii) amplification of fructose 1,6-bisphosphatase to increase flux through the PPP, and (iii) knockout of a not-yet-annotated gene encoding dihydroxyacetone phosphatase or kinase activity to suppress overflow metabolism. Statistical evaluation revealed high precision of the estimates of flux, so the observed differences for metabolic flux are clearly substrate specific.  相似文献   

9.
We have reexamined the concept that glucagon controls gluconeogenesis from lactate-pyruvate in isolated rat hepatocytes almost entirely by inhibition of flux through pyruvate kinase, thereby making gluconeogenesis more efficient. 1. We tested and refined the 14C-tracer technique that has previously yielded the opposite conclusion, that is, that inhibition of pyruvate kinase is a relatively unimportant mechanism. The tracer procedure, as used by us, was found to be insensitive to the size of the pyruvate pool, and experiments using modifications of the technique to obviate a number of other potential errors support the earlier conclusion that control of pyruvate kinase is not the predominant mechanism. 2. Any stimulation of formation of glucose that results from inhibition of pyruvate kinase is the consequence of elevation of the steady-state concentrations of phosphoenolpyruvate and all subsequent intermediates in the gluconeogenic pathway. During ongoing stimulation of glucose synthesis by glucagon in isolated hepatocytes, the concentrations of all measured intermediate compounds between phosphoenolpyruvate and glucose were elevated except triose phosphates and fructose 1,6-bisphosphate. The failure of these compounds to rise above control levels indicates that not all gluconeogenic reactions beyond pyruvate kinase were accelerated thermodynamically as would occur with predominant control at pyruvate kinase. We conclude, therefore, that although glucagon inhibits flux through the pyruvate kinase reaction, this does not account for most of the stimulation of gluconeogenesis. Major control sites are also within the pyruvate-phosphoenolpyruvate segment and the fructose 1,6-bisphosphate cycle.  相似文献   

10.
The interaction of fructose 1,6-bisphosphate, phosphoenolpyruvate and ADP with pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from yeast and rabbit muscle has been studied as a function of pH utilizing the quenching of protein fluorescence at 330 nm by these ligands. Both the muscle and the yeast pyruvate kinase interact with either ADP or phosphoenolpyruvate with similar affinity, indicating that the substrate-binding sites for these two isozymes are similar. The major difference between the yeast and muscle isozymes is their affinity with fructose 1,6-bisphosphate. Fructose 1,6-bisphosphate interacts with the yeast isozyme in orders of magnitude more strongly than with the muscle isozyme. Moreover, the affinity of fructose 1,6-bisphosphate to the yeast isozyme is strongly pH-dependent, while the interaction of fructose 1,6-bisphosphate with the muscle isozyme is independent of pH. The data indicate that yeast pyruvate kinase undergoes a conformational change as the pH is increased from 6.0 to 8.5.  相似文献   

11.
The conserved histidine-188 residue of the L-lactate dehydrogenase of Thermus caldophilus GK 24, which is allosterically activated by fructose 1,6-bisphosphate, has been exchanged to phenylalanine by site-specific mutagenesis. In the mutant enzyme the strong stimulatory effect of fructose 1,6-bisphosphate is abolished. The analysis of the pH dependence of the activity indicates that the positive charge of the conserved His-188 residue is important for the interaction of the enzyme with the allosteric effector.  相似文献   

12.
A comprehensive approach to 13C tracer studies, labeling measurements by gas chromatography-mass spectrometry, metabolite balancing, and isotopomer modeling, was applied for comparative metabolic network analysis of lysine-producing Corynebacterium glutamicum on glucose or fructose. Significantly reduced yields of lysine and biomass and enhanced formation of dihydroxyacetone, glycerol, and lactate in comparison to those for glucose resulted on fructose. Metabolic flux analysis revealed drastic differences in intracellular flux depending on the carbon source applied. On fructose, flux through the pentose phosphate pathway (PPP) was only 14.4% of the total substrate uptake flux and therefore markedly decreased compared to that for glucose (62.0%). This result is due mainly to (i) the predominance of phosphoenolpyruvate-dependent phosphotransferase systems for fructose uptake (PTSFructose) (92.3%), resulting in a major entry of fructose via fructose 1,6-bisphosphate, and (ii) the inactivity of fructose 1,6-bisphosphatase (0.0%). The uptake of fructose during flux via PTSMannose was only 7.7%. In glucose-grown cells, the flux through pyruvate dehydrogenase (70.9%) was much less than that in fructose-grown cells (95.2%). Accordingly, flux through the tricarboxylic acid cycle was decreased on glucose. Normalized to that for glucose uptake, the supply of NADPH during flux was only 112.4% on fructose compared to 176.9% on glucose, which might explain the substantially lower lysine yield of C. glutamicum on fructose. Balancing NADPH levels even revealed an apparent deficiency of NADPH on fructose, which is probably overcome by in vivo activity of malic enzyme. Based on these results, potential targets could be identified for optimization of lysine production by C. glutamicum on fructose, involving (i) modification of flux through the two PTS for fructose uptake, (ii) amplification of fructose 1,6-bisphosphatase to increase flux through the PPP, and (iii) knockout of a not-yet-annotated gene encoding dihydroxyacetone phosphatase or kinase activity to suppress overflow metabolism. Statistical evaluation revealed high precision of the estimates of flux, so the observed differences for metabolic flux are clearly substrate specific.  相似文献   

13.
High-resolution 31P nuclear magnetic resonance spectroscopy and 14C fluorography have been used to identify and quantitate intermediates of the Embden-Meyerhof pathway in intact cells and cell extracts of Streptococcus lactis. Glycolysing cells contained high levels of fructose 1,6-bisphosphate (a positive effector of pyruvate kinase) but comparatively low concentrations of other glycolytic metabolites. By contrast, starved organisms contained only high levels of 3-phosphoglycerate, 2-phosphoglycerate, and phosphoenolpyruvate. The concentration of Pi (a negative effector of pyruvate kinase) in starved cells was fourfold greater than that maintained by glycolysing cells. The following result suggest that retention of the phosphoenolpyruvate pool by starved cells is a consequence of Pi-mediated inhibition of pyruvate kinase: the increase in the phosphoenolpyruvate pool (and Pi) preceded depletion of fructose 1,6-bisphosphate, and reduction in intracellular Pi (by a maltose-plus-arginine phosphate trap) caused the restoration of pyruvate kinase activity in starved cells. Time course studies showed that Pi was conserved by formation of fructose 1,6-bisphosphate during glycolysis. Conversely, during starvation high levels of Pi were generated concomitant with depletion of intracellular fructose 1,6-bisphosphate. The concentrations of Pi and fructose 1,6-bisphosphate present in starved and glycolysing cells of S. lactis varied inversely. The activity of pyruvate kinase in the growing cell may be modulated by the relative concentrations of the two antagonistic effectors.  相似文献   

14.
Abstract The cyanobacterium Microcystis PCC7806 was found to possess an NAD-dependent lactate dehydrogenase (EC 1.1.1.27) which catalyzes the reduction of pyruvate to l-lactate. The enzyme required fructose 1,6-bisphosphate for activity and displayed positive cooperativity towards pyruvate. Lactate was not formed during fermentation by cell suspensions, possibly due to low intracellular concentrations of fructose 1,6-bisphosphate and/or pyruvate.  相似文献   

15.
16.
The influence of fructose 1,6-bisphosphate and L-alanine on the kinetics of pyruvate kinase (ATP:pyruvate O2-phosphotransferase, EC 2.7.1.40) from Phycomyces blakesleeanus NRRL 1555 (-) was studied at pH 7.5. By addition of fructose 1,6-bisphosphate the sigmoid kinetics with respect to phosphoenol pyruvate and Mg2+ were abolished and the velocity curves became hyperbolic. In the presence of L-alanine the positive homotropic cooperativity with respect to phosphoenol pyruvate increased with Hill coefficient values close to 4, while the sigmoid kinetics with respect to Mg2+ became hyperbolic. Fructose 1,6-bisphosphate overcomes the inhibition produced by L-alanine, the antagonism between phosphoenol pyruvate and L-alanine also being evident. Inhibition has been found at high Mg2+ concentrations, compatible with the binding of the magnesium ions to an inactive conformational state of the enzyme. The data were analysed on the basis of the two-states concerted-symmetry model of Monod, Wyman and Changeux, and the parameters of the model were calculated. Phosphoenol pyruvate and fructose 1,6-bisphosphate appeared to show exclusive binding to the active conformational state (R), whereas magnesium ions bind preferentially, by a factor of 45, to the R state. L-Alanine binds more readily to the inactive T state of the enzyme.  相似文献   

17.
Addition of glucose to Ehrlich-Landschütz ascites tumour cells preincubated for 30-60 min in phosphate-buffered Krebs-Ringer salt solution ("starved cells") resulted within 1-2 min in an approx. 90% decline of their ATP content and a massive accumulation of fructose 1,6-bisphosphate. These alterations, which took place under both aerobic and anaerobic conditions, were followed by a gradual spontaneous recovery with restoration of normal ATP and fructose 1,6-bisphosphate values. The transient derangement of the energy metabolism after glucose addition to starved ascites tumour cells by preventable by simultaneous addition of pyruvate or 2-oxobutyrate, or by preincubating the cells in the presence of glucose. The protective effect of pyruvate was duplicated by addition of phenazine methosulphate or NAD+ to the incubation medium. The data seem to warrant the conclusion that the glucose-induced ATP depletion is determined by a blockade of glycolysis at the stage of glyceraldehyde phosphate dehydrogenase caused by the failure of the cells to oxidize the NADH produced in the same reaction. The continued unrestrained action of 6-phosphofructokinase results in accumulation of fructose 1,6-bisphosphate, which constitutes a trap for the high-energy phosphate bonds of ATP. The primary metabolic disturbance appears to consist of a transient inhibition of pyruvate kinase with the resultant inability of the cells to maintain an unimpaired supply of pyruvate, as required for the lactate dehydrogenase-mediated oxidation of NADH. The regulatory mechanism underlying this phenomenon is discussed.  相似文献   

18.
Upon differential centrifugation of cell-free extracts of Trypanosoma brucei, 6-phosphofructo-2-kinase and fructose-2,6-bisphosphatase behaved as cytosolic enzymes. The two activities could be separated from each other by chromatography on both blue Sepharose and anion exchangers. 6-phosphofructo-2-kinase had a Km for both its substrates in the millimolar range. Its activity was dependent on the presence of inorganic phosphate and was inhibited by phosphoenolpyruvate but not by citrate or glycerol 3-phosphate. The Km of fructose-2,6-bisphosphatase was 7 microM; this enzyme was inhibited by fructose 1,6-bisphosphate (Ki = 10 microM) and, less potently, by fructose 6-phosphate, phosphoenolpyruvate and glycerol 3-phosphate. Melarsen oxide inhibited 6-phosphofructo-2-kinase (Ki less than 1 microM) and fructose-2,6-bisphosphatase (Ki = 2 microM) much more potently than pyruvate kinase (Ki greater than 100 microM). The intracellular concentrations of fructose 2,6-bisphosphate and hexose 6-phosphate were highest with glucose, intermediate with fructose and lowest with glycerol and dihydroxyacetone as glycolytic substrates. When added with glucose, salicylhydroxamic acid caused a decrease in the concentration of fructose 2,6-bisphosphate, ATP, hexose 6-phosphate and fructose 1,6-bisphosphate. These studies indicate that the concentration of fructose 2,6-bisphosphate is mainly controlled by the concentration of the substrates of 6-phosphofructo-2-kinase. The changes in the concentration of phosphoenolpyruvate were in agreement with the stimulatory effect of fructose 2,6-bisphosphate on pyruvate kinase. At micromolar concentrations, melarsen oxide blocked almost completely the formation of fructose 2,6-bisphosphate induced by glucose, without changing the intracellular concentrations of ATP and of hexose 6-phosphates. At higher concentrations (3-10 microM), this drug caused cell lysis, a proportional decrease in the glycolytic flux, as well as an increase in the phosphoenolypyruvate concentrations which was restricted to the extracellular compartment. Similar changes were induced by digitonin. It is concluded that the lytic effect of melarsen oxide on the bloodstream form of T. brucei is not the result of an inhibition of pyruvate kinase.  相似文献   

19.
A lag is observed before the steady state during pyruvate reduction catalysed by lactate dehydrogenase from Streptococcus lactis. The lag is abolished by preincubation of enzyme with the activator fructose 1,6-bisphosphate before mixing with the substrates. The rate constants for the lag phase showed a linear dependence on fructose-1,6-bisphosphate concentration, with a second-order rate constant of 2.0 X 10(4) M-1 s-1, but were independent of enzyme concentration. Binding of fructose 1,6-bisphosphate produces a decrease in the protein fluorescence of the enzyme. The second-order rate constant for the fluorescence change is twice that for the lag in pyruvate reduction. The results suggest that binding of fructose 1,6-bisphosphate induces a conformational change in the enzyme, producing a form with reduced protein fluorescence and increased activity towards pyruvate reduction.  相似文献   

20.
The allosteric fructose 1,6-bisphosphate-activated pyruvate kinase from Escherichia coli was modified with pyridoxal 5'-phosphate in the presence and in the absence of phosphoenolpyruvate, fructose 1,6-bisphosphate, MgADP and MgATP. In all cases a time-dependent inactivation was observed, but the rate and the extent of inactivation varied according to the conditions used. The kinetic properties of the partially inactivated enzyme were differently modified by addition of substrates and effectors to the modification mixture, the parameters mostly affected being those concerning fructose 1,6-bisphosphate. Tryptic peptides obtained from fully inactivated pyruvate kinase in the different conditions have been separated. In all conditions three main 6-pyridoxyllysine-containing peptides were present, the amounts of which showed significant differences in the presence of fructose 1,6-bisphosphate and MgADP. The function of the labelled peptides and the evidence supporting the physical existence of different conformational states are discussed. The main conclusion concerns the involvement of one of the above peptides in the binding of the allosteric effector fructose 1,6-bisphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号