首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have determined the nucleotide sequence of the gene encoding thermostable L-2-halo acid dehalogenase (L-DEX) from the 2-chloroacrylate-utilizable bacterium Pseudomonas sp. strain YL. The open reading frame consists of 696 nucleotides corresponding to 232 amino acid residues. The protein molecular weight was estimated to be 26,179, which was in good agreement with the subunit molecular weight of the enzyme. The gene was efficiently expressed in the recombinant Escherichia coli cells: the amount of L-DEX corresponds to about 49% of the total soluble proteins. The predicted amino acid sequence showed a high level of similarity to those of L-DEXs from other bacterial strains and haloacetate dehalogenase H-2 from Moraxella sp. strain B (38 to 57% identity) but a very low level of similarity to those of haloacetate dehalogenase H-1 from Moraxella sp. strain B (10%) and haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 (12%). By searching the protein amino acid sequence database, we found two E. coli hypothetical proteins similar to the Pseudomonas sp. strain YL L-DEX (21 to 22%).  相似文献   

2.
3.
涂火林  李淑琴 《遗传学报》1998,25(6):551-558
通过同源重组将编码异源抗原的DNA整合到减毒的鼠伤寒沙门氏菌的染色体上,获得了表达霍乱毒素B亚单位(CTB)的双价活疫苗候选株。该系统包括两个步骤:首先将GisOG缺失突变的DNA片段整合进鼠伤寒沙门氏菌疫苗候选株SL3261的染色体上,得到His营养缺陷型。然后,用带有CTB抗原基因的完整HisOGDNA片段置换HisOG缺失的DNA片段,获得表达CTB的His回复的SL3261菌株(命名为TT201)。Southern杂交证明,TT201菌株的染色体带有CTB抗原基因。Westernblot分析表明,TT201菌株能表达CTB,且具有很好的稳定性。用重组菌株口服免疫接种小鼠,能够激发抗CTB抗体的产生。TT201菌株是一种潜在的双价疫苗候选株。  相似文献   

4.
Bordetella pertussis contains two genes encoding the serospecific fimbrial subunit proteins 2 and 3 which are assembled into completed fimbriae, which elicit the formation of agglutinating antibodies. Expression of these agglutinogens can vary independently of each other. A gene library from a B. pertussis strain (fimbrial serotype 0.3) was probed with an oligonucleotide probe specific for fimbrial subunit genes. Three homologous genetic loci were identified; an active fim 3 gene, an inactive fim 2 gene and an unknown fim-homologous region. The fim 3 gene carried on a cosmid produced agglutinating fimbrial structures in B. parapertussis and in variants of B. pertussis which had lost the capacity to produce the agglutinogen. This indicated that cis-acting factors are associated with serotype variation in B. pertussis rather than the production of trans-acting repressor molecules.  相似文献   

5.
疟疾是当今最需要研究有效疫苗的主要传染病之一。AWTE基因编码恶性疟原虫多种抗原表位基因 ,CTB基因编码霍乱毒素 B亚基 ,是一种既能引起细胞免疫又能引起体液免疫的免疫载体和佐剂。把 AWTE- CTB融合基因构建到植物表达载体 p BVG- ny2上 ,通过基因枪导入法 ,转化大豆幼胚分生组织。 X- glu染色检测到 GUS基因的表达 ;抗原性分析实验结果表明 ,特异表达的融合蛋白可与 CTB和 AWTE抗体结合 ,具有 CTB抗原性。这个实验结果 ,表明疟疾多抗原表位基因首次在转基因大豆幼胚中得到瞬时表达  相似文献   

6.
In the yeast Saccharomyces cerevisiae, three genes TPK1, TPK2, and TPK3 encode catalytic subunits of cAMP-dependent protein kinase. We have purified and characterized the catalytic subunit, C1, encoded by the TPK1 gene. In order to purify C1 completely free of C2 and C3, a strain was constructed that contained only the TPK1 gene and genetic disruptions of the other two TPK genes. The cellular level of C1 was increased by expressing the genes for C1 (TPK1) and yeast regulatory subunit (BCY1) on multiple copy plasmids within this strain. Purification was accomplished by a two-column procedure in which holoenzyme was chromatographed on Sephacryl-200, then bound to an anti-regulatory subunit immunoaffinity column. Pure C1 was released from the antibody column by addition of cAMP. The protein migrated on a sodium dodecyl sulfate-polyacrylamide gel with an Mr of 52,000. Kinetic analysis showed that the apparent Km for ATP and Leu-Arg-Arg-Ala-Ser-Leu-Gly was 33 and 101 microM, respectively. The kcat was determined to be 640 min-1. The protein weakly autophosphorylated, incorporating less than 0.1 mol of phosphate/mol of catalytic subunit. NH2-terminal sequencing revealed that the protein was blocked.  相似文献   

7.
The small subunit of iron-dependent ribonucleotide reductases contains a stable organic free radical, which is essential for enzyme activity and which is localized to a tyrosine residue. Tyrosine-122 in the B2 subunit of Escherichia coli ribonucleotide reductase has been changed into a phenylalanine. The mutation was introduced with oligonucleotide-directed mutagenesis in an M13 recombinant and verified by DNA sequencing. Purified native and mutant B2 protein were found to have the same size, iron content and iron-related absorption spectrum. The sole difference observed is that the mutant protein lacks tyrosyl radical and enzymatic activity. These results identify Tyr122 of E. coli protein B2 as the tyrosyl radical residue. An expression vector was constructed for manipulation and expression of ribonucleotide reductase subunits. It contains the entire nrd operon with its own promoter in a 2.3-kb fragment from pBR322. Both the B1 and the B2 subunits were expressed at a 25-35 times higher level as compared to the host strain.  相似文献   

8.
Three cDNA clones comprising the VP8 subunit of the VP4 of human rotavirus strain KU (VP7 serotype G1; VP4 serotype P1A) G1 were constructed. The corresponding encoded peptides were designated according to their locations in the VP8 subunit as A (amino acids 1 to 102), B (amino acids 84 to 180), and C (amino acids 150 to 246 plus amino acids 247 to 251 from VP5). In addition, cDNA clones encoding peptide B of the VP8 subunit of the VP4 gene from human rotavirus strains DS-1 (G2; P1B) and 1076 (G2; P2) were also constructed. These DNA fragments were inserted into plasmid pGEMEX-1 and expressed in Escherichia coli. Western immunoblot analysis using antisera to rotavirus strains KU (P1A), Wa (P1A), DS-1 (P1B), 1076 (P2), and M37 (P2) demonstrated that peptides A and C cross-reacted with heterotypic human rotavirus VP4 antisera, suggesting that these two peptides represent conserved epitopes in the VP8 subunit. In contrast, peptide B appears to be involved in the VP4 serotype and subtype specificities, because it reacted only with the corresponding serotype- and subtype-specific antiserum. Antiserum raised against peptide A, B, or C of strain KU contained a lower level of neutralizing activity than did that induced by the entire VP8 subunit. In addition, the serotype-specific neutralizing activity of anti-KU VP8 serum was ablated after adsorption with the KU VP8 protein but not with a mixture of peptides A, B, and C of strain KU, suggesting that most of the serotype-specific epitopes in the VP8 subunit are conformational and are dependent on the entire amino acid sequence of VP8.  相似文献   

9.
通过全化学法按大肠杆菌密码偏性合成了乙肝炎病毒(HBV)前S2抗原(PreS2)抗原决定簇基因,与霍乱毒素B亚基基因的3’端融合。重组质粒转化大肠杆菌后融合基因得到高效表达,表达量达30μg/mL,表达产物95%以上分泌到胞外。表达的融合蛋白能与神经节苷脂GM1结合,说明融合蛋白保持了霍乱毒素B亚基(CTB)的基本高级结构和生物学功能;酶联免疫吸附实验证明融合蛋白具有CTB和HBVPreS2的抗原性;应用亲和层析纯化后得到了电泳纯融合蛋白制品,为研究融合蛋白免疫原性并进一步构建基因工程肽苗奠定了基础。  相似文献   

10.
In the vast majority of eukaryotic organisms, the mitochondrial cox2 gene encodes subunit II of cytochrome c oxidase (COX2). However, in some lineages including legumes and chlorophycean algae, the cox2 gene migrated to the nucleus. Furthermore, in chlorophycean algae, this gene was split in two different units. Thereby the COX2 subunit is encoded by two independent nuclear genes, cox2a and cox2b, and mitochondria have to import the cytosol-synthesized COX2A and COX2B subunits and assemble them into the cytochrome c oxidase complex. In the chlorophycean algae Chlamydomonas reinhardtii and Polytomella sp., the COX2A precursor exhibits a long (130-140 residues), cleavable mitochondrial targeting sequence (MTS). In contrast, COX2B lacks an MTS, suggesting that mitochondria use different mechanisms to import each subunit. Here, we explored the in vitro import processes of both, the Polytomella sp. COX2A precursor and the COX2B protein. We used isolated, import-competent mitochondria from this colorless alga. Our results suggest that COX2B is imported directly into the intermembrane space, while COX2A seems to follow an energy-dependent import pathway, through which it finally integrates into the inner mitochondrial membrane. In addition, the MTS of the COX2A precursor is eliminated. This is the first time that the in vitro import of split COX2 subunits into mitochondria has been achieved.  相似文献   

11.
黄莺  刘珊  杨鹏  杜韫  孙志伟  俞炜源 《生物工程学报》2009,25(10):1532-1537
为了表达日本脑炎病毒囊膜蛋白(E蛋白)结构域DⅢ区,了解其作为亚单位疫苗的可能性,本研究根据SA14-14-2病毒株序列(GenBank Accession No.D90195)设计两条引物,以全长JEV感染性克隆pBR-JTF为模板,通过PCR扩增出JEVE蛋白DⅢ的cDNA片段,构建了原核表达载体pET-JEDⅢ,转化大肠杆菌Rosetta(DE3)进行融合表达。融合蛋白为可溶性表达,表达量约占菌体蛋白的75%。用纯化后蛋白免疫新西兰兔和BALB/C鼠,通过ELISA,Western blotting,噬斑减少实验,及乳鼠攻毒实验验证JEDⅢ的抗原性和免疫原性。Western blotting及ELISA结果表明纯化后的表达产物具有良好的抗原性,纯化的JEDⅢ蛋白免疫新西兰兔,可以获得高达1:7×105滴度的抗JEV特异性抗体;JEDⅢ蛋白免疫BALB/C鼠,可以获得1:8.2×104滴度的抗JEV特异性抗体。并且获得1:256滴度的中和抗体,乳鼠攻毒实验能达到75%的保护效果。以上结果说明本研究表达、纯化的重组JEDⅢ蛋白,免疫小鼠以及兔后,能产生抗JEV的特异性抗体,中和性抗体,能够保护部分乳鼠接受毒...  相似文献   

12.
Mycobacterium goodii strain 12523 is an actinomycete that is able to oxidize phenol regioselectively at the para position to produce hydroquinone. In this study, we investigated the genes responsible for this unique regioselective oxidation. On the basis of the fact that the oxidation activity of M. goodii strain 12523 toward phenol is induced in the presence of acetone, we first identified acetone-induced proteins in this microorganism by two-dimensional electrophoretic analysis. The N-terminal amino acid sequence of one of these acetone-induced proteins shares 100% identity with that of the protein encoded by the open reading frame Msmeg_1971 in Mycobacterium smegmatis strain mc(2)155, whose genome sequence has been determined. Since Msmeg_1971, Msmeg_1972, Msmeg_1973, and Msmeg_1974 constitute a putative binuclear iron monooxygenase gene cluster, we cloned this gene cluster of M. smegmatis strain mc(2)155 and its homologous gene cluster found in M. goodii strain 12523. Sequence analysis of these binuclear iron monooxygenase gene clusters revealed the presence of four genes designated mimABCD, which encode an oxygenase large subunit, a reductase, an oxygenase small subunit, and a coupling protein, respectively. When the mimA gene (Msmeg_1971) of M. smegmatis strain mc(2)155, which was also found to be able to oxidize phenol to hydroquinone, was deleted, this mutant lost the oxidation ability. This ability was restored by introduction of the mimA gene of M. smegmatis strain mc(2)155 or of M. goodii strain 12523 into this mutant. Interestingly, we found that these gene clusters also play essential roles in propane and acetone metabolism in these mycobacteria.  相似文献   

13.
重组牛肠激酶轻链基因在毕赤酵母中的表达与纯化   总被引:1,自引:0,他引:1  
目的:构建重组牛肠激酶轻链的基因工程菌,并进行表达和纯化,以获得高纯度和高活性的重组牛肠激酶轻链蛋白。方法:以GenBank公共数据库中的牛肠激酶轻链基因序列(AccessionNo.NM174439)设计引物,利用RT-PCR合成牛肠激酶轻链基因片段,并克隆进pPIC9K载体,同时在基因N端插进6个组氨酸标签,转化毕赤酵母GS115,进行筛选和诱导表达。产物经镍离子螯和层析和Q-SepharoseFF柱纯化,并酶切融合蛋白检测其活性。结果:培养液中重组牛肠激酶轻链蛋白表达量为3.0mg/L。对含有肠激酶酶切位点的IL-11/MBP融合蛋白进行酶切,结果表明,酶解率可达到90%以上。结论:表达并获得了高纯度的重组肠激酶轻链蛋白,为大规模生产打下了基础。  相似文献   

14.
Specific binding of IciA protein to the 13-mers in the origin of a minichromosome (oriC) inhibits initiation of replication in vitro by blocking the opening of this region effected by the initiator DnaA protein (Hwang, D.S., and Kornberg, A. (1990) Cell 63, 325-331). Isolation of the iciA gene (Th?ny, B., Hwang, D.S., Fradkin, L., and Kornberg, A. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 4066-4070) has made possible the construction of an IciA-overproducing strain, which in turn has simplified the isolation of a large quantity of the protein, indistinguishable from that of the wild-type strain. Based on sedimentation and gel filtration, the IciA protein is an elongated dimer of a 33.4-kDa subunit. The specific binding of IciA protein to the 13-mers was stable for 2 h at 30 degrees C. The amounts of IciA protein, detected by immunoassays, increased 4-fold compared with levels (about 100 dimers) in log-phase cells whereas levels of DnaA protein decreased upon entry of cells into the stationary phase.  相似文献   

15.
A strain of Vibrio cholerae, which had been engineered to express high levels of the non-toxic B subunit (EtxB) of Escherichia coli heat-labile enterotoxin, was subjected to transposon (TnphoA) mutagenesis. Two chromosomal TnphoA insertion mutations of the strain were isolated that showed a severe defect in the amount of EtxB produced. The loci disrupted by TnphoA in the two mutant derivatives were cloned and sequenced, and this revealed that the transposon had inserted at different sites in the same gene. The open reading frame of the gene predicts a 200-amino-acid exported protein, with a Cys-X-X-Cys motif characteristic of thioredoxin, protein disulphide isomerase, and DsbA (a periplasmic protein required for disulphide bond formation in E. coli). The V. cholerae protein exhibited 40% identity with the DsbA protein of E. coli, including 90% identity in the region of the active-site motif. Introduction of a plasmid encoding E. coli DsbA into the V. cholerae TnphoA derivatives was found to restore enterotoxin formation, whilst expression of Etx or EtxB in a dsbA mutant of E. coli confirmed that DsbA is required for enterotoxin formation in E. coli. These results suggest that, since each EtxB subunit contains a single intramolecular disulphide bond, a transient intermolecular interaction with DsbA occurs during toxin subunit folding which catalyses formation of the disulphide in vivo.  相似文献   

16.
The yeast nuclear gene ATP4, encoding the ATP synthase subunit 4, was disrupted by insertion into the middle of it the selective marker URA3. Transformation of the Saccharomyces cerevisiae strain D273-10B/A/U produced a mutant unable to grow on glycerol medium. The ATP4 gene is unique since subunit 4 was not present in mutant mitochondria; the hypothetical truncated subunit 4 was never detected. ATPase was rendered oligomycin-insensitive and the F1 sector of this mutant appeared loosely bound to the membrane. Analysis of mitochondrially translated hydrophobic subunits of F0 revealed that subunits 8 and 9 were present, unlike subunit 6. This indicated a structural relationship between subunits 4 and 6 during biogenesis of F0. It therefore appears that subunit 4 (also called subunit b in beef heart and Escherichia coli ATP synthases) plays at least a structural role in the assembly of the whole complex. Disruption of the ATP4 gene also had a dramatic effect on the assembly of other mitochondrial complexes. Thus, the cytochrome oxidase activity of the mutant strain was about five times lower than that of the wild type. In addition, a high percentage of spontaneous rho- mutants was detected.  相似文献   

17.
The ratio of the major monensin analogs produced by Streptomyces cinnamonensis is dependent upon the relative levels of the biosynthetic precursors methylmalonyl-coenzyme A (CoA) (monensin A and monensin B) and ethylmalonyl-CoA (monensin A). The meaA gene of this organism was cloned and sequenced and was shown to encode a putative 74-kDa protein with significant amino acid sequence identity to methylmalonyl-CoA mutase (MCM) (40%) and isobutyryl-CoA mutase (ICM) large subunit (36%) and small subunit (52%) from the same organism. The predicted C terminus of MeaA contains structural features highly conserved in all coenzyme B12-dependent mutases. Plasmid-based expression of meaA from the ermE* promoter in the S. cinnamonensis C730.1 strain resulted in a decreased ratio of monensin A to monensin B, from 1:1 to 1:3. Conversely, this ratio increased to 4:1 in a meaA mutant, S. cinnamonensis WM2 (generated from the C730.1 strain by insertional inactivation of meaA by using the erythromycin resistance gene). In both of these experiments, the overall monensin titers were not significantly affected. Monensin titers, however, did decrease over 90% in an S. cinnamonensis WD2 strain (an icm meaA mutant). Monensin titers in the WD2 strain were restored to at least wild-type levels by plasmid-based expression of the meaA gene or the Amycolatopsis mediterranei mutAB genes (encoding MCM). In contrast, growth of the WD2 strain in the presence of 0.8 M valine led only to a partial restoration (<25%) of monensin titers. These results demonstrate that the meaA gene product is significantly involved in methylmalonyl-CoA production in S. cinnamonensis and that under the tested conditions the presence of both MeaA and ICM is crucial for monensin production in the WD2 strain. These results also indicate that valine degradation, implicated in providing methylmalonyl-CoA precursors for many polyketide biosynthetic processes, does not do so to a significant degree for monensin biosynthesis in the WD2 mutant.  相似文献   

18.
This study concerns the assembly into a multisubunit enzyme complex of a small hydrophobic protein imported into isolated mitochondria. Subunit 8 of yeast mitochondrial ATPase (normally a mitochondrial gene product) was expressed in vitro as a chimaeric precursor N9L/Y8-1, which includes an N-terminal-cleavable transit peptide to direct its import into mitochondria. Assembly into the enzyme complex of the imported subunit 8 was monitored by immunoadsorption using an immobilized anti-F1-beta monoclonal antibody. Preliminary experiments showed that N9L/Y8-1 imported into normal rho+ mitochondria, with its complement of fully assembled ATPase, did not lead to an appreciable assembly of the exogenous subunit 8. With the expectation that mitochondria previously depleted of subunit 8 could allow such assembly in vitro, target mitochondria were prepared from genetically modified yeast cells in which synthesis of subunit 8 was specifically blocked. Initially, mitochondria were prepared from strain M31, a mit- mutant completely incapable of intramitochondrial biosynthesis of subunit 8. These mit- mitochondria however were unsuitable for assembly studies because they could not import protein in vitro. A controlled depletion strategy was then evolved. An artificial nuclear gene encoding N9L/Y8-1 was brought under the control of a inducible promoter GAL1. This regulated gene construct, in a low copy number yeast expression vector, was introduced into strain M31 to generate strain YGL-1. Galactose control of the expression of N9L/Y8-1 was demonstrated by the ability of strain YGL-1 to grow vigorously on galactose as a carbon source, and by the inability to utilize ethanol alone for prolonged periods of growth. The measurement of bioenergetic parameters in mitochondria from YGL-1 cells experimentally depleted of subunit 8, by transferring growing cells from galactose to ethanol, was consistent with the presence in mitochondria of a mosaic of ATPase, namely fully assembled functional ATPase complexes and partially assembled complexes with defective F0 sectors. These mitochondria demonstrated very efficient import of N9L/Y8-1 and readily incorporated the imported processed subunit 8 protein into ATPase. Comparison of the kinetics of import and assembly of subunit 8 showed that assembly was noticeably delayed with respect to import. These findings open the way to a new systematic analysis of the assembly of imported proteins into multisubunit mitochondrial enzyme complexes.  相似文献   

19.
表达大肠杆菌K88ac-ST1-LTB融合蛋白基因工程菌株的构建   总被引:15,自引:2,他引:13  
利用PCR技术,从大肠杆菌C83902质粒中扩增出K88ac基因、ST1突变基因和LTB基因,通过分离、纯化、内切酶酶切、连接和转化,构建了含K88ac-ST1-LTB融合基因表达载体的重组菌株BL21(DE3)(pXKST3LT5)。经酶切鉴定和DNA序列分析证实,构建的重组质粒pXKST3LT5中含有K88ac-ST1-LTB融合基因,且基因序列和阅读框架均正确。经ELISA检测,重组菌株表达的K88ac-ST1-LTB融合蛋白能够被ST1单抗、LTB和K88ac抗体识别。经乳鼠灌胃试验证实,表达的融合蛋白已丧失天然ST1肠毒素的活性。免疫实验结果表明,K88ac-ST1-LTB融合蛋白能够诱发小白鼠产生抗体,该抗体具有中和天然ST1肠毒素的毒性作用,表明构建的重组菌株可以作为预防仔猪黄、白痢基因工程菌苗的候选菌株。  相似文献   

20.
The gene coding for the subunits of aspartokinase II from Bacillus subtilis has been identified in a B. subtilis DNA library and cloned in a bacterial plasmid (Bondaryk, R. P., and Paulus, H. (1984) J. Biol. Chem. 259, 585-591). The introduction of a plasmid carrying the aspartokinase II gene into an auxotrophic Escherichia coli strain lacking all three aspartokinases restored its ability to grow in the absence of L-lysine, L-threonine, and L-methionine. The B. subtilis aspartokinase gene could thus be functionally expressed in E. coli and substitute for the E. coli aspartokinases. Measurement of aspartokinase levels in extracts of aspartokinaseless E. coli transformed with the B. subtilis aspartokinase II gene revealed an enzyme level comparable to that in a genetically derepressed B. subtilis strain. In spite of the high level of aspartokinase, the growth of the transformed E. coli strain was severely inhibited by the addition of L-lysine but could be restored by also adding L-homoserine. This apparently paradoxical sensitivity to lysine was due to the allosteric inhibition of B. subtilis aspartokinase II by that amino acid, a property which was also observed in extracts of the transformed E. coli strain. The synthesis and degradation of the aspartokinase II subunits were measured by labeling experiments in E. coli transformed with the B. subtilis aspartokinase II gene. In contrast to exponentially growing cells of B. subtilis which contained equimolar amounts of the aspartokinase alpha and beta subunits, the transformed E. coli strain contained a 3-fold molar excess of beta subunit. Pulse-chase experiments showed that the disproportionate level of beta subunit was not due to more rapid turnover of alpha subunit, both subunits being quite stable, but presumably to a more rapid rate of synthesis. After the addition of rifampicin, the synthesis of alpha subunit declined much more rapidly than that of beta subunit, indicating that the two subunits were translated independently from mRNA species that differ in functional stability. In conjunction with the results described in the preceding paper which demonstrated that the aspartokinase subunits are encoded by a single DNA sequence, these observations imply that the alpha and beta subunits of B. subtilis aspartokinase II are the products of in-phase overlapping genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号