首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
Light with decreased red:far-red (R:FR) ratios may signal neighbor presence and trigger plant developmental responses. There is some evidence that plant canopies forage towards increased R:FR ratios, but it is unclear to what extent R:FR versus the total amount of photosynthetically active radiation (PAR) influences canopy foraging responses among forest trees. The objective of this study was to examine the relative importance of PAR and R:FR as photosensory cues leading to tree canopy foraging responses. Seedlings of Betula papyrifera Marshall (paper birch) were grown in an experimental garden. Each seedling was germinated and grown in its own shading structure and exposed to two spatially separated light environments, in a factorial design of PAR and R:FR. Plant canopy foraging was evaluated at the end of one growing season in terms of canopy displacement, canopy area, leaf number, direction of stem lean, petiole aspect, and lamina aspect with respect to experimental light treatments. Leaf number and canopy area were greater on the high PAR sides of plants, irrespective of the R:FR treatment. Seedling canopies were displaced towards the direction of high PAR, but this relationship was not significant across all treatments. Petiole aspect was random and showed no significant directedness towards any of the light treatments. Lamina aspect and the direction of stem lean were distributed towards the direction of high PAR, irrespective of the R:FR treatment. Overall, first-year B. papyrifera seedlings used PAR, rather than R:FR ratio, as a photosensory cue for canopy light foraging.  相似文献   

3.
A reduced red to far-red (R/FR) light ratio and low photosynthetically active radiation (PAR) irradiance are both strong signals for inducing etiolation growth of plant stems. Under natural field conditions, plants can be exposed to either a reduced R/FR ratio or lower PAR, or to a combination of both. We used Helianthus annuus L., the sunflower, to study the effect of reduced R/FR ratio, low PAR or their combination on hypocotyl elongation. To accomplish this, we attempted to uncouple light quality from light irradiance as factors controlling hypocotyl elongation. We measured alterations in the levels of endogenous gibberellins (GAs), cytokinins (CKs) and the auxin indole-3-acetic acid (IAA), and the effect of exogenous hormones on hypocotyl growth. As expected, both reduced R/FR ratio and lower PAR can significantly promote sunflower hypocotyl elongation when given separately. However, providing the reduced R/FR ratio at a low PAR resulted in the greatest hypocotyl growth, and this was accompanied by significantly higher levels of endogenous IAA, GA1, GA8, GA20 and of a wide range of CKs. Providing a reduced R/FR ratio under normal PAR also significantly increased growth and again gave significantly higher levels of endogenous IAA, GAs and CKs. However, only under the de-etiolating influence of a normal R/FR ratio did lowering PAR significantly increase levels of GA1, GA8 and GA20. We thus conclude that light quality (e.g. the R/FR ratio) is the most important component of shade for controlling hypocotyl growth and elevated growth hormone content.  相似文献   

4.
Early shade signals promote the shade avoidance syndrome (SAS) which causes, among others, petiole and shoot elongation and upward leaf position. In spite of its relevance, these photomorphogenic responses have not been deeply studied in rapeseed (Brassica napus). In contrast to other crops like maize and wheat, rapeseed has a complex developmental phenotypic pattern as it evolves from an initial rosette to the main stem elongation and an indeterminate growth of floral raceme. In this work, we analyzed (1) morphological and physiological responses at individual level due to low red/far‐red (R/FR) ratio during plant development, and (2) changes in biomass allocation, grain yield and composition at crop level in response to high R/FR ratio and low irradiance in two modern spring rapeseed genotypes. We carried out pot and field experiments modifying R/FR ratios and irradiance at vegetative or reproductive stages. In pot experiments, low R/FR ratio increased the petiole and lamina length, upward leaf position and also accelerated leaf senescence. Furthermore, low R/FR ratio reduced main floral raceme and increased floral branching with higher remobilization of soluble carbohydrates from the stems. In field experiments, low irradiance during post‐flowering reduced grain yield, harvest index and grain oil content, and high R/FR ratio reaching the crop partially alleviated such effects. We conclude that photomorphogenic signals are integrated early during the vegetative growth, and irradiance has stronger effects than R/FR signals at rapeseed crop level.  相似文献   

5.
6.
7.
Summary We studied the effects of density on the dynamics of seedling growth and canopy microclimate within experimental stands composed of Datura ferox L. seedlings grown in individual pots. Interception of photosynthetically active radiation (PAR) by seedlings was evaluated either indirectly, by measuring leaf area, proportion of leaf area shaded by neighbouring individuals and laminar orientation with respect to sunlight, or directly, by measuring PAR at individual leaves at their natural angle of display. An integrating cylinder, with a geometry approximating that of a stem, was used within the canopies to measure the red:far-red (R:FR) ratio of the light flux from all compass points parallel to the soil surface. Seedlings responded rapidly (i.e. 1–2 weeks) to increased density by producing longer internodes and partitioning more dry matter to stems relative to leaves. These responses were observed before either PAR interception of growth rate were reduced by the presence of neighbours. Conversely, morphogenetic adjustment was preceded by a consistent effect of plant density on the R:FR ratio of the light received by the integrating cylinder. Air and soil temperature were not affected by density in these experiments. Differences in wind velocity within the canopy associated with plant density were avoided by the experimental procedure. The results support the idea that the drop in R:FR ratio of the light flux parallel to the ground — e.g. reflected sunlight — is an early signal that allows rapid adjustment of plant form to changes in canopy structure.  相似文献   

8.
Basal leaves frequently senesce before anthesis in high population density crops. This paper evaluates the hypothesis that quantitative and qualitative changes in the light environment associated with a high leaf area index (LAI) trigger leaf senescence in sunflower ( Helianthus annuus L.) canopies. Mean leaf duration (LD, time from achievement of maximum leaf area) of leaf 8 was significantly ( P < 0.05) reduced from 51 to 19 days as crop population density was increased from 0.47 to 4.76 plants m−2. High compared to low plant population density was associated with earlier reduction in the photosynthetically active radiation (PAR) and red/far-red ratio (R/FR) reaching the target leaf. However the changes in R/FR preceded those in PAR. When the light environment of individual leaves of isolated plants growing under field conditions was manipulated using filters and FR-reflecting mirrors, LD was positively and linearly related with the mean daily PAR (MDR) received in the FR- (no FR enrichment) treatments. FR enrichment of light reaching the abaxial surface of the leaf significantly ( P < 0.05) reduced LD by 9 days at intermediate PAR levels with respect to FR-controls, but did not affect LD at the maximum PAR used in these experiments. However, when light reaching both leaf surfaces was enriched with FR, LD (for leaves receiving maximum PAR) was 13 days shorter than that of the FR- control. These results show that basal leaf senescence in sunflower is enhanced both by a decrease in PAR and by a decrease in R/FR.  相似文献   

9.
Plants shaded by neighbors or overhead foliage experience both a reduction in the ratio of red to far red light (R:FR), a specific cue perceived by phytochrome, and reduced photosynthetically active radiation (PAR), an essential resource. We tested the adaptive value of plasticity to crowding and to the cue and resource components of foliage shade in the annual plant Arabidopsis thaliana by exposing 36 inbred families from four natural populations to four experimental treatments: (1) high density, full sun; (2) low density, full sun; (3) low density, neutral shade; and (4) low density, low R:FR-simulated foliage shade. Genotypic selection analysis within each treatment revealed strong environmental differences in selection on plastic life-history traits. We used specific contrasts to measure plasticity to density and foliage shade, to partition responses to foliage shade into phytochrome-mediated responses to the R:FR cue and responses to PAR, and to test whether plasticity was adaptive (i.e., in the same direction as selection in each environment). Contrary to expectation, we found no evidence for adaptive plasticity to density. However, we observed both adaptive and maladaptive responses to foliage shade. In general, phytochrome-mediated plasticity to the R:FR cue of foliage shade was adaptive and counteracted maladaptive growth responses to reduced PAR. These results support the prediction that active developmental responses to environmental cues are more likely to be adaptive than are passive resource-mediated responses. Multiple regression analysis detected a few costs of adaptive plasticity and adaptive homeostasis, but such costs were infrequent and their expression depended on the environment. Thus, costs of plasticity may occasionally constrain the evolution of adaptive responses to foliage shade in Arabidopsis, but this constraint may differ among environments and is far from ubiquitous.  相似文献   

10.
When growing in search for light, plants can experience continuous or occasional shading by other plants. Plant proximity causes a decrease in the ratio of R to far-red light (low R:FR) due to the preferential absorbance of R light and reflection of FR light by photosynthetic tissues of neighboring plants. This signal is often perceived before actual shading causes a reduction in photosynthetically active radiation (low PAR). Here, we investigated how several Brassicaceae species from different habitats respond to low R:FR and low PAR in terms of elongation, photosynthesis, and photoacclimation. Shade-tolerant plants such as hairy bittercress (Cardamine hirsuta) displayed a good adaptation to low PAR but a poor or null response to low R:FR exposure. In contrast, shade-avoider species, such as Arabidopsis (Arabidopsis thaliana), showed a weak photosynthetic performance under low PAR but they strongly elongated when exposed to low R:FR. These responses could be genetically uncoupled. Most interestingly, exposure to low R:FR of shade-avoider (but not shade-tolerant) plants improved their photoacclimation to low PAR by triggering changes in photosynthesis-related gene expression, pigment accumulation, and chloroplast ultrastructure. These results indicate that low R:FR signaling unleashes molecular, metabolic, and developmental responses that allow shade-avoider plants (including most crops) to adjust their photosynthetic capacity in anticipation of eventual shading by nearby plants.

Vegetation proximity light signals inform shade-avoider plants to adjust their photosynthetic capacity in anticipation of eventual shading by nearby plants.  相似文献   

11.
In vegetation stands, plants receive red to far‐red ratio (R:FR) signals of varying strength from all directions. However, plant responses to variations in R:FR reflected from below have been largely ignored despite their potential consequences for plant performance. Using a heterogeneous rose canopy, which consists of bent shoots down in the canopy and vertically growing upright shoots, we quantified upward far‐red reflection by bent shoots and its consequences for upright shoot architecture. With a three‐dimensional plant model, we assessed consequences of responses to R:FR from below for plant photosynthesis. Bent shoots reflected substantially more far‐red than red light, causing reduced R:FR in light reflected upwards. Leaf inclination angles increased in upright shoots which received low R:FR reflected from below. The increased leaf angle led to an increase in simulated plant photosynthesis only when this low R:FR was reflected off their own bent shoots and not when it reflected off neighbour bent shoots. We conclude that plant response to R:FR from below is an under‐explored phenomenon which may have contrasting consequences for plant performance depending on the type of vegetation or crop system. The responses are beneficial for performance only when R:FR is reflected by lower foliage of the same plants.  相似文献   

12.
Here we examined species differences in perception and response to two distinct types of shade cue, reduced photosynthetically active radiation (PAR) with and without reduced red : far red ratio (R : FR), in Polygonum persicaria and Polygonum hydropiper, two closely related annuals of contrasting ecological breadth. We compared plasticity data for light-gathering traits from glasshouse experiments at equivalently reduced PAR under neutral shade (R : FR 1.03) and green shade (R : FR 0.702). Species shared the ability to distinguish between the two types of shade, as shown by the ability of each to respond differently to neutral vs green shade for one or more traits. However, the species' responses to these cues differed significantly. Polygonum persicaria expressed stronger shade-tolerance responses (increased leaf allocation and leaf area ratio) to reduced PAR alone than to green shade. By contrast, P. hydropiper expressed slightly less plasticity for these traits in neutral than in green shade. The pronounced plastic response of P. persicaria to neutral shade may contribute to the range of habitats this widespread species can occupy, which includes neutral-shade environments such as urban settings.  相似文献   

13.
Previous work has shown that as the density of wheat plants increase, the spread of the root plate, root length and root number per plant decrease, leading to reduced anchorage strength and increased lodging susceptibility. The aim of this study was to determine which aspect of mutual plant shading [reduction of photosynthetically active radiation (PAR) or the ratio of red to far red light (R : FR)] is associated with this reduction in anchorage strength. Field experiments were conducted at Sutton Bonington, Leicestershire, UK, in two seasons using a range of plant densities in conjunction with shading materials to manipulate PAR and R : FR independently. The spread of the root plate, which has been linked most strongly with anchorage strength, was almost exclusively influenced by PAR intercepted per plant at the beginning of stem extension. Root number and root length were influenced by both PAR and R : FR. When structural roots (defined as thicker than 0.5 mm) and nonstructural roots were considered separately, it was discovered that increasing plant density and PAR shading reduced the length of both structural and nonstructural roots. However, reducing R : FR only reduced the length of structural roots without affecting the length of nonstructural roots.  相似文献   

14.
An attempt has been made to uncouple the effects of the two primary components of shade light, a reduced red to far-red (R/FR) ratio and low photosynthetically active radiation (PAR), on the elongation of the youngest internode of sunflower (Helianthus annuus) seedlings. Maximal internode growth (length and biomass) was induced by a shade light having a reduced R/FR ratio (0.85) under the low PAR of 157 micromol m(-2) s(-1). Reducing the R/FR ratio under normal PAR (421 micromol m(-2) s(-1)) gave similar growth trends, albeit with a reduced magnitude of the response. Leaf area growth showed a rather different pattern, with maximal growth occurring at the higher (normal) PAR of 421 micromol m(-2) s(-1)), but with variable effects being seen with changes in light quality. Reducing the R/FR ratio (by enrichment with FR) gave significant increases in gibberellin A(1) (GA(1)) and indole-3-acetic acid (IAA) contents in both internodes and leaves. By contrast, a lower PAR irradiance had no significant effect on GA(1) and IAA levels in internodes or leaves, but did increase the levels of other GAs, including two precursors of GA(1). Interestingly, both leaf and internode hormone content (GAs, IAA) are positively and significantly correlated with growth of the internode, as are leaf levels of abscisic acid (ABA). However, changes in these three hormones bear little relationship to leaf growth. By implication, then, the leaf may be the major source of GAs and IAA, at least, for the rapidly elongating internode. Several other hormones were also assessed in leaves for plants grown under varying R/FR ratios and PARs. Leaf ethylene production was not influenced by changes in R/FR ratio, but was significantly reduced under the normal (higher) PAR, the irradiance treatment which increased leaf growth. Levels of the growth-active free base and riboside cytokinins were significantly increased in leaves under a reduced R/FR ratio, but only at the higher (normal) PAR irradiance; other light quality treatments evoked no significant changes. Taken in toto, these results indicate that both components of shade light can influence the levels of a wide range of endogenous hormones in internodes and leaves while evoking increased internode elongation and biomass accumulation. However, it is light quality changes (FR enrichment) which are most closely tied to increased hormone content, and especially with increased GA and IAA levels. Finally, the increases seen in internode and leaf GA content with a reduced R/FR ratio are consistent with FR enrichment inducing an overall increase in sunflower seedling GA biosynthesis.  相似文献   

15.
Depressions in the red to far-red ratio (R:FR) of solar radiation arising from the selective absorption of R (600–700 nm) and scattering of FR (700–800 nm) by chlorophyll within plant canopies may function as an environmental signal directly regulating axillary bud growth and subsequent ramet recruitment in clonal plants. We tested this hypothesis in the field within a single cohort of parental ramets in established clones of the perennial bunchgrass, Schizachyrium scoparium. The R:FR was modified near leaf sheaths and axillary buds at the bases of individual ramets throughout the photoperiod without increasing photosynthetic photon flux density (PPFD) by either (1) supplementing R beneath canopies to raise the naturally low R:FR or (2) supplementing FR beneath partially defoliated canopies to suppress the natural R:FR increase following defoliation. Treatment responses were assessed by simultaneously monitoring ramet recruitment, PPFD and the R:FR beneath individual clone canopies at biweekly intervals over a 12-week period. Neither supplemental R nor FR influenced the rate or magnitude of ramet recruitment despite the occurrence of ramet recruitment in all experimental clones. In contrast, defoliation with or without supplemental FR beneath clone canopies reduced ramet recruitment 88% by the end of the experiment. The hypothesis stating that the R:FR signal directly regulates ramet recruitment is further weakened by evidence demonstrating that (1) the low R:FR-induced suppression of ramet recruitment is only one component of several architectural modifications exhibited by ramets in response to the R:FR signal (2) immature leaf blades, rather than leaf sheaths or buds, function as sites of R:FR perception on individual ramets, and (3) increases in the R:FR at clone bases following partial canopy removal are relatively transient and do not override the associated constraints on ramet recruitment resulting from defoliation. A depressed R:FR is probably of greater ecological significance as a signal of competition for light in vegetation canopies than as a density-dependent signal which directly regulates bud growth and ramet recruitment.  相似文献   

16.
17.
The outgrowth of tiller buds in Poaceae is influenced by the ratio of red to far-red light irradiance (R:FR). At each point in the plant canopy, R:FR is affected by light scattered by surrounding plant tissues. This paper presents a three-dimensional virtual plant modelling approach to simulate local effects of R:FR on tillering in spring wheat (Triticum aestivum). R:FR dependence of bud outgrowth was implemented in a wheat model, using three hypothetical responses of bud extension to R:FR (unit step, curvilinear and linear response). Bud break occurred when a threshold bud length was reached. Simulations were performed for three plant population densities. In accordance with experimental observations, fewer tillers per plant were simulated for higher plant population densities. The linear and curvilinear responses caused a delay in the increase in tiller number compared with experimental data. The unit step response approached experimental results best. It is suggested that a model based on relatively simple relations can be used to simulate degree of tillering. This study has shown that the virtual plant approach is a promising tool with which to address crop morphological and ecological research questions where the determining factors act at the level of the individual plant organ.  相似文献   

18.
In commercial crops, maize (Zea mays) plants are typically grown at a larger distance between rows (70 cm) than within the same row (16-23 cm). This rectangular arrangement creates a heterogeneous environment in which the plants receive higher red light (R) to far-red light (FR) ratios from the interrow spaces. In field crops, the hybrid Dekalb 696 (DK696) showed an increased proportion of leaves toward interrow spaces, whereas the experimental hybrid 980 (Exp980) retained random leaf orientation. Mirrors reflecting FR were placed close to isolated plants to simulate the presence of neighbors in the field. In addition, localized FR was applied to target leaves in a growth chamber. During their expansion, the leaves of DK696 turned away from the low R to FR ratio signals, whereas Exp980 leaves remained unaffected. On the contrary, tillering was reduced and plant height was increased by low R to FR ratios in Exp980 but not in DK696. Isolated plants preconditioned with low R/FR-simulating neighbors in a North-South row showed reduced mutual shading among leaves when the plants were actually grouped in North-South rows. These observations contradict the current view that phytochrome-mediated responses to low R/FR are a relic from wild conditions, detrimental for crop yield.  相似文献   

19.
以切花菊品种‘神马’(Chrysanthemum morifolium Ramat ‘Jinba’)为试材,于2010-2011年设计不同红光(R: (660 ±10) nm)与远红光(FR: (730±10)nm)比值(R/FR分别为0.5、2.5、4.5、6.5)的LED灯照射处理,研究不同R/FR值对温室切花菊形态指标、叶面积形成及干物质分配的影响。结果显示R/FR=2.5处理的植株叶片数、株高、茎粗、花径、叶面积及总干重均为各个处理中最高,R/FR=0.5处理的节间最长。所有R/FR处理的单株地上干物质重量与光质处理天数呈指数-线性模型。随处理天数的增加不同R/FR值处理菊花植株地上部分及地下部分干物质分配指数差异均不显著,叶片和花的干物质分配指数随处理天数的增加分别呈降低和升高的趋势,茎干物质分配指数则呈现先升高后降低的趋势,R/FR=2.5处理下,菊花叶片干物质分配指数和花干物质分配指数最高,而茎干物质分配指数却为最低;R/FR=6.5处理茎干物质分配指数最高,叶片干物质分配指数最低;0.5处理花朵干物质分配指数最低,说明远红光比例增加能够促进干物质向茎中分配,R/FR=2.5处理利于干物质向花朵中分配。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号