首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As human land uses expand across the landscape, the management practices of private landowners are an essential part of effective conservation. Early successional habitats (ESH) and the species that depend on them are a priority in the eastern United States, and efforts to create ESH on private lands has primarily focused on forest landowners and timber harvests. Private pasture lands in a forested landscape present an additional opportunity to create and maintain ESH, yet our understanding of landowner values and attitudes about management strategies in pastures is lacking. To address this, we surveyed private landowners in 5 Virginia counties who own ≥10.1 ha at >610 m elevation (n = 503). Our primary objective was to understand how a variety of factors such as landowner values, past experience with habitat management, and perceived barriers to carrying out habitat management are associated with private landowner intention to carry out 7 ESH management strategies (i.e., reduced mowing, reduced grazing, timber harvests within forest, timber harvests at a field-forest border, prescribed fire, use of machinery, and use of herbicides to control invasive species) for the benefit of wildlife in the next 5 years. We used boosted regression trees to determine which factors best predicted the intention to carry out each management strategy. We were able to predict accuracy >75% of the time for landowner intention to engage in open pasture and timber management strategies. Landowner values were not consistent across the different management strategies; landowners likely to reduce mowing or grazing valued ecological aspects of their land (e.g., pollinator habitat, water quality), whereas landowners likely to harvest timber valued hunting and revenue. Past experience with wildlife management was the strongest predictor of likelihood to reduce mowing and grazing. Our results suggest that expanding outreach efforts to include pasture management options would engage a broader set of landowners in creating ESH, especially if such efforts highlighted the benefits to pollinator species, water quality, and enhanced opportunities for hunting and other types of recreation. © 2021 The Wildlife Society.  相似文献   

2.
The effects of habitat fragmentation on birds have often been studied in forest specialist species. Here we aimed at comparing the response of open habitat birds within a range of habitat specialization. The study area was a Mediterranean pseudo-steppe, designated as important for conservation yet fragmented by tree encroachment. We defined bird species dependency on steppe-like habitat by a correspondence analysis, allowing us to distinguish between specialists, generalists and scrubland species. We studied species abundance in relation to fragment area, testing whether species representation in fragments differed from those in continuous habitat. This analysis showed a contrasted response to fragment size between “open habitat” specialist species and generalist ones. Open habitat species were under-represented in the smallest fragments, while generalist were over-represented in small fragments in comparison to their distribution in continuous habitats. We discuss how these results can be linked to species habitat requirements. We find that scrubland species seem to be favoured by encroachment of woody vegetation, as they are able to explore and use the wooded matrix; however specialist species are restricted to open patches and are sensitive to a reduction in patch size. This allows us to predict how different species can exhibit a different sensitivity to habitat fragmentation.  相似文献   

3.
The boreal mixed-wood forest of northern Alberta. Canada is characterized by a mosaic of deciduous and coniferous forest patches. Recently, the deciduous portion of the forest was allocated for industrial logging. Widespread habitat loss and fragmentation may negatively affect birds and other wildlife. Most research on the effects of habitat loss on bird abundance has focussed on the forest as a patch or island in a matrix of non-habitat, but some species of songbird may use both the forest patch and the matrix. We hypothesized that some species of songbird might be able to compensate for a loss of deciduous forest by moving into other habitat types (termed "habitat compensation"). We report on a replicated field investigation in which we assessed the response of songbirds to commercial timber harvest by first examining their abundance within deciduous forest only, and then adding the clearcuts and coniferous forest in the surrounding areas to the analysis for a broader, landscape view of the system. Bird communities in deciduous and coniferous habitats had significant overlap in species composition: there was less overlap between forest and clearcuts. The shift from patch-centred to landscape sampling altered our interpretation of over half of the most common species' responses to logging in at least one year, suggesting that habitat compensation may have been occurring. However, significant variation in responses of species was observed between the two study areas. Our past reliance on island biogeographic and other single habitat approaches may be inappropriate for this system, and we stress that a broad, landscape view is required to properly assess and interpret species' responses to habitat loss and fragmentation.  相似文献   

4.
Timber harvesting has been shown to have both positive and negative effects on forest dwelling species. We examined the immediate effects of timber harvests (clearcuts and group selection openings) on ectotherm behavior, using the eastern box turtle as a model. We monitored the movement and thermal ecology of 50 adult box turtles using radiotelemetry from May-October for two years prior to, and two years following scheduled timber harvests in the Central Hardwoods Region of the U.S. Annual home ranges (7.45 ha, 100% MCP) did not differ in any year or in response to timber harvests, but were 33% larger than previous estimates (range 0.47-187.67 ha). Distance of daily movements decreased post-harvest (from 22 m±1.2 m to 15 m±0.9 m) whereas thermal optima increased (from 23±1°C to 25±1°C). Microclimatic conditions varied by habitat type, but monthly average temperatures were warmer in harvested areas by as much as 13°C. Animals that used harvest openings were exposed to extreme monthly average temperatures (~40°C). As a result, the animals made shorter and more frequent movements in and out of the harvest areas while maintaining 9% higher body temperatures. This experimental design coupled with radiotelemetry and behavioral observation of a wild ectotherm population prior to and in response to anthropogenic habitat alteration is the first of its kind. Our results indicate that even in a relatively contiguous forested landscape with small-scale timber harvests, there are local effects on the thermal ecology of ectotherms. Ultimately, the results of this research can benefit the conservation and management of temperature-dependent species by informing effects of timber management across landscapes amid changing climates.  相似文献   

5.
Pine plantations established on former heathland are common throughout Western Europe and North America. Such areas can continue to support high biodiversity values of the former heathlands in the more open areas, while simultaneously delivering ecosystem services such as wood production and recreation in the forested areas. Spatially optimizing wood harvest and recreation without threatening the biodiversity values, however, is challenging. Demand for woody biomass is increasing but other pressures on biodiversity including climate change, habitat fragmentation and air pollution are intensifying too. Strategies to spatially optimize different ecosystem services with biodiversity conservation are still underexplored in the research literature. Here we explore optimization scenarios for advancing ecosystem stewardship in a pine plantation in Belgium. Point observations of seven key indicator species were used to estimate habitat suitability using generalized linear models. Based on the habitat suitability and species’ characteristics, the spatially-explicit conservation value of different forested and open patches was determined with the help of a spatially-explicit conservation planning tool. Recreational pressure was quantified by interviewing forest managers and with automated trail counters. The impact of wood production and recreation on the conservation of the indicator species was evaluated. We found trade-offs between biodiversity conservation and both wood production and recreation, but were able to present a final scenario that combines biodiversity conservation with a restricted impact on both services. This case study illustrates that innovative forest management planning can achieve better integration of the delivery of different forest ecosystem services such as wood production and recreation with biodiversity conservation.  相似文献   

6.
To integrate multiple uses (mature forest and commodity production) better on forested lands, timber management strategies that cluster harvests have been proposed. One such approach clusters harvest activity in space and time, and rotates timber production zones across the landscape with a long temporal period (dynamic zoning). Dynamic zoning has been shown to increase timber production and reduce forest fragmentation by segregating uses in time without reducing the spatial extent of timber production. It is reasonable to wonder what the effect of periodic interruptions in the implementation of such as strategy might be, as would be expected in a dynamic political environment. To answer these questions, I used a timber harvest simulation model (HARVEST) to simulate a dynamic zoning harvest strategy that was periodically interrupted by changes in the spatial dispersion of harvests, by changes in timber production levels, or both. The temporal scale (period) of these interruptions had impacts related to the rate at which the forest achieved canopy closure after harvest. Spatial dynamics in harvest policies had a greater effect on the amount of forest interior and edge than did dynamics in harvest intensity. The periodically clustered scenarios always produced greater amounts of forest interior and less forest edge than did their never clustered counterparts. The results suggest that clustering of harvests produces less forest fragmentation than dispersed cutting alternatives, even in the face of a dynamic policy future. Although periodic episodes of dispersed cutting increased fragmentation, average and maximum fragmentation measures were less than if clustered harvest strategies were never implemented. Clustering may also be useful to mitigate the fragmentation effects of socially mandated increases in timber harvest levels. Implementation of spatial clustering during periods of high timber harvest rates reduced the variation in forest interior and edge through time, providing a more stable supply of forest interior habitat across the landscape. Received 19 September 1997; accepted 6 August 1998.  相似文献   

7.
Understory light environments change rapidly following timber harvest, and while many understory species utilize and benefit from the additional light, this response is not ubiquitous in shade-obligate species. I examined the effects of patch cut timber harvest on the physiology and growth of an obligate forest understory species to determine if disturbances via timber harvest are physiological stressors or whether such disturbances provide physiological benefits and growth increases in understory species. Forest canopy structure, along with photosynthesis, respiration, water use efficiency, stomatal conductance, and growth rates of American ginseng were quantified one summer before and two summers after patch cut timber harvest. Survival following timber harvest was lower than that observed at undisturbed populations; however, growth of survivors increased post-harvesting, with growth increasing as a function of canopy openness. Light response curves as well as photosynthesis and respiration rates indicated that plants were not well acclimated to higher light levels in the growing season after timber harvest, but rather to two growing seasons after harvest. Relative growth rate formed a positive linear relationship with maximum photosynthesis following timber harvest. My study suggests that ginseng is a “slow opportunist”, because while it benefits from sudden light increases, acclimation lags at least one growing season behind canopy changes. American ginseng is surprisingly resilient in the face of a discrete environmental shift and may benefit from forest management strategies that mimic the natural disturbance regimes common in mature forests throughout its range.  相似文献   

8.
In tropical and subtropical forests there is limited information about how to integrate sustainable timber management with the conservation of biodiversity. We examined the effect of selective logging on the bird community to help develop management guidelines to assure the conservation of biodiversity in forests managed for timber production. The study design consisted of control and harvested plots in piedmont and cloud forests of the subtropical montane forests of the Andes in northwestern Argentina. We conducted bird point-count surveys combined with distance estimation. Breeding season bird community composition was more similar between control and logged forest in both the cloud forest and piedmont, than between the two elevations, probably because Neotropical bird communities change dramatically along elevational gradients. Within each elevation zone, community composition changed significantly between harvested and control forests. Both between and within each elevation zone no significant differences in bird density were detected. Similarly, when we analyzed bird density according to diet guilds no general pattern could be extracted. However, we found a significantly greater density of cavity nesters and lower of non-cavity nesters in control plots, probably because most trees that can develop suitable cavities were extracted in logged plots and these plots had a greater structural diversity enabling more nesting resources. Grouping species according to their nesting habitat requirements has rarely been used in the neotropics and other tropical and subtropical forests, but focusing management attention on cavity nesters might address the most sensitive portion of the avian community as well as other species dependent on trees likely to hold cavities.  相似文献   

9.
Abstract: We used a 60-yr forest simulation of the Cherokee National Forest, Tennessee, USA, to model the effects of timber harvest and natural disturbance upon habitat availability for 6 songbird species: Acadian flycatcher (Epidonax virescens), blue-headed vireo (Vireo solitarius), chestnut-sided warbler (Dendroica pensylvanica), tufted titmouse (Parus bicolor), yellow-billed cuckoo (Coccyzus americanus), and yellow-throated warbler (Dendroica dominica). Forest simulations, based on expected harvest intensities and historic levels of natural disturbance, were used to update a stand inventory database at 10-yr intervals between 1993 and 2053. Habitat models for the 6 bird species were applied to the updated stand inventory and available habitat quantified for each decade. Late-successional species showed substantial increases in habitat availability over the 60-yr period at most harvest intensities, whereas habitat for early-successional species was stable or declined at most harvest intensities. Acadian flycatcher, yellow-throated warbler, and blue-headed vireo habitat increased by 200%, 213%, and 40%, respectively, whereas tufted titmouse habitat remained relatively constant at expected harvest levels. Chestnut-sided warbler habitat was stable at expected harvest levels but declined at lower harvest intensities, and yellow-billed cuckoo habitat declined by 37% at expected harvest levels. Natural disturbance had little effect on habitat availability for any bird species compared to the effects of timber harvests and increasing forest age. Our models suggest that anthropogenic disturbance, and lack thereof, can play a definitive role determining habitat availability and population viability for forest songbirds.  相似文献   

10.
Forest loss and degradation are the most significant threats to terrestrial biodiversity in the tropics. Promoting flagship or umbrella species is a strategy that can be used to conserve intact forests and restore degraded ecosystems, conserve biodiversity, and achieve sustainable development goals. The Bale monkey (Chlorocebus djamdjamensis) is an arboreal, forest-dwelling, threatened primate restricted to a small range in the southern Ethiopian Highlands, which relies mostly on a single species of bamboo (Arundinaria alpina) and prefers bamboo forest habitat. Most of the Bale monkey’s range lies outside protected areas and most of its historical bamboo forest habitat is degraded or destroyed. The conservation of Bale monkeys and bamboo is highly inter-dependent; however, the value of using the Bale monkey as a flagship or umbrella species for forest restoration has not been evaluated. Here we use geographic range overlap and geospatial modeling to evaluate Bale monkeys as a flagship and/or umbrella species. We also assess if conservation intervention on behalf of Bale monkeys can help restore bamboo forest, while simultaneously providing a wide range of socioeconomic and environmental benefits. We found that Bale monkeys share their range with 52 endemic and/or threatened vertebrate species and at least 9 endemic and/or threatened plant species. Our results show that Bale monkeys meet both the flagship and umbrella species criteria to restore bamboo forest and conserve threatened co-occurring species. Since bamboo is fast-growing and can be harvested every year, we suggest that a science-based sustainable harvest and management regime for bamboo would help to improve the livelihood of both the local community and Ethiopians in general without significantly affecting the long-term survival of Bale monkeys and regional biodiversity. Further, a conservation management strategy protecting and restoring bamboo forest has the potential to achieve at least six of the 17 United Nations Sustainable Development Goals.  相似文献   

11.
The main goal of Natura 2000 network is to guarantee the favourable conservation status of habitats and species ensuring European biodiversity. As a result, certain forest areas have been included in this network listed as 9230-Quercus pyrenaica habitat and 9340-Quercus ilex subsp. rotundifolia forest habitat. These areas were previously used for firewood extraction or livestock grazing and browsing. Nowadays these habitats are coppice forests with asexual regeneration, which is far from the desired conservation status. Traditional timber harvesting plans do not take account of the new objectives required for these Natura sites, which attempt to ensure biodiversity and recreational uses instead of simply focusing on timber production. This paper proposes a flexible methodology (applied to the study area “Dehesa Boyal” in ávila, Spain) for managing Natura 2000 forest sites by stands for sustainable forest management and the new requirements. The methodology has two phases. The first, “Division of the forest area into stands”, defines homogeneous patches of vegetation distinct in species composition, physiognomic structure and future management. The second, “Conservation status assessment of stands”, quantifies the conservation status of each previously classified stand considering a series of factors such as: functional health, restoration, floral richness and structure. A total value integrating the conservation status of stands is then calculated for the habitat. Both phases use Geographic Information System tools for managing information and visualizing results. The proposed methodology provides forest managers with a good knowledge of the territory and subsequently enables them to take appropriate conservation measures to maintain biodiversity.  相似文献   

12.
Mature forests have structural habitat features that can take hundreds of years to develop, and large reserves alone are unlikely to ensure conservation of the species that rely on these features. This paper outlines a proposed new approach to managing mature forest features, the ‘mature habitat management approach’, in areas outside of reserves. The objective was to maintain a network of current and future mature forest habitat distributed across the landscape. The approach is designed to complement the existing reserve network and management actions and is tenure‐blind. Spatial information on the availability of mature forest habitat at the local (1‐km radius) and landscape (5‐km radius) scales is used for decisions on retention within a 1‐km radius of a harvest area, to reach the minimum target of 20% and 30% retention of mature forest at the local and landscape spatial scales, respectively. We believe this approach could contribute to meeting the conservation needs of many species that require mature forest features for refuge and breeding in Tasmania and elsewhere.  相似文献   

13.
Lowland rainforests on Borneo are being degraded and lost at an alarming rate. Studies on mammals report species responding in various ways to habitat changes that occur in commercial forestry concessions. Here we draw together information on the relationship between the ecological, evolutionary, and biogeographic characteristics of selected Bornean non-volant mammals, and their response to timber harvesting and related impacts. Only a minority of species show markedly reduced densities after timber harvesting. Nonetheless there are many grounds for concern as various processes can, and often do, reduce the viability of wildlife populations. Our review of what we know, and of current understanding, helps predict mammalian dynamics and subsequent mammal-induced ecosystem changes in logged forests. We identify groups of mammal species that, although largely unstudied, are unlikely to tolerate the impacts associated with timber harvesting. On a positive note we find and suggest many relatively simple and low-cost ways in which concession management practices might be modified so as to improve the value of managed forests for wildlife conservation. Improving forest management can play a vital role in maintaining the rich biodiversity of Borneo’s tropical rain forests.  相似文献   

14.
《Biotropica》2017,49(3):346-354
Afromontane landscapes are typically characterized by a mosaic of smallholder farms and the biodiversity impacts of these practices will vary in accordance to local management and landscape context. Here, we assess how tropical butterfly diversity is maintained across an agricultural landscape in the Jimma Highlands of Ethiopia. We used transect surveys to sample understory butterfly communities within degraded natural forest, semi‐managed coffee forest (SMCF), exotic timber plantations, open woodland, croplands and pasture. Surveys were conducted in 29 one‐hectare plots and repeated five times between January and June 2013. We found that natural forest supports higher butterfly diversity than all agricultural plots (measured with Hill's numbers). SMCF and timber plantations retain relatively high abundance and diversity, but these metrics drop off sharply in open woodland, cropland and pasture. SMCF and timber plantations share the majority of their species with natural forest and support an equivalent abundance of forest‐dependent species, with no increase in widespread species. There was some incongruence in the responses of families and sub‐families, notably that Lycaenidae are strongly associated with open woodland and pasture. Adult butterflies clearly utilize forested agricultural practices such as SMCF and timber plantations, but species diversity declines steeply with distance from natural forest suggesting that earlier life‐stages may depend on host plants and/or microclimatic conditions that are lost under agricultural management. From a management perspective, the protection of natural forest remains a priority for tropical butterfly conservation, but understanding functioning of the wider landscape mosaic is important as SMCF and timber plantations may act as habitat corridors that facilitate movement between forest fragments.  相似文献   

15.
Habitat loss and fragmentation are major threats to the conservation of nonhuman primates. Given that species differ in their responses to fragmented landscapes, identifying the factors that enable them to cope with altered environments or that cause their extirpation is critical to design conservation management strategies. Howler monkeys (Alouatta spp.) are good models for studying the strategies of tolerant arboreal taxa and how they cope with spatial restriction, because they live in habitats ranging from vast pristine forests to small disturbed fragments and orchards. While some aspects of their ecology and behavior are conserved, others vary in predictable ways in response to habitat shrinking and decreasing resource availability. We argue that the ability of individual howler monkeys to inhabit low-quality environments does not guarantee the long-term persistence of the small populations that live under these conditions. Their local extirpation explains why few forest fragments below a given area threshold are frequently inhabited in landscapes where recolonization and gene flow are compromised by long isolation distances or less permeable matrices. In sum, howlers’ ability to cope with habitat restriction at the individual level in the short-term may mask the inevitable fate of isolated populations, thereby compromising the persistence of the species at a regional scale in the long-term if howlers’ need for protection in large forests is undervalued.  相似文献   

16.
Industrial timber plantations severely impact biodiversity in Southeast Asia. Forest fragments survive within plantations, but their conservation value in highly deforested landscapes in Southeast Asia is poorly understood. In this study, we compared bird assemblages in acacia plantations and fragmented forests in South Sumatra to evaluate each habitat’s potential conservation value. To clarify the impact of habitat change, we also analyzed the response of feeding guild composition. Five habitat types were studied: large logged forest (LLF), burnt logged forest (BLF), remnant logged forest (RLF), 4-year-old acacia plantation (AP4), and 1-year-old acacia plantation (AP1). Estimated species richness (Chao 2) was highest in LLF then AP4 and BLF, while AP1 and RLF had lower estimated species richness. Community composition was roughly divided into two groups by non-metric multidimensional scaling ordination: acacia plantation and logged forest. Sallying substrate-gleaning insectivores, such as drongos, broadbills, and some flycatchers, were restricted to LLF, whereas acacia plantation hosted many terrestrial frugivores, such as doves. Although fragmented forests in our study site lacked several common tropical forest species, these fragments provide an important habitat for some sallying and terrestrial insectivores. A network of small riparian remnant forests could be a complementary habitat for some species, while the conservation value of burnt forest might be low. In conclusion, the highly fragmented forests in plantations are suboptimal habitats for birds but are still very important, because large primary forest blocks have been nearly lost in the surrounding landscape.  相似文献   

17.
18.
Habitat loss and fragmentation are the leading causes of species’ declines and extinctions. A key component of studying population response to habitat alteration is to understand how fragmentation affects population connectivity in disturbed landscapes. We used landscape genetic analyses to determine how habitat fragmentation due to timber harvest affects genetic population connectivity of the coastal tailed frog (Ascaphus truei), a forest-dwelling, stream-breeding amphibian. We compared rates of gene flow across old-growth (Olympic National Park) and logged landscapes (Olympic National Forest) and used spatial autoregression to estimate the effect of landscape variables on genetic structure. We detected higher overall genetic connectivity across the managed forest, although this was likely a historical signature of continuous forest before timber harvest began. Gene flow also occurred terrestrially, as connectivity was high across unconnected river basins. Autoregressive models demonstrated that closed forest and low solar radiation were correlated with increased gene flow. In addition, there was evidence for a temporal lag in the correlation of decreased gene flow with harvest, suggesting that the full genetic impact may not appear for several generations. Furthermore, we detected genetic evidence of population bottlenecks across the Olympic National Forest, including at sites that were within old-growth forest but surrounded by harvested patches. Collectively, this research suggests that absence of forest (whether due to natural or anthropogenic changes) is a key restrictor of genetic connectivity and that intact forested patches in the surrounding environment are necessary for continued gene flow and population connectivity.  相似文献   

19.
ABSTRACT Effects of silvicultural activities on birds are of increasing interest because of documented national declines in breeding bird populations for some species and the potential that these declines are in part due to changes in forest habitat. Silviculturally induced disturbances have been advocated as a means to achieve suitable forest conditions for priority wildlife species in bottomland hardwood forests. We evaluated how silvicultural activities on conservation lands in bottomland hardwood forests of Louisiana, USA, influenced species-specific densities of breeding birds. Our data were from independent studies, which used standardized point-count surveys for breeding birds in 124 bottomland hardwood forest stands on 12 management areas. We used Program DISTANCE 5.0, Release 2.0 (Thomas et al. 2006) to estimate density for 43 species with >50 detections. For 36 of those species we compared density estimates among harvest regimes (individual selection, group selection, extensive harvest, and no harvest). We observed 10 species with similar densities in those harvest regimes compared with densities in stands not harvested. However, we observed 10 species that were negatively impacted by harvest with greater densities in stands not harvested, 9 species with greater densities in individual selection stands, 4 species with greater densities in group selection stands, and 4 species with greater densities in stands receiving an extensive harvest (e.g., >40% canopy removal). Differences in intensity of harvest influenced densities of breeding birds. Moreover, community-wide avian conservation values of stands subjected to individual and group selection, and stands not harvested, were similar to each other and greater than that of stands subjected to extensive harvest that removed >40% canopy cover. These results have implications for managers estimating breeding bird populations, in addition to predicting changes in bird communities as a result of prescribed and future forest management practices.  相似文献   

20.
Studies on the ecological impacts of non‐timber forest products (NTFP) harvest reveal that plants are often more resilient to fruit and seed harvest than to bark and root harvest. Several studies indicate that sustainable fruit harvesting limits can be set very high (>80% fruit harvesting intensity). For species with clonal and sexual reproduction, understanding how fruit harvest affects clonal reproduction can shed light on the genetic risks and sustainability of NTFP harvest. We studied 18 populations of a gallery forest tree, Pentadesma butyracea (Clusiaceae), to test the impact of fruits harvest, climate and habitat size (gallery forest width) on the frequency of sexual or clonal recruitment in Benin, West Africa. We sampled populations in two ecological regions (Sudanian and Sudano‐Guinean) and in each region, we selected sites with low, moderate and high fruit harvesting intensities. These populations were selected in gallery forests with varying width to sample the natural variation in P. butyracea habitat size. Heavily harvested populations produced significantly less seedlings but had the highest density and proportion of clonal offspring. Our study suggests that for plant species with dual reproductive strategy (via seeds and clonal), fruit harvesting and associated disturbances that come with it can lead to an increase in the proportion of clonal offspring. This raises the issue that excessive fruit harvest by increasing the proportion of clonal offspring to the detriment of seed originated offspring may lead to a reduction in genetic diversity with consequence on harvested species capability to withstand environmental stochasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号