首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ikeda M  Yi M  Li K  Lemon SM 《Journal of virology》2002,76(6):2997-3006
Dicistronic, selectable subgenomic replicons derived from the Con1 strain of hepatitis C virus (HCV) are capable of autonomous replication in cultured Huh7 cells (Lohmann et al., Science 285:110-113, 1999). However, adaptive mutations in the NS3, NS5A, and/or NS5B proteins are required for efficient replication of these RNAs and increase by orders of magnitude the numbers of G418-resistant colonies selected following transfection of Huh7 cells. Here, we demonstrate that a subgenomic replicon (NNeo/3-5B) derived from an infectious molecular clone of a second genotype 1b virus, HCV-N (Beard et al., Hepatology 30:316-324, 1999) is also capable of efficient replication in Huh7 cells. G418-resistant cells selected following transfection with NNeo/3-5B RNA contained abundant NS5A antigen and HCV RNA detectable by Northern analysis. Replicon RNA in one of three clonally isolated cell lines contained no mutations in the NS3-NS5B polyprotein, confirming that adaptive mutations are not required for efficient replication in these cells. However, the deletion of a unique 4-amino-acid insertion that is present within the interferon sensitivity-determining region (ISDR) of the NS5A protein in wild-type HCV-N drastically decreased the number of G418-resistant colonies obtained following transfection of Huh7 cells. This effect could be reversed by inclusion of a previously described Con1 cell culture-adaptive mutation (S2005-->I), confirming that this natural insertion has a controlling role in determining the replication capacity of wild-type HCV-N RNA in Huh7 cells. Additional selectable, dicistronic RNAs encoding NS2-NS5B, E1-NS5B, or the full-length HCV polyprotein were also capable of replication and gave rise to G418-resistant cell clones following transfection of Huh7 cells. We conclude that RNA derived from this documented infectious molecular clone has a unique capacity for replication in Huh7 cells in the absence of additional cell culture-adaptive mutations.  相似文献   

2.
应用PCR技术从含有丙型肝炎病毒(HCV)全长开放阅读框的质粒pBRTM/HCV1~3011中获得NS5A全长基因片段,利用基因重组技术将其克隆至真核表达载体pcDNA3.1(-)中。通过酶切、PCR及测序鉴定证实,NS5A基因已正确插入到pcDNA3.1(-)中。再利用脂质体介导转染Huh7细胞,30h后收获细胞,经Western blot验证,证实HCV的NS5A基因在Huh7细胞中已经获得表达。在培养条件完全一致的条件下,表达NS5A基因的Huh7细胞与pcDNA3.1(-)转染的细胞在转染30h后被收集起来,乙醇固定,PI染色后利用流式细胞仪检测细胞周期变化。G0/G1期由60.6%下降到49.7%,S期由23.9%上升到32.7%,而转染pcDNA3.1(-)细胞的细胞周期与正常的Huh7细胞则差别不大。从而证明HCV NS5A蛋白对Huh7细胞周期具有调节作用。  相似文献   

3.
提高对丙型肝炎患者实验室检测的灵敏度和特异性,对相关人群进行筛查和早期诊断,是控制丙型肝炎病毒(HCV)流行与传播的有效措施。为了建立更为可靠的HCV诊断方法,通过采用PCR方法从J6/JFH12a型病毒中克隆出HCV ns3基因片段,将其连接到p ET-28a载体上,重组载体p ET-28a-ns3转化大肠杆菌BL21(DE3)后诱导表达,以10%SDS-PAGE进行鉴定,获得表达的NS3重组蛋白分子量为72 k Da。将纯化的NS3蛋白免疫BALB/c小鼠,第4次免疫后采集血液并分离血清进行抗体活性鉴定,小鼠抗体效价为1∶256 000。进一步的Western blotting和间接免疫荧光结果显示,以重组NS3蛋白免疫小鼠制备的多克隆抗体可以很好地识别HCV感染Huh7.5.1细胞中的NS3蛋白,为下一步开展单克隆抗体制备和检测试剂盒研制工作奠定了基础。  相似文献   

4.
The JFH-1 strain of hepatitis C virus (HCV) is a genotype 2a strain that can replicate autonomously in Huh7 cells. The J6 strain is also a genotype 2a strain, but its full genomic RNA does not replicate in Huh7 cells. However, chimeric J6/JFH-1 RNA that has J6 structural-protein-coding regions and JFH-1 nonstructural-protein-coding regions can replicate autonomously and produce infectious HCV particles. In order to determine the mechanisms underlying JFH-1 RNA replication, we constructed various J6/JFH-1 chimeras and tested their RNA replication and virus particle production abilities in Huh7 cells. Via subgenomic-RNA-replication assays, we found that both the JFH-1 NS5B-to-3'X (N5BX) and the NS3 helicase (N3H) regions are important for the replication of the J6CF replicon. We applied these results to full-length genomic RNA replication and analyzed replication using Northern blotting. We found that a chimeric J6 clone with JFH-1 N3H and N5BX could replicate autonomously but that a chimeric J6 clone with only JFH-1 N5BX had no replication ability. Finally, we tested the virus production abilities of these clones and found that a chimeric J6 clone with JFH-1 N3H and N5BX could produce infectious HCV particles. In conclusion, the JFH-1 NS3 helicase and NS5B-to-3'X regions are important for efficient replication and virus particle formation of HCV genotype 2a strains.  相似文献   

5.
Previous studies indicate that the processing of hepatitis C virus (HCV) E2-p7-NS2 precursor mediated by host signal peptidase is relatively inefficient, resulting in the accumulation of E2-p7-NS2 and E2-p7 precursors in addition to E2 in mammalian cells. In this study, we discovered that a significant inhibition of the processing at an E2-p7 junction site is detrimental for HCV production, whether it was caused by the mutations in p7 or by the strategic introduction of a mutation at a terminal residue of E2 to block the signal peptidase-mediated cleavage of this junction site. However, complete separation of E2 and p7 by inserting an encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) between these two proteins also moderately inhibited virus production. These results indicate that optimal processing of the E2-p7 junction site is critical for efficient HCV production. We further demonstrated that disrupting E2-p7 processing inhibits both NS2 localization to the putative virus assembly sites near lipid droplets (LD) and NS2 interaction with NS3 and E2. However, the impact, if any, of the p7-NS2 processing efficiency on HCV production seems relatively minor. In conclusion, these results imply that effective release of E2 and p7 from the precursor E2-p7 promotes HCV production by enhancing NS2-associated virus assembly complex formation near LD.  相似文献   

6.
NS3/4A是丙型肝炎病毒(hepatitis C virus,HCV)编码的丝氨酸蛋白酶复合体,是病毒完成自身复制周期的必要成分。该研究为调查NS3/4A对细胞凋亡及DNA损伤应答(DNA-damage response,DDR)的影响,在Huh7细胞中表达了外来NS3/4A基因。通过DAPI染色和MTT分析显示,外来表达NS3/4A显著诱导细胞的凋亡和增殖活力的下降。免疫荧光检测结果表明,NS3/4A可明显增加细胞内源性DNA双链断裂(double strand breaks,DSBs)损伤(γH2AX灶点升高);而进一步用X-ray诱导细胞外源性DSBs损伤后,外来表达NS3/4A的细胞显示出明显的DSBs损伤修复缺陷(减缓的γH2AX灶点消退)。免疫印迹法检测结果显示,NS3/4A可抑制喜树碱(Camptothecin,CPT)诱导的ATM第1 981位丝氨酸的磷酸化(pATM1 981)。以上结果提示,NS3/4A基因外来表达可引起细胞DNA损伤,抑制ATM介导的DSBs损伤修复信号,诱导细胞凋亡通路的活化。  相似文献   

7.
Studies on hepatitis C virus (HCV) replication have been greatly advanced by the development of cell culture models for HCV known as replicon systems. The prototype replicon consists of a subgenomic HCV RNA in which the HCV structural region is replaced by the neomycin phosphotransferase II (NPTII) gene, and translation of the HCV proteins NS3 to NS5 is directed by the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES). The interferon (IFN)-inducible protein kinase PKR plays an important role in cell defense against virus infection by impairing protein synthesis as a result of eIF-2alpha phosphorylation. Here, we show that expression of the viral nonstructural (NS) and PKR proteins and eIF-2alpha phosphorylation are all variably regulated in proliferating replicon Huh7 cells. In proliferating cells, induction of PKR protein by IFN-alpha is inversely proportional to viral RNA replication and NS protein expression, whereas eIF-2alpha phosphorylation is induced by IFN-alpha in proliferating but not in serum-starved replicon cells. The role of PKR and eIF-2alpha phosphorylation was further addressed in transient-expression assays in Huh7 cells. These experiments demonstrated that activation of PKR results in the inhibition of EMCV IRES-driven NS protein synthesis from the subgenomic viral clone through mechanisms that are independent of eIF-2alpha phosphorylation. Unlike NS proteins, HCV IRES-driven NPTII protein synthesis from the subgenomic clone was resistant to PKR activation. Interestingly, activation of PKR could induce HCV IRES-dependent mRNA translation from dicistronic constructs, but this stimulatory effect was mitigated by the presence of the viral 3' untranslated region. Thus, PKR may assume multiple roles in modulating HCV replication and protein synthesis, and tight control of PKR activity may play an important role in maintaining virus replication and allowing infection to evade the host's IFN system.  相似文献   

8.
We studied immune responses to hepatitis C virus (HCV) genes delivered as DNA encoding the entire HCV protein coding genome in two polycistronic plasmids encoding HCV capsid-E1-E2-NS2-NS3 and HCV NS3-NS4-NS5 in HLA-A2.1-transgenic mice. Immune responses to HCV DNA prime and recombinant canarypox virus boost were also studied with the above constructs. At 8 weeks after a canarypox virus boost, the DNA prime/canarypox virus boosting regimen induced potent cellular immune responses to HCV structural and nonstructural proteins on target cells expressing the HLA-A2.1 allele. High frequencies of gamma interferon-secreting cells, as detected by enzyme-linked immunospot assay, were obtained in response to several endogenously expressed HCV proteins. We also observed cytotoxic-T-lymphocyte reactivity in response to endogenously expressed HCV proteins in fresh spleen cells without in vitro expansion. Upon challenge with a recombinant vaccinia virus expressing HCV proteins at 2 months postimmunization, the HCV DNA prime/canarypox virus-immunized mice showed a complete reduction in vaccinia virus titers compared to HCV DNA prime/boost- and mock-immunized controls. Immune responses were still detectable 4 months after canarypox virus boost in immunized mice. Interestingly, at 10 months postimmunization (8 months after canarypox virus boost), the protection in HCV DNA prime/boost-immunized mice against recombinant HCV-vaccinia virus challenge was higher than that observed in HCV DNA prime/canarypox virus boost-immunized mice.  相似文献   

9.
Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPS) leading to the activation of the innate immune response and subsequently to the shaping of the adaptive immune response. Of the known human TLRs, TLR3, 7, 8, and 9 were shown to recognize nucleic acid ligands. TLR3 signaling is induced by double-stranded (ds)RNA, a molecular signature of viruses, and is mediated by the TRIF (TIR domain-containing adaptor-inducing IFNbeta) adaptor molecule. Thus, TLR3 plays an important role in the host response to viral infections. The liver is constantly exposed to a large variety of foreign substances, including pathogens such as HBV (hepatitis B virus) and HCV (hepatitis C virus), which frequently establish persistent liver infections. In this work, we investigated the expression and signaling pathway of TLR3 in different hepatoma cell lines. We show that hepatocyte lineage cells express relatively low levels of TLR3 mRNA. TLR3 signaling in HEK293 cells (human embryonic kidney cells) activated NF-kappaB and IRF3 (interferon regulatory factor 3) and induced IFNbeta (interferon beta) promoter expression, which are known to lead to pro-inflammatory cytokine secretion. In Huh7 cells, there was only a short-term IRF3 activation, and a very low level of IFNbeta expression. In HepG2 cells on the other hand, while no induction of pro-inflammatory factors was observed, signaling by TLR3 was skewed towards the induction of apoptosis. These results indicate preferential induction of the apoptotic pathway over the cytokine induction pathway by TLR3 signaling in hepatocellular carcinoma cells with potential implications for therapeutic strategies.  相似文献   

10.
The proteolytic cleavages at the NS3-NS4A, NS4A-NS4B, NS4B-NS5A, and NS5A-NS5B junctions of hepatitis C virus (HCV) polyprotein are effected by the virus-encoded serine protease contained within NS3. Using transient expression in HeLa cells of cDNA fragments that code for regions of the HCV polyprotein, we studied whether viral functions other than NS3 are required for proteolytic processing at these sites. We found that, in addition to NS3, a C-terminal 33-amino-acid sequence of the NS4A protein is required for cleavage at the NS3-NS4A and NS4B-NS5A sites and that it accelerates the rate of cleavage at the NS5A-NS5B junction. In addition, we show that NS4A can activate the NS3 protease when supplied in trans. Our data suggest that HCV NS4A may be the functional analog of flavivirus NS2B and pestivirus p10 proteins.  相似文献   

11.
丙型肝炎病毒(HCV)与宿主细胞因子的相互作用已经成为国内外研究的热点和难点。近期研究已经证实HCV的感染对宿主多种途径中基因的转录均能产生影响。为了进一步研究究竟是HCV中的哪些功能基因在与特定细胞因子的相互作用中起主导作用,构建了分别含有HCV Core、E1、E2、p7、NS2、NS3、NS4A、NS4B、NS5A和NS5B基因的真核表达质粒,分别转入宿主细胞CHO-K1中,在G418的选择压力下筛选获得稳定表达HCV单个蛋白的细胞系(10株)。PCR和RT-PCR可分别从稳定细胞系中检测到相应的HCV基因的DNA和mRNA,冻存和复苏不会造成HCV基因的丢失。Western-blot检测到稳定细胞系中表达E1,E2和NS5B蛋白,说明HCV基因在CHO-K1中已经形成稳定表达。薄层层析(TLC)结果显示,含有不同HCV基因的稳定传代细胞系中,UDP-葡萄糖神经酰胺葡萄糖基转移酶(UGCG)活性均发生了不同程度的变化,其中E2和p7的表达使胞内UGCG的活性提高了约1倍,NS2和NS5A则使UGCG的酶活提高了约0.6倍。该稳定细胞系的建立为研究病毒与宿主因子的相互作用及药物筛选奠定了基础。  相似文献   

12.
13.
旨在探讨丙型肝炎病毒(hepatitis C virus, HCV)cured细胞株的易感机制。本研究将体外转录的HCV RNA电转入肝癌细胞系Huh 7细胞,建立HCV复制子细胞株,用 γ-干扰素(interferon,IFN)处理复制子细胞株,获得HCV cured Huh 7A和Huh 7B细胞株。用插入报告基因的HCV毒株Jc1-G感染上述细胞株,分别进行荧光素酶活性测定、蛋白质印迹法和荧光定量聚合酶链反应(polymerase chain reaction,PCR)检测以验证其易感性。收集Huh 7、Huh 7.5、Huh 7A和Huh 7B细胞并利用IFN-α处理,之后用蛋白质印迹法及荧光定量PCR进行检测,验证细胞株中IFN诱生信号通路中关键因子内源性表达及抗病毒活性ISGs的激活水平。结果显示,在Huh 7A和Huh 7B细胞中检测不到病毒RNA,与Huh 7细胞一致。病毒感染实验中,与Huh 7细胞相比,Huh 7A和Huh 7B细胞株中荧光素酶活性增高百倍,病毒蛋白表达和RNA水平亦显著上调,与Huh 7.5细胞株中的表达水平接近。IFN信号通路实验中,与Huh 7细胞相比,Huh 7A和Huh 7B细胞株中RIG-I/MDA5/MAVS内源性蛋白表达和mRNA水平无明显差异;IFN-α处理细胞后IFN刺激基因isg56,mx1,mx2,oax1,oax2,viperin,cxcl10,ifitm1和ifitm3激活水平亦无显著变化。结果提示,本研究制备的Huh 7A和Huh 7B细胞株可支持HCV高水平复制,将为研究病毒复制机制提供有力的支持。  相似文献   

14.
The NS3-NS4A serine protease of hepatitis C virus (HCV) mediates four specific cleavages of the viral polyprotein and its activity is considered essential for the biogenesis of the HCV replication machinery. Despite extensive biochemical and structural characterization, the analysis of natural variants of this enzyme has been limited by the lack of an efficient replication system for HCV in cultured cells. We have recently described the generation of chimeric HCV-Sindbis viruses whose propagation depends on the NS3-NS4A catalytic activity. NS3-NS4A gene sequences were fused to the gene coding for the Sindbis virus structural polyprotein in such a way that processing of the chimeric polyprotein, nucleocapsid assembly, and production of infectious viruses required NS3-NS4A-mediated proteolysis (G. Filocamo, L. Pacini, and G. Migliaccio, J. Virol. 71:1417–1427, 1997). Here we report the use of these chimeric viruses to select and characterize active variants of the NS3-NS4A protease. Our original chimeric viruses displayed a temperature-sensitive phenotype and formed lysis plaques much smaller than those formed by wild-type (wt) Sindbis virus. By serially passaging these chimeric viruses on BHK cells, we have selected virus variants which formed lysis plaques larger than those produced by their progenitors and produced NS3-NS4A proteins different in size and/or sequence from those of the original viruses. Characterization of the selected protease variants revealed that all of the mutated proteases still efficiently processed the chimeric polyprotein in infected cells and also cleaved an HCV substrate in vitro. One of the selected proteases was expressed in a bacterial system and showed a catalytic efficiency comparable to that of the wt recombinant protease.  相似文献   

15.
We hypothesized that ADP-ribosylation factor 1 (Arf1) plays an important role in the biogenesis and maintenance of infectious hepatitis C virus (HCV). Huh7.5 cells, in which HCV replicates and produces infectious viral particles, were exposed to brefeldin A or golgicide A, pharmacological inhibitors of Arf1 activation. Treatment with these agents caused a reduction in viral RNA levels, the accumulation of infectious particles within the cells, and a reduction in the levels of these particles in the extracellular medium. Fluorescence analyses showed that the viral nonstructural (NS) proteins NS5A and NS3, but not the viral structural protein core, shifted their localization from speckle-like structures in untreated cells to the rims of lipid droplets (LDs) in treated cells. Using pulldown assays, we showed that ectopic overexpression of NS5A in Huh7 cells reduces the levels of GTP-Arf1. Downregulation of Arf1 expression by small interfering RNA (siRNA) decreased both the levels of HCV RNA and the production of infectious viral particles and altered the localization of NS5A to the peripheries of LDs. Together, our data provide novel insights into the role of Arf1 in the regulation of viral RNA replication and the production of infectious HCV.  相似文献   

16.

Background

We previously reported that the hepatitis C virus (HCV) nonstructural protein 5A (NS5A) down-regulates TLR4 signaling and lipopolysaccharide-induced apoptosis of hepatocytes. There have been several reports regarding the association between HCV infection and endoplasmic reticulum (ER) stress. Here, we examined the regulation of HCV NS5A on the apoptosis of hepatocytes induced by thapsigargin, an inducer of ER stress.

Methods

The apoptotic response to thapsigargin and the expression of molecules involved in human hepatocyte apoptotic pathways were examined in the presence or absence of HCV NS5A expression.

Results

HCV JFH1 infection induced ER stress in the Huh7 cell line. HCV NS5A protected HepG2 cells against thapsigargin-induced apoptosis, the effect of which was linked to the enhanced expression of the 78-kDa glucose-regulated protein/immunoglobulin heavy-chain binding protein (GRP78). Consistent with a conferred pro-survival advantage, HCV NS5A reduced poly(adenosine diphosphate-ribose) polymerase cleavage and activation of caspases-3, -7 and -9, and Bax expression, while increasing the expressions of the anti-apoptotic molecules XIAP and c-FLIP. HCV NS5A weakly interacts with GRP78 and enhances GRP78 expression in hepatocytes.

Conclusion

HCV NS5A enhances GRP78 expression, resulting in the inhibition of apoptotic properties, and inhibits thapsigargin-induced apoptotic pathways in human hepatocytes, suggesting that disruption of ER stress-mediated apoptosis may have a role in the pathogenesis of HCV infection. Thus, HCV NS5A might engender the survival of HCV-infected hepatocytes contributing to the establishment of persistent infection.  相似文献   

17.
18.
The hepatitis C virus (HCV) NS3/4A protein has several essential roles in the virus life cycle, most probably through dynamic interactions with host factors. To discover cellular cofactors that are co-opted by HCV for its replication, we elucidated the NS3/4A interactome using mass spectrometry and identified Y-box-binding protein 1 (YB-1) as an interacting partner of NS3/4A protein and HCV genomic RNA. Importantly, silencing YB-1 expression decreased viral RNA replication and severely impaired the propagation of the infectious HCV molecular clone JFH-1. Immunofluorescence studies further revealed a drastic HCV-dependent redistribution of YB-1 to the surface of the lipid droplets, an important organelle for HCV assembly. Core and NS3 protein-dependent polyprotein maturation were shown to be required for YB-1 relocalization. Unexpectedly, YB-1 knockdown cells showed the increased production of viral infectious particles while HCV RNA replication was impaired. Our data support that HCV hijacks YB-1-containing ribonucleoparticles and that YB-1-NS3/4A-HCV RNA complexes regulate the equilibrium between HCV RNA replication and viral particle production.  相似文献   

19.
20.
We evaluated the participation of oxidative stress in the negative regulation of hepatitis C virus (HCV)-RNA induced by acetylsalicylic acid (ASA). We used the HCV subgenomic replicon cell system that stably expresses HCV-nonstructural proteins (Huh7 HCV replicon cells) and the parental cell line. Cells were exposed to 4 mM ASA at different times (12-72 h), and pyrrolidine dithiocarbamate (PDTC) was used as an antioxidant control. Reactive oxygen species (ROS) production, oxidized protein levels, cytosolic superoxide dismutase (Cu/Zn-SOD), and glutathione peroxidase (GPx) activity were measured to evaluate oxidative stress. In addition, viral RNA and prostaglandin (PGE(2)) levels were determined. We observed that ASA treatment decreased ROS production and oxidized protein levels in a time-dependent fashion in both parental and HCV replicon cells with a greater extent in the latter. Similar results were found with PDTC exposure. Average GPx activity was decreased, whereas a striking increase was observed in average cytosolic SOD activity at 48 and 72 h in both cells exposed to ASA, compared with untreated cells. HCV replicon cells showed higher levels of Cu/Zn-SOD expression (mRNA and protein) with ASA treatment (48 and 72 h), whereas NS5A protein levels showed decreased expression. In addition, we found that inhibition of SOD1 expression reversed the effect of ASA. Interestingly, PDTC downregulated HCV-RNA expression (55%) and PGE(2) (60%) levels, imitating ASA exposure. These results suggest that ASA treatment could reduce cellular oxidative stress markers and modify Cu/Zn-SOD expression, a phenomenon that may contribute to the mechanisms involved in HCV downregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号