首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin stimulates glucose transport in adipocytes and muscle by inducing the redistribution of Glut4 from intracellular locations to the plasma membrane. The fusion of Glut4-containing vesicles at the plasma membrane is known to involve the target SNAREs syntaxin 4 and SNAP-23 and the vesicle SNARE VAMP2. Little is known about the initial docking of Glut4 vesicles with the plasma membrane. A recent report has implicated Exo70, a component of the mammalian exocyst complex, in the initial interaction of Glut4 vesicles with the adipocyte plasma membrane. Here, we have examined the role of two other exocyst components, rsec6 and rsec8. We show that insulin promotes a redistribution of rsec6 and rsec8 to the plasma membrane and to cytoskeletal fractions within 3T3-L1 adipocytes but does not modulate levels of these proteins co-localized with Glut4. We further show that adenoviral-mediated overexpression of either rsec6 or rsec8 increases the magnitude of insulin-stimulated glucose transport in 3T3-L1 adipocytes. By contrast, overexpression of rsec6 or rsec8 did not increase the extent of the secretion of adipsin or ACRP30 from adipocytes and had no discernible effect on transferrin receptor traffic. Collectively, our data support a role for the exocyst in insulin-stimulated glucose transport and suggest a model by which insulin-dependent relocation of the exocyst to the plasma membrane may contribute to the specificity of Glut4 vesicle docking and fusion with the adipocyte plasma membrane.  相似文献   

2.
ACRP30 is secreted from 3T3-L1 adipocytes via a Rab11-dependent pathway   总被引:1,自引:0,他引:1  
Adipocytes are now known to secrete a range of adipokines that exhibit distinct biological functions. Here, we sought to understand the secretory pathways utilised by ACRP30 to the surface of adipocytes. We find that ACRP30 overlaps with adipsin in intracellular compartments distinct from Glut4, but nonetheless exhibits insulin-stimulated secretion from cells. Both adipsin and ACRP30 overlap with transferrin receptor-positive membranes, implying that the pathway of secretion involves the transferrin receptor-positive endosomal system. Consistent with this, we show that ablation of endosomes significantly inhibited the secretion of ACRP30, as did treatment of cells with Brefeldin A. In order to further probe the role of recycling endosomes on the secretion of ACRP30, we over-expressed a mutant form of Rab11, Rab11-S25N, in 3T3-L1 adipocytes and found that expression of this mutant significantly reduced basal and insulin-stimulated secretion. We also demonstrate that Arf6 also plays a role in the secretion of ACRP30. Collectively, these data implicate both Arf6 and Rab11 as crucial mediators of constitutive and insulin-stimulated secretion of ACRP30 and further suggest that recycling endosomes may play a central role in this process.  相似文献   

3.
The Glut4 glucose transporter undergoes complex insulin-regulated subcellular trafficking in adipocytes. Much effort has been expended in an attempt to identify targeting motifs within Glut4 that direct its subcellular trafficking, but an amino acid motif responsible for the targeting of the transporter to insulin-responsive intracellular compartments in the basal state or that is directly responsible for its insulin-stimulated redistribution to the plasma membrane has not yet been delineated. In this study we define amino acid residues within the C-terminal cytoplasmic tail of Glut4 that are essential for its insulin-stimulated translocation to the plasma membrane. The residues were identified based on sequence similarity (LXXLXPDEXD) between cytoplasmic domains of Glut4 and the insulin-responsive aminopeptidase (IRAP). Alteration of this putative targeting motif (IRM, insulin-responsive motif) resulted in the targeting of the bulk of the mutant Glut4 molecules to dispersed membrane vesicles that lacked detectable levels of wild-type Glut4 in either the basal or insulin-stimulated states and completely abolished the insulin-stimulated translocation of the mutant Glut4 to the plasma membrane in 3T3L1 adipocytes. The bulk of the dispersed membrane vesicles containing the IRM mutant did not contain detectable levels of any subcellular marker tested. A fraction of the total IRM mutant was also detected in a wild-type Glut4/Syntaxin 6-containing perinuclear compartment. Interestingly, mutation of the IRM sequence did not appreciably alter the subcellular trafficking of IRAP. We conclude that residues within the IRM are critical for the targeting of Glut4, but not of IRAP, to insulin-responsive intracellular membrane compartments in 3T3-L1 adipocytes.  相似文献   

4.
The Akt substrate AS160 (TCB1D4) regulates Glut4 exocytosis; shRNA knockdown of AS160 increases surface Glut4 in basal adipocytes. AS160 knockdown is only partially insulin-mimetic; insulin further stimulates Glut4 translocation in these cells. Insulin regulates translocation as follows: 1) by releasing Glut4 from retention in a slowly cycling/noncycling storage pool, increasing the actively cycling Glut4 pool, and 2) by increasing the intrinsic rate constant for exocytosis of the actively cycling pool (k(ex)). Kinetic studies were performed in 3T3-L1 adipocytes to measure the effects of AS160 knockdown on the rate constants of exocytosis (k(ex)), endocytosis (k(en)), and release from retention into the cycling pool. AS160 knockdown released Glut4 into the actively cycling pool without affecting k(ex) or k(en). Insulin increased k(ex) in the knockdown cells, further increasing cell surface Glut4. Inhibition of phosphatidylinositol 3-kinase or Akt affected both k(ex) and release from retention in control cells but only k(ex) in AS160 knockdown cells. Glut4 vesicles accumulate in a primed pre-fusion pool in basal AS160 knockdown cells. Akt regulates the rate of exocytosis of the primed vesicles through an AS160-independent mechanism. Therefore, there is an additional Akt substrate that regulates the fusion of Glut4 vesicles that remain to be identified. Mathematical modeling was used to test the hypothesis that this substrate regulates vesicle priming (release from retention), whereas AS160 regulates the reverse step by stimulating GTP turnover of a Rab protein required for vesicle tethering/docking/fusion. Our analysis indicates that fusion of the primed vesicles with the plasma membrane is an additional non-Akt-dependent insulin-regulated step.  相似文献   

5.
In 3T3-L1 adipocytes, both insulin and endothelin 1 stimulate glucose transport via translocation of the GLUT4 glucose carrier from an intracellular compartment to the cell surface. Yet it remains uncertain as to whether both hormones utilize identical pathways and to what extent each depends on the heterotrimeric G protein Galphaq as an intermediary signaling molecule. In this study, we used a novel inducible system to rapidly and synchronously activate expression of a dominant inhibitory form of ADP-ribosylation factor 6, ARF6(T27N), in 3T3-L1 adipocytes and assessed its effects on insulin- and endothelin-stimulated hexose uptake. Expression of ARF6(T27N) in 3T3-L1 adipocytes was without effect on the ability of insulin to stimulate either 2-deoxyglucose uptake or the translocation of GLUT4 or GLUT1 to the plasma membrane. However, the same ARF6 inhibitory mutant blocked the stimulation of hexose uptake and GLUT4 translocation in response to either endothelin 1 or an activated form of Galphaq, Galphaq(Q209L). These results suggest that endothelin stimulates glucose transport through a pathway that is distinct from that utilized by insulin but is likely to depend on both a heterotrimeric G protein from the Gq family and the small G protein ARF6. These data are consistent with the interpretation that endothelin and insulin stimulate functionally different pools of glucose transporters to be redistributed to the plasma membrane.  相似文献   

6.
Impaired translocation of the glucose transporter isoform 4 (Glut4) to the plasma membrane in fat and skeletal muscle cells may represent a primary defect in the development of type 2 diabetes mellitus. Glut4 is localized in specialized storage vesicles (GSVs), the biological nature and biogenesis of which are not known. Here, we report that GSVs are formed in differentiating 3T3-L1 adipocytes upon induction of sortilin on day 2 of differentiation. Forced expression of Glut4 prior to induction of sortilin leads to rapid degradation of the transporter, whereas overexpression of sortilin increases formation of GSVs and stimulates insulin-regulated glucose uptake. Knockdown of sortilin decreases both formation of GSVs and insulin-regulated glucose uptake. Finally, we have reconstituted functional GSVs in undifferentiated cells by double transfection of Glut4 and sortilin. Thus, sortilin is not only essential, but also sufficient for biogenesis of GSVs and acquisition of insulin responsiveness in adipose cells.  相似文献   

7.
Insulin stimulates the acute release of adipsin from 3T3-L1 adipocytes   总被引:3,自引:0,他引:3  
The release of adipsin, a serine proteinase with complement factor D activity, from 3T3-L1 adipocytes was measured by quantitative immunoblotting. This protein is secreted constitutively from 3T3-L1 adipocytes, and there is a 2-fold increase in the amount of adipsin released from cells treated with insulin for 1 to 10 min. Longer exposure to insulin had no further effect on the rate of adipsin release. Adipsin does not appear to be anchored by a glycosylphosphatidylinositol moiety, since adipsin which was been released with Triton X-114 from an intracellular membrane fraction partitions into the aqueous phase. Using a previously described procedure for the isolation of vesicles containing the insulin-responsive intracellular glucose transporters (GT vesicles), we show here that these GT vesicles contain an insulin-responsive pool of adipsin. Thus, insulin stimulates the secretion of a soluble protein, adipsin, as well as translocation to the plasma membrane of integral membrane proteins, including the glucose transporter, the transferrin receptors, and the insulin-like growth factor II receptor.  相似文献   

8.
Insulin-stimulates glucose transport in peripheral tissues by stimulating the movement ('translocation') of a pool of intracellular vesicles containing the glucose transporter Glut4 to the cell surface. The fusion of these vesicles with the plasma membrane results in a large increase in the numbers of Glut4 molecules at the cell surface and a concomitant enhancement of glucose uptake. It is well established that proteins of the VAMP- (synaptobrevin) and syntaxin-families play a fundamental role in the insulin-stimulated fusion of Glut4-containing vesicles with the plasma membrane. Studies have identified key roles for vesicle associated membrane protein-2 (VAMP2) and syntaxin-4 in this event, and more recently have also implicated SNAP-23 and Munc18c in this process. In this study, we have quantified the absolute levels of expression of these proteins in murine 3T3-L1 adipocytes, with the objective of determining the stoichiometry of these proteins both relative to each other and also in comparison with previous estimates of Glut4 levels within these cells. To achieve this, we performed quantitative immunoblot analysis of these proteins in 3T3-L1 membranes compared to known amounts of purified recombinant proteins. Such analyses suggest that in 3T3-L1 adipocytes there are approximately 374,000 copies of syntaxin 4, 1.15 x 10(6) copies of SNAP23, 495,000 copies of VAMP2, 4.3 x 10(6) copies of cellubrevin and 452,000 copies of Munc18c per cell, compared to previous estimates of 280,000 copies of Glut4. Thus, the main SNARE proteins involved in insulin-stimulated Glut4 exocytosis (syntaxin 4 and VAMP2) are expressed in approximately equimolar amounts in adipocytes, whereas by contrast the endosomal v-SNARE cellubrevin is present at approximately 10-fold higher levels and the t-SNARE SNAP-23 is also present in an approximately 3-fold molar excess. The implications of this quantification for the mechanism of insulin-stimulated Glut4 translocation are discussed.  相似文献   

9.
Insulin increases the exocytosis of many soluble and membrane proteins in adipocytes. This may reflect a general effect of insulin on protein export from the trans Golgi network. To test this hypothesis, we have compared the trafficking of the secreted serine protease adipsin and the integral membrane proteins GLUT4 and transferrin receptors in 3T3-L1 adipocytes. We show that adipsin is secreted from the trans Golgi network to the endosomal system, as ablation of endosomes using transferrin-HRP conjugates strongly inhibited adipsin secretion. Phospholipase D has been implicated in export from the trans Golgi network, and we show that insulin stimulates phospholipase D activity in these cells. Inhibition of phospholipase D action with butan-1-ol blocked adipsin secretion and resulted in accumulation of adipsin in trans Golgi network-derived vesicles. In contrast, butan-1-ol did not affect the insulin-stimulated movement of transferrin receptors to the plasma membrane, whereas this was abrogated following endosome ablation. GLUT4 trafficking to the cell surface does not utilise this pathway, as insulin-stimulated GLUT4 translocation is still observed after endosome ablation or inhibition of phospholipase D activity. Immunolabelling revealed that adipsin and GLUT4 are predominantly localised to distinct intracellular compartments. These data suggest that insulin stimulates the activity of the constitutive secretory pathway in adipocytes possibly by increasing the budding step at the TGN by a phospholipase D-dependent mechanism. This may have relevance for the secretion of other soluble molecules from these cells. This is not the pathway employed to deliver GLUT4 to the plasma membrane, arguing that insulin stimulates multiple pathways to the cell surface in adipocytes.  相似文献   

10.
The action of insulin to recruit the intracellular GLUT4 glucose transporter to the plasma membrane of 3T3-L1 adipocytes is mimicked by endothelin 1, which signals through trimeric G(alpha)q or G(alpha)11 proteins. Here we report that murine G(alpha)11 is most abundant in fat and that expression of the constitutively active form of G(alpha)11 [G(alpha)11(Q209L)] in 3T3-L1 adipocytes causes recruitment of GLUT4 to the plasma membrane and stimulation of 2-deoxyglucose uptake. In contrast to the action of insulin on GLUT4, the effects of endothelin 1 and G(alpha)11 were not inhibited by the phosphatidylinositol 3-kinase inhibitor wortmannin at 100 nM. Signaling by insulin, endothelin 1, or G(alpha)11(Q209L) also mobilized cortical F-actin in cultured adipocytes. Importantly, GLUT4 translocation caused by all three agents was blocked upon disassembly of F-actin by latrunculin B, suggesting that the F-actin polymerization caused by these agents may be required for their effects on GLUT4. Remarkably, expression of a dominant inhibitory form of the actin-regulatory GTPase ARF6 [ARF6(T27N)] in cultured adipocytes selectively inhibited both F-actin formation and GLUT4 translocation in response to endothelin 1 but not insulin. These data indicate that ARF6 is a required downstream element in endothelin 1 signaling through G(alpha)11 to regulate cortical actin and GLUT4 translocation in cultured adipocytes, while insulin action involves different signaling pathways.  相似文献   

11.
L H Chamberlain 《FEBS letters》2001,507(3):357-361
Lovastatin treatment caused down-regulation of the insulin-responsive glucose transporter 4 (Glut4) and up-regulation of Glut1 in 3T3-L1 adipocytes. These changes in protein expression were associated with a marked inhibition of insulin-stimulated glucose transport. Lovastatin had no effect on cell cholesterol levels, but its effects were reversed by mevalonate, demonstrating that inhibition of isoprenoid biosynthesis causes insulin resistance in 3T3-L1 adipocytes. These findings support the notion that whole body insulin resistance may arise as a result of perturbations in general biochemical pathways, rather than primary defects in insulin signalling.  相似文献   

12.
Syntaxin 6 regulates Glut4 trafficking in 3T3-L1 adipocytes   总被引:2,自引:0,他引:2       下载免费PDF全文
Insulin stimulates the movement of glucose transporter-4 (Glut4)-containing vesicles to the plasma membrane of adipose cells. We investigated the role of post-Golgi t-soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) in the trafficking of Glut4 in 3T3-L1 adipocytes. Greater than 85% of syntaxin 6 was found in Glut4-containing vesicles, and this t-SNARE exhibited insulin-stimulated movement to the plasma membrane. In contrast, the colocalization of Glut4 with syntaxin 7, 8, or 12/13 was limited and these molecules did not translocate to the plasma membrane. We used adenovirus to overexpress the cytosolic domain of these syntaxin's and studied their effects on Glut4 traffic. Overexpression of the cytosolic domain of syntaxin 6 did not affect insulin-stimulated glucose transport, but increased basal deGlc transport and cell surface Glut4 levels. Moreover, the syntaxin 6 cytosolic domain significantly reduced the rate of Glut4 reinternalization after insulin withdrawal and perturbed subendosomal Glut4 sorting; the corresponding domains of syntaxins 8 and 12 were without effect. Our data suggest that syntaxin 6 is involved in a membrane-trafficking step that sequesters Glut4 away from traffic destined for the plasma membrane. We speculate that this is at the level of traffic of Glut4 into its unique storage compartment and that syntaxin 16 may be involved.  相似文献   

13.
To elucidate the involvement of protein kinase C (PKC) isoforms in insulin-induced and phorbol ester-induced glucose transport, we expressed several PKC isoforms, conventional PKC-alpha, novel PKC-delta, and atypical PKC isoforms of PKC-lambda and PKC-zeta, and their mutants in 3T3-L1 adipocytes using an adenovirus-mediated gene transduction system. Endogenous expression and the activities of PKC-alpha and PKC-lambda/zeta, but not of PKC-delta, were detected in 3T3-L1 adipocytes. Overexpression of each wild-type PKC isoform induced a large amount of PKC activity in 3T3-L1 adipocytes. Phorbol 12-myristrate 13-acetate (PMA) activated PKC-alpha and exogenous PKC-delta but not atypical PKC-lambda/zeta. Insulin also activated the overexpressed PKC-delta but not PKC-alpha. Expression of the wild-type PKC-alpha or PKC-delta resulted in significant increases in glucose transport activity in the basal and PMA-stimulated states. Dominant-negative PKC-alpha expression, which inhibited the PMA activation of PKC-alpha, decreased in PMA-stimulated glucose transport. Glucose transport activity in the insulin-stimulated state was increased by the expression of PKC-delta but not of PKC-alpha. These findings demonstrate that both conventional and novel PKC isoforms are involved in PMA-stimulated glucose transport and that other novel PKC isoforms could participate in PMA-stimulated and insulin-stimulated glucose transport. Atypical PKC-lambda/zeta was not significantly activated by insulin, and expression of the wild-type, constitutively active, and dominant-negative mutants of atypical PKC did not affect either basal or insulin-stimulated glucose transport. Thus atypical PKC enzymes do not play a major role in insulin-stimulated glucose transport in 3T3-L1 adipocytes.  相似文献   

14.
15.
ADP-ribosylation factors (ARFs) play important roles in both constitutive and regulated membrane trafficking to the plasma membrane in other cells. Here we have examined their role in insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes. These cells express ARF5 and ARF6. ARF5 was identified in the soluble protein and intracellular membranes; in response to insulin some ARF5 was observed to re-locate to the plasma membrane. In contrast, ARF6 was predominantly localized to the plasma membrane and did not redistribute in response to insulin. We employed myristoylated peptides corresponding to the NH2 termini of ARF5 and ARF6 to investigate the function of these proteins. Myr-ARF6 peptide inhibited insulin-stimulated glucose transport and GLUT4 translocation by approximately 50% in permeabilized adipocytes. In contrast, myr-ARF1 and myr-ARF5 peptides were without effect. Myr-ARF5 peptide also inhibited the insulin stimulated increase in cell surface levels of GLUT1 and transferrin receptors. Myr-ARF6 peptide significantly decreased cell surface levels of these proteins in both basal and insulin-stimulated states, but did not inhibit the fold increase in response to insulin. These data suggest an important role for ARF6 in regulating cell surface levels of GLUT4 in adipocytes, and argue for a role for both ARF5 and ARF6 in the regulation of membrane trafficking to the plasma membrane.  相似文献   

16.
Insulin stimulates adipose cells both to secrete proteins and to translocate the GLUT4 glucose transporter from an intracellular compartment to the plasma membrane. We demonstrate that whereas insulin stimulation of 3T3-L1 adipocytes has no effect on secretion of the alpha3 chain of type VI collagen, secretion of the protein hormone adipocyte complement related protein of 30 kD (ACRP30) is markedly enhanced. Like GLUT4, regulated exocytosis of ACRP30 appears to require phosphatidylinositol-3-kinase activity, since insulin-stimulated ACRP30 secretion is blocked by pharmacologic inhibitors of this enzyme. Thus, 3T3-L1 adipocytes possess a regulated secretory compartment containing ACRP30. Whether GLUT4 recycles to such a compartment has been controversial. We present deconvolution immunofluorescence microscopy data demonstrating that the subcellular distributions of ACRP30 and GLUT4 are distinct and nonoverlapping; in contrast, those of GLUT4 and the transferrin receptor overlap. Together with supporting evidence that GLUT4 does not recycle to a secretory compartment via the trans-Golgi network, we conclude that there are at least two compartments that undergo insulin-stimulated exocytosis in 3T3-L1 adipocytes: one for ACRP30 secretion and one for GLUT4 translocation.  相似文献   

17.
Regulated exocytosis in adipocytes mediates key functions, exemplified by insulin-stimulated secretion of peptides such as adiponectin and recycling of intracellular membranes containing GLUT4 glucose transporters to the cell surface. Using a proteomics approach, the v-SNARE Vti1a (vps10p tail interacting 1a) was identified by mass spectrometry in purified GLUT4-containing membranes. Insulin treatment of 3T3-L1 adipocytes decreased the amounts of both Vti1a and GLUT4 in these membranes, confirming that Vti1a is a component of insulin-sensitive GLUT4-containing vesicles. In the basal state, endogenous Vti1a colocalizes exclusively with perinuclear GLUT4. Although Vti1a has previously been reported to be a v-SNARE localized in the trans-Golgi network, treatment with brefeldin A failed to significantly modify Vti1a or GLUT4 localization while completely dispersing Golgi and trans-Golgi network marker proteins. Furthermore, depletion of Vti1a protein in cultured adipocytes through small interfering RNA-based gene silencing significantly inhibited both adiponectin secretion and insulin-stimulated deoxyglucose uptake. Taken together, these results suggest that the v-SNARE Vti1a may regulate a step common to both GLUT4 and Acrp30 trafficking in 3T3-L1 adipocytes.  相似文献   

18.
Tribbles 3 (TRB3) is a recently recognized atypical inactive kinase that negatively regulates Akt activity in hepatocytes, resulting in insulin resistance. Recent reports link TRB3 to nutrient sensing and regulation of cell survival under stressful conditions. We studied the regulation of TRB3 by glucose, insulin, dexamethasone (Dex), and the unfolded protein response (UPR) in 3T3-L1 adipocytes and in L6 myotubes. In 3T3-L1 adipocytes, incubation in high glucose with insulin did not increase TRB3 mRNA expression. Rather, TRB3 mRNA increased fourfold with glucose deprivation and two- to threefold after incubation with tunicamcyin (an inducer of the UPR). Incubation of cells in no glucose or in tunicamcyin stimulated the expression of CCAAT/enhancer-binding protein homologous protein. In L6 myotubes, absent or low glucose induced TRB3 mRNA expression by six- and twofold, respectively. The addition of Dex to 5 mM glucose increased TRB3 mRNA expression twofold in 3T3-L1 adipocytes but decreased it 16% in L6 cells. In conclusion, TRB3 is not the mediator of high glucose or glucocorticoid-induced insulin resistance in 3T3-L1 adipocytes or L6 myotubes. TRB3 is induced by glucose deprivation in both cell types as a part of the UPR, where it may be involved in regulation of cell survival in response to glucose depletion.  相似文献   

19.
Insulin stimulates the translocation of the glucose transporter GLUT4 from intracellular vesicles to the plasma membrane. In the present study we have conducted a comprehensive proteomic analysis of affinity-purified GLUT4 vesicles from 3T3-L1 adipocytes to discover potential regulators of GLUT4 trafficking. In addition to previously identified components of GLUT4 storage vesicles including the insulin-regulated aminopeptidase insulin-regulated aminopeptidase and the vesicle soluble N-ethylmaleimide factor attachment protein (v-SNARE) VAMP2, we have identified three new Rab proteins, Rab10, Rab11, and Rab14, on GLUT4 vesicles. We have also found that the putative Rab GTPase-activating protein AS160 (Akt substrate of 160 kDa) is associated with GLUT4 vesicles in the basal state and dissociates in response to insulin. This association is likely to be mediated by the cytosolic tail of insulin-regulated aminopeptidase, which interacted both in vitro and in vivo with AS160. Consistent with an inhibitory role of AS160 in the basal state, reduced expression of AS160 in adipocytes using short hairpin RNA increased plasma membrane levels of GLUT4 in an insulin-independent manner. These findings support an important role for AS160 in the insulin regulated trafficking of GLUT4.  相似文献   

20.
Infiltration of immune cells into adipose tissue plays a central role in the pathophysiology of obesity-associated low-grade inflammation. The aim of this study was to analyze the role of adipocyte NF-κB signaling in the regulation of the chemokine/adipokine interferon-γ-induced protein 10 kDa (IP-10) and adipocyte-mediated T cell migration. Therefore, the regulation of IP-10 was investigated in adipose tissue of male C57BL/6J mice, primary human and 3T3-L1 preadipocytes/adipocytes. To specifically block the NF-κB pathway, 3T3-L1 cells stably overexpressing a transdominant mutant of IκBα were generated, and the chemical NF-κB inhibitor Bay117082 was used. Adipocyte-mediated T cell migration was assessed by a migration assay. It could be shown that IP-10 expression was higher in mature adipocytes compared with preadipocytes. Induced IP-10 expression and secretion were completely blocked by an NF-κB inhibitor in 3T3-L1 and primary human adipocytes. Stable overexpression of a transdominant mutant of IκBα in 3T3-L1 adipocytes led to an inhibition of basal and stimulated IP-10 expression and secretion. T cell migration was induced by 3T3-L1 adipocyte-conditioned medium, and both basal and induced T cell migration was strongly inhibited by stable overexpression of a transdominant IκBα mutant. In addition, with the use of an anti-IP-10 antibody, a significant decrease of adipocyte-induced T cell migration was shown. In conclusion, in this study, we could demonstrate that the NF-κB pathway is essential for the regulation of IP-10 in 3T3-L1 and primary human adipocytes. Adipocytes rather than preadipocytes contribute to NF-κB-dependent IP-10 expression and secretion. Furthermore, NF-κB-dependent factors and especially IP-10 represent novel signals from adipocytes to induce T cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号