首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mortality, necrotising enterocolitis (NEC), late onset sepsis (LOS) and feeding intolerance are significant issues for very preterm (< 32 weeks) and extremely preterm (< 28 weeks) infants. The complications of ≥ Stage II NEC [e.g. Resection of the gangrenous gut, survival with intestinal failure, recurrent infections, prolonged hospital stay, and long-term neurodevelopmental impairment (NDI)] impose a significant health burden. LOS also carries significant burden including long-term NDI due to adverse effects of inflammation on the preterm brain during the critical phase of development. Frequent stopping of feeds due to feeding intolerance is a significant iatrogenic contributor to postnatal growth failure in extremely preterm infants. Over 25 systematic reviews and meta-analyses of RCTs (~12 000 participants) have reported that probiotics significantly reduce the risk of all-cause mortality, NEC ≥ Stage II, LOS and feeding intolerance in preterm infants. Systematic reviews and meta-analysis of non-RCTs have also shown that the benefits after adopting probiotics as a standard prophylaxis for preterm infants are similar to those reported in RCTs. No intervention comes close to probiotics when it comes to significant reduction in death, NEC, LOS and feeding intolerance at a cost of less than a dollar a day irrespective of the setting and baseline incidence of NEC. The common controversies that are preventing the rapid uptake of probiotics for preterm infants are addressed in this paper.  相似文献   

2.
Preterm neonates have an immature gut and metabolism and may benefit from total parenteral nutrition (TPN) before enteral food is introduced. Conversely, delayed enteral feeding may inhibit gut maturation and sensitize to necrotizing enterocolitis (NEC). Intestinal mass and NEC lesions were first recorded in preterm pigs fed enterally (porcine colostrum, bovine colostrum, or formula for 20-40 h), with or without a preceding 2- to 3-day TPN period (n = 435). Mucosal mass increased during TPN and further after enteral feeding to reach an intestinal mass similar to that in enterally fed pigs without TPN (+60-80% relative to birth). NEC developed only after enteral feeding but more often after a preceding TPN period for both sow's colostrum (26 vs. 5%) and formula (62 vs. 39%, both P < 0.001, n = 43-170). Further studies in 3-day-old TPN pigs fed enterally showed that formula feeding decreased villus height and nutrient digestive capacity and increased luminal lactic acid and NEC lesions, compared with colostrum (bovine or porcine, P < 0.05). Mucosal microbial diversity increased with enteral feeding, and Clostridium perfringens density was related to NEC severity. Formula feeding decreased plasma arginine, citrulline, ornithine, and tissue antioxidants, whereas tissue nitric oxide synthetase and gut permeability increased, relative to colostrum (all P < 0.05). In conclusion, enteral feeding is associated with gut dysfunction, microbial imbalance, and NEC in preterm pigs, especially in pigs fed formula after TPN. Conversely, colostrum milk diets improve gut maturation and NEC resistance in preterm pigs subjected to a few days of TPN after birth.  相似文献   

3.

Background

Necrotizing enterocolitis (NEC) is a severe disease of the gastrointestinal tract of pre-term babies and is thought to be related to the physiological immaturity of the intestine and altered levels of normal flora in the gut. Understanding the factors that contribute to the pathology of NEC may lead to the development of treatment strategies aimed at re-establishing the integrity of the epithelial wall and preventing the propagation of inflammation in NEC. Several studies have shown a reduced incidence and severity of NEC in neonates treated with probiotics (beneficial bacteria species).

Methodology/Principal Findings

The objective of this study is to use a mathematical model to predict the conditions under which probiotics may be successful in promoting the health of infants suffering from NEC. An ordinary differential equation model is developed that tracks the populations of pathogenic and probiotic bacteria in the intestinal lumen and in the blood/tissue region. The permeability of the intestinal epithelial layer is treated as a variable, and the role of the inflammatory response is included. The model predicts that in the presence of probiotics health is restored in many cases that would have been otherwise pathogenic. The timing of probiotic administration is also shown to determine whether or not health is restored. Finally, the model predicts that probiotics may be harmful to the NEC patient under very specific conditions, perhaps explaining the detrimental effects of probiotics observed in some clinical studies.

Conclusions/Significance

The reduced, experimentally motivated mathematical model that we have developed suggests how a certain general set of characteristics of probiotics can lead to beneficial or detrimental outcomes for infants suffering from NEC, depending on the influences of probiotics on defined features of the inflammatory response.  相似文献   

4.
The gastrointestinal inflammatory disorder, necrotizing enterocolitis (NEC), is among the most serious diseases for preterm neonates. Nutritional, microbiological and immunological dysfunctions all play a role in disease progression but the relationship among these determinants is not understood. The preterm gut is very sensitive to enteral feeding which may either promote gut adaptation and health, or induce gut dysfunction, bacterial overgrowth and inflammation. Uncontrolled inflammatory reactions may be initiated by maldigestion and impaired mucosal protection, leading to bacterial overgrowth and excessive nutrient fermentation. Tumor necrosis factor alpha, toll-like receptors and heat-shock proteins are identified among the immunological components of the early mucosal dysfunction. It remains difficult, however, to distinguish the early initiators of NEC from the later consequences of the disease pathology. To elucidate the mechanisms and identify clinical interventions, animal models showing spontaneous NEC development after preterm birth coupled with different forms of feeding may help. In this review, we summarize the literature and some recent results from studies on preterm pigs on the nutritional, microbial and immunological interactions during the early feeding-induced mucosal dysfunction and later NEC development. We show that introduction of suboptimal enteral formula diets, coupled with parenteral nutrition, predispose to disease, while advancing amounts of mother's milk from birth (particularly colostrum) protects against disease. Hence, the transition from parenteral to enteral nutrition shortly after birth plays a pivotal role to secure gut growth, digestive maturation and an appropriate response to bacterial colonization in the sensitive gut of preterm neonates.  相似文献   

5.
益生菌预防早产儿坏死性小肠结肠炎的研究进展   总被引:1,自引:0,他引:1  
吴燕君  华子瑜 《中国微生态学杂志》2011,23(11):1050-1052,1055
新生儿坏死性小肠结肠炎(Neonatal necrotizing enterocolitis,NEC)是早产儿中发病率高、预后差、死亡率高的严重肠道疾病;目前,本病的发病机制尚未明确,缺乏有效的治疗方法。近十几年,大量试验显示,口服益生菌能有效预防早产儿NEC,但其作用机制尚未完全明确,且在益生菌种类选择、给药方式(单药、联合给药)、疗效、安全性等方面,仍存在一些问题。因此,本文就上述问题进行综述。  相似文献   

6.
Although preterm birth and formula feeding increase the risk of necrotizing enterocolitis (NEC), the influences of cesarean section (CS) and vaginal delivery (VD) are unknown. Therefore, gut characteristics and NEC incidence and severity were evaluated in preterm pigs (92% gestation) delivered by CS or VD. An initial study showed that newborn CS pigs (n = 6) had decreased gastric acid secretion, absorption of intact proteins, activity of brush-border enzymes and pancreatic hydrolases, plasma cortisol, rectal temperature, and changes in blood chemistry, indicating impaired respiratory function, compared with VD littermates (n = 6). In a second experiment, preterm CS (n = 16) and VD (n = 16) pigs were given total parenteral nutrition (36 h) then fed porcine colostrum (VD-COL, n = 6; CS-COL, n = 6) or infant milk formula (VD-FORM, n = 10; CS-FORM, n = 10) for 2 days. Across delivery, FORM pigs showed significantly higher NEC incidence, tissue proinflammatory cytokines (IFN-gamma and IL-6), Clostridium colonization, and impaired intestinal function, compared with COL pigs. NEC incidence was equal for CS (6/16) and VD (6/16) pigs, CS pigs had decreased bacterial diversity and density, higher villus heights, and increased brush-border enzyme activities (lactase, aminopeptidases) compared with VD pigs. In particular, VD-FORM pigs showed reduced mucosal proportions, reduced lactase and aminopeptidases, and increased proinflammatory cytokine IL-6 compared with CS-FORM (P < 0.06). Despite the initial improvement of intestinal and metabolic functions following VD, gut function, and inflammation were similar, or more negatively affected in VD neonates than CS neonates. Both delivery modes exhibited positive and negative influences on the preterm gut, which may explain the similar NEC incidence.  相似文献   

7.
8.
Neonates with congenital gastrointestinal surgical conditions (CGISC) receive parenteral nutrition, get exposed to multiple courses of antibiotics, undergo invasive procedures, and are nursed in intensive care units. They do not receive early enteral feeding and have limited opportunities for skin to skin contact with their mothers. Many of these infants receive gastric acid suppression therapies. All these factors increase the risk of gut dysbiosis in these infants. Gut dysbiosis is known to be associated with increased risk of infections and other morbidities in ICU patients. Experimental studies have shown that probiotics inhibit gut colonization with pathogenic bacteria, enhance gut barrier function, facilitate colonization with healthy commensals, protect from enteropathogenic infection through production of acetate, reduce antimicrobial resistance, enhance innate immunity, and increase the maturation of the enteric nervous system and promote gut peristalsis. Through these mechanisms, probiotics have the potential to decrease the risk of sepsis and inflammation, improve feed tolerance and minimise cholestasis in neonates with CGISC. Among preterm non-surgical infants, evidence from more than 35 RCTs and multiple observational studies have shown probiotics to be safe and beneficial. A RCT in neonates (N=24) with gastroschisis found that probiotic supplementation partially attenuated gut dysbiosis. Two ongoing RCTs (total N=168) in neonates with gastrointestinal surgical conditions are expected to provide feasibility data to enable the conduct of large RCTs. Rigorous quality assurance of the probiotic product, ongoing microbial surveillance and clinical vigilance are warranted while conducting such RCTs.  相似文献   

9.
The preterm gut microbiome is a complex dynamic community influenced by genetic and environmental factors and is implicated in the pathogenesis of necrotising enterocolitis (NEC) and sepsis. We aimed to explore the longitudinal development of the gut microbiome in preterm twins to determine how shared environmental and genetic factors may influence temporal changes and compared this to the expressed breast milk (EBM) microbiome. Stool samples (n = 173) from 27 infants (12 twin pairs and 1 triplet set) and EBM (n = 18) from 4 mothers were collected longitudinally. All samples underwent PCR-DGGE (denaturing gradient gel electrophoresis) analysis and a selected subset underwent 454 pyrosequencing. Stool and EBM shared a core microbiome dominated by Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae. The gut microbiome showed greater similarity between siblings compared to unrelated individuals. Pyrosequencing revealed a reduction in diversity and increasing dominance of Escherichia sp. preceding NEC that was not observed in the healthy twin. Antibiotic treatment had a substantial effect on the gut microbiome, reducing Escherichia sp. and increasing other Enterobacteriaceae.This study demonstrates related preterm twins share similar gut microbiome development, even within the complex environment of neonatal intensive care. This is likely a result of shared genetic and immunomodulatory factors as well as exposure to the same maternal microbiome during birth, skin contact and exposure to EBM. Environmental factors including antibiotic exposure and feeding are additional significant determinants of community structure, regardless of host genetics.  相似文献   

10.
Human milk oligosaccharides (HMOs) may mediate prebiotic and anti-inflammatory effects in newborns. This is particularly important for preterm infants who are highly susceptible to intestinal dysfunction and necrotizing enterocolitis (NEC). We hypothesized that HMO supplementation of infant formula (IF) improves intestinal function, bacterial colonization and NEC resistance immediately after preterm birth, as tested in a preterm pig model. Mixtures of HMOs were investigated in intestinal epithelial cells and in preterm pigs (n=112) fed IF supplemented without (CON) or with a mixture of four HMOs (4-HMO) or >25 HMOs (25-HMO, 5–10 g/L given for 5 or 11 days). The 25-HMO blend decreased cell proliferation and both HMO blends decreased lipopolysaccharide-induced interleukin-8 secretion in IPEC-J2 cells, relative to control (P<.05). All HMOs were found in urine and feces of HMO-treated pigs, and short-chain fatty acids in the colon were higher in HMO vs. CON pigs (P<.05). After 5 days, NEC lesions were similar between HMO and CON pigs and 25-HMO increased colon weights (P<.01). After 11 days, the 4-HMO diet did not affect NEC (56 vs. 79%, P=.2) but increased dehydration and diarrhea (P<.05) and expression of immune-related genes (IL10, IL12, TGFβ, TLR4; P<.05). Bacterial adherence and diversity was unchanged after HMO supplementation. Conclusion: Complex HMO-blends affect intestinal epithelial cells in vitro and gut gene expression and fermentation in preterm pigs. However, the HMOs had limited effects on NEC and diarrhea when supplemented to IF. Longer-term exposure to HMOs may be required to improve the immature intestinal function in formula-fed preterm neonates.  相似文献   

11.
It is widely accepted that metabolic disorders, such as obesity, are closely linked to lifestyle and diet. Recently, the central role played by the intestinal microbiota in human metabolism and in progression of metabolic disorders has become evident. In this context, animal studies and human trials have demonstrated that alterations of the intestinal microbiota towards enhanced energy harvest is a characteristic of the obese phenotype. Many publications, involving both animal studies and clinical trials, have reported on the successful exploitation of probiotics and prebiotics to treat obesity. However, the molecular mechanisms underlying these observed anti-obesity effects of probiotics and prebiotic therapies are still obscure. The aim of this mini-review is to discuss the intricate relationship of various factors, including diet, gut microbiota, and host genetics, that are believed to impact on the development of obesity, and to understand how modulation of the gut microbiota with dietary intervention may alleviate obesity-associated symptoms.  相似文献   

12.
Necrotizing enterocolitis (NEC) in preterm infants develops very rapidly from a mild intolerance to enteral feeding into intestinal mucosal hemorrhage, inflammation, and necrosis. We hypothesized that immediate feeding-induced gut responses precede later clinical NEC symptoms in preterm pigs. Fifty-six preterm pigs were fed total parenteral nutrition (TPN) for 48 h followed by enteral feeding for 0, 8, 17, or 34 h with either colostrum (Colos, n = 20) or formula (Form, n = 31). Macroscopic NEC lesions were detected in Form pigs throughout the enteral feeding period (20/31, 65%), whereas most Colos pigs remained protected (1/20, 5%). Just 8 h of formula feeding induced histopathological lesions, as evidenced by capillary stasis and necrosis, epithelial degeneration, edema, and mucosal hemorrhage. These immediate formula-induced changes were paralleled by decreased digestive enzyme activities (lactase and dipeptidylpeptidase IV), increased nutrient fermentation, and altered expression of innate immune defense genes such as interleukins (IL-1α, IL-6, IL-18), nitric oxide synthetase, tight junction proteins (claudins), Toll-like receptors (TLR-4), and TNF-α. In contrast, the first hours of colostrum feeding induced no histopathological lesions, increased maltase activity, and induced changes in gene expressions related to tissue development. Total bacterial density was high after 2 days of parenteral feeding and was not significantly affected by diet (colostrum, formula) or length of enteral feeding (8-34 h), except that a few bacterial groups (Clostridium, Enterococcus, Streptococcus species) increased with time. We conclude that a switch from parenteral to enteral nutrition rapidly induces diet-dependent histopathological, functional, and proinflammatory insults to the immature intestine. Great care is required when introducing enteral feeds to TPN-fed preterm infants, particularly when using formula, because early feeding-induced insults may predispose to NEC lesions that are difficult to revert by later dietary or medical interventions.  相似文献   

13.
The impermeant nature of the intestinal barrier is maintained by tight junctions (TJs) formed between adjacent intestinal epithelial cells. Disruption of TJs and loss of barrier function are associated with a number of gastrointestinal diseases, including neonatal necrotizing enterocolitis (NEC), the leading cause of death from gastrointestinal diseases in preterm infants. Human milk is protective against NEC, and the human milk factor erythropoietin (Epo) has been shown to protect endothelial cell-cell and blood-brain barriers. We hypothesized that Epo may also protect intestinal epithelial barriers, thereby lowering the incidence of NEC. Our data demonstrate that Epo protects enterocyte barrier function by supporting expression of the TJ protein ZO-1. As immaturity is a key factor in NEC, Epo regulation of ZO-1 in the human fetal immature H4 intestinal epithelial cell line was examined and demonstrated Epo-stimulated ZO-1 expression in a dose-dependent manner through the PI3K/Akt pathway. In a rat NEC model, oral administration of Epo lowered the incidence of NEC from 45 to 23% with statistical significance. In addition, Epo treatment protected intestinal barrier function and prevented loss of ZO-1 at the TJs in vivo. These effects were associated with elevated Akt phosphorylation in the intestine. This study reveals a novel role of Epo in the regulation of intestinal epithelial TJs and barrier function and suggests the possible use of enteral Epo as a therapeutic agent for gut diseases.  相似文献   

14.

Background

Systematic reviews of randomised controlled trials report that probiotics reduce the risk of necrotising enterocolitis (NEC) in preterm neonates.

Aim

To determine whether routine probiotic supplementation (RPS) to preterm neonates would reduce the incidence of NEC.

Methods

The incidence of NEC ≥ Stage II and all-cause mortality was compared for an equal period of 24 months ‘before’ (Epoch 1) and ‘after’ (Epoch 2) RPS with Bifidobacterium breve M-16V in neonates <34 weeks. Multivariate logistic regression analysis was conducted to adjust for relevant confounders.

Results

A total of 1755 neonates (Epoch I vs. II: 835 vs. 920) with comparable gestation and birth weights were admitted. There was a significant reduction in NEC ≥ Stage II: 3% vs. 1%, adjusted odds ratio (aOR) = 0.43 (95%CI: 0.21–0.87); ‘NEC ≥ Stage II or all-cause mortality’: 9% vs. 5%, aOR = 0.53 (95%CI: 0.32–0.88); but not all-cause mortality alone: 7% vs. 4%, aOR = 0.58 (95% CI: 0.31–1.06) in Epoch II. The benefits in neonates <28 weeks did not reach statistical significance: NEC ≥ Stage II: 6% vs. 3%, aOR 0.51 (95%CI: 0.20–1.27), ‘NEC ≥ Stage II or all-cause mortality’, 21% vs. 14%, aOR = 0.59 (95%CI: 0.29–1.18); all-cause mortality: 17% vs. 11%, aOR = 0.63 (95%CI: 0.28–1.41). There was no probiotic sepsis.

Conclusion

RPS with Bifidobacterium breve M-16V was associated with decreased NEC≥ Stage II and ‘NEC≥ Stage II or all-cause mortality’ in neonates <34 weeks. Large sample size is required to assess the potential benefits of RPS in neonates <28 weeks.  相似文献   

15.
Necrotizing enterocolitis (NEC) is a life-threatening gastrointestinal disorder afflicting preterm infants, which is currently unpreventable. Fecal microbiota transplantation (FMT) is a promising preventive therapy, but the transfer of pathogenic microbes or toxic compounds raise concern. Removal of bacteria from donor feces by micropore filtering may reduce this risk of bacterial infection, while residual bacteriophages could maintain the NEC-preventive effects. We aimed to assess preclinical efficacy and safety of fecal filtrate transplantation (FFT). Using fecal material from healthy suckling piglets, we compared rectal FMT administration (FMT, n = 16) with cognate FFT by either rectal (FFTr, n = 14) or oro-gastric administration (FFTo, n = 13) and saline (CON, n = 16) in preterm, cesarean-delivered piglets as models for preterm infants. We assessed gut pathology and analyzed mucosal and luminal bacterial and viral composition using 16S rRNA gene amplicon and meta-virome sequencing. Finally, we used isolated ileal mucosa, coupled with RNA-Seq, to gauge the host response to the different treatments. Oro-gastric FFT completely prevented NEC, which was confirmed by microscopy, whereas FMT did not perform better than control. Oro-gastric FFT increased viral diversity and reduced Proteobacteria relative abundance in the ileal mucosa relative to control. An induction of mucosal immunity was observed in response to FMT but not FFT. As preterm infants are extremely vulnerable to infections, rational NEC-preventive strategies need incontestable safety profiles. We show in a clinically relevant animal model that FFT, as opposed to FMT, efficiently prevents NEC without any recognizable side effects.Subject terms: Bacteriophages, Microbial ecology, Inflammatory bowel disease  相似文献   

16.
刘彦芳  史璇  张和平 《微生物学通报》2023,50(10):4611-4625
由急性呼吸道综合征冠状病毒2(severeacuterespiratorysyndromecoronavirus2,SARS-CoV-2)引起的新型冠状病毒感染(coronavirusdisease2019,COVID-19)从2020年初迅速扩展至全球,成为人类历史上最严重的大流行之一。已有证据证明当SARS-CoV-2的刺突蛋白(S蛋白)与细胞表面受体血管紧张素转化酶2 (angiotensin converting enzyme 2, ACE2)结合时,可感染宿主细胞,引起肠道菌群失调,并引发不同的并发症。益生菌是活的微生物,已被证明对人体健康有益。因其在调节肠道菌群、治疗多种疾病和抗病毒方面的功效而被考虑用来改善COVID-19。本文基于目前公开的临床前和临床试验结果,总结了益生菌在缓解COVID-19临床症状及胃肠道不良反应的效果,并讨论了益生菌在改善COVID-19后遗症方面的潜力,从而为后续管理COVID-19提供新的方向,进一步为呼吸系统疾病提供理论依据。  相似文献   

17.
Colorectal cancer (CRC) remains one of the most common and deadly cancers. Intestinal gut microflora is important to maintain and contributes to several intestinal functions, including the development of the mucosal immune system, absorption of complex macromolecules, synthesis of amino acids/vitamins and the protection against pathogenic microorganisms. It is well known that the gut microbiota changes or dysbiosis may have an essential impact in the initiation and promotion of chronic inflammatory pathways and also have a profound different genetic and epigenetic alterations leading to dysplasia, clonal expansion, and malignant transformation. Probiotic bacteria has antitumor activity with various mechanisms such as nonspecific physiological and immunological mechanisms. This review evaluates the effects of microbiota and probiotics in clinical trials, in vitro and animal model studies that have explored how probiotic against cancer development and also discusses the possible immunomodulatory mechanisms. Several mechanisms alteration of the intestinal microflora; inactivation of cancerogenic compounds; competition with putrefactive and pathogenic microbiota; improvement of the host's immune response; antiproliferative effects via regulation of apoptosis and cell differentiation; fermentation of undigested food; inhibition of tyrosine kinase; reduces the enteropathogenic complications before and after colon cancer surgery and improve diarrhea and it's have been able to create the integrity of gut mucosal and have stimulatory effects on the systemic immune system and prevent the CRC metastasis. Research in clinical trials encouraging findings that support a role of probiotics in CRC prevention and improve the safety and effectiveness of cancer therapy even though additional clinical research is still necessary.  相似文献   

18.
益生菌是一类对宿主(人类或动物)有益的活性微生物,包括细菌、真菌(如酵母)等,具有促进动物生长、提高免疫力的作用,是潜在的抗生素替代品。益生菌可能通过与动物消化道微生物互作来发挥益生作用,但具体机制仍不明确。综述了基于高通量测序技术研究益生菌调控幼龄畜禽(仔猪、雏鸡、反刍动物)消化道微生物群落组成的最新进展,并提出了未来研究方向,包括益生菌如何通过与消化道微生物互作影响其功能,益生菌对于幼龄畜禽不同健康状态下肠道微生物的影响,以及宿主因素如何影响益生菌对于幼龄畜禽消化道微生物的作用效果。  相似文献   

19.
目的 探讨NICU病房早产儿在住院早期肠道内添加益生菌对临床治疗的影响.方法 本研究系前瞻性单中心初步研究.选择2011年1月至2011年12月期间在东南大学附属中大医院NICU住院,胎龄28 ~ 34周的早产儿,随机分为治疗组161例和对照组148例.治疗组予以肠道益生菌口服,对照组不使用益生菌.观察两组患儿第一次经口喂养时间、完全经口喂养时间、完全胃肠道营养时间、晚期败血症发生率、NEC发生率、住院时间和住院死亡率的差异.结果 在最终完成研究时,共有22例被排除,纳入研究的287例患儿中,治疗组149例,对照组138例.治疗组与对照组各观察指标相比较,完全经口喂养时间、完全胃肠道营养时间、晚期败血症发生率、NEC发生率、住院时间和住院死亡率分别为(7.3±4.7)vs(11.6 ±5.7)d、(9.8 ±4.7)vs( 16.9±6.8)d、6.7% vs 15.2%、3.4% vs 10.9%、(25.0±7.5)vs(30.8 ±7.0)d和4.0% vs 6.5%.除死亡率外,其余各项比较差异均有统计学意义(均P<0.05).结论 早期肠道内补充益生菌,有利于早产儿胃肠道功能建立,减少并发症,缩短住院时间,降低医疗成本.  相似文献   

20.
Probiotics are the most useful tools for balancing the gut microbiota and thereby influencing human health and disease. Probiotics have a range of effects, from those on nutritional status to medical conditions throughout the body from the gut to non-intestinal body sites such as the brain and skin. Research interest in probiotics with nutritive claims (categorized as nutribiotics) has evolved into interest in therapeutic and pharmacological probiotics with health claims (pharmabiotics). The concept of pharmabiotics emerged only two decades ago, and the new categorization of probiotics to nutribiotics and pharmabiotics was recently suggested, which are under the different regulation depending on that they are food or drug. Information of the gut microbiome has been continuously accumulating, which will make possible the gut microbiome-based healthcare in the future, when nutribiotics show potential for maintaining health while pharmabiotics are effective therapeutic tools for human diseases. This review describes the current understanding in the conceptualization and classification of probiotics. Here, we reviewed probiotics as nutribiotics with nutritional functions and pharmabiotics with pharmaceutic functions in different diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号