首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physiological and ultrastructural assessment of changes in the walls of venules in the rat cremaster muscle after administration of histamine indicates that pericytes have essential roles in the normal functioning of venules during inflammation. Fluorescein-labelled albumin was used to quantitate macromolecular leakage and to select suitable venules for ultrastructural analysis 4 and 7 minutes after addition of histamine. Pericytes were concentrated over endothelial cell junctions and gaps. At 4 minutes, when albumin leakage was becoming detectable, gaps between endothelial cells were observed in the venule wall. In 24 serially sectioned gaps, pericytes formed covers, with contact points to the endothelial cells along the sides of the gaps. At 7 minutes, when albumin leakage was maximal, gaps with pericyte covers were still evident, but more commonly observed were pericyte covers over closed endothelial cell junctions. Spaces between the innermost pericytes and endothelial cells were enlarged by an order of magnitude, from 95 nm in controls to 872 nm at 4 minutes and 958 nm at 7 minutes. Pericytes formed coverings or bridges over inclusions of extravasated cells, fluid, proteins, and the vascular label monastral blue. The data indicate that pericytes protect the endothelial lining of venules during histamine-induced inflammation by forming a cohesive covering across gaps.  相似文献   

2.
Pain, redness, heat, and swelling are hallmarks of inflammation that were recognized as early as the first century AD. Despite these early observations, the mechanisms responsible for swelling, in particular, remained an enigma for nearly two millennia. Only in the past century have scientists and physicians gained an appreciation for the role that vascular endothelium plays in controlling the exudation that is responsible for swelling. One of these mechanisms is the formation of transient gaps between adjacent endothelial cell borders. Inflammatory mediators act on endothelium to reorganize the cytoskeleton, decrease the strength of proteins that connect cells together, and induce transient gaps between endothelial cells. These gaps form a paracellular route responsible for exudation. The discovery that interendothelial cell gaps are causally linked to exudation began in the 1960s and was accompanied by significant controversy. Today, the role of gap formation in tissue edema is accepted by many, and significant scientific effort is dedicated toward developing therapeutic strategies that will prevent or reverse the endothelial cell gaps that are present during the course of inflammatory illness. Given the importance of this field in endothelial cell biology and inflammatory disease, this focused review catalogs key historical advances that contributed to our modern-day understanding of the cell biology of interendothelial gap formation.  相似文献   

3.
Previous work has shown that endogenous chemical mediators, of which histamine is the prototype, increase the permeability of blood vessels by causing gaps to appear between endothelial cells. In the present paper, morphologic and statistical evidence is presented, to suggest that endothelial cells contract under the influence of mediators, and that this contraction causes the formation of intercellular gaps. Histamine, serotonin, and bradykinin were injected subcutaneously into the scrotum of the rat, and the vessels of the underlying cremaster muscle were examined by electron microscopy. To eliminate the vascular collapse induced by routine fixation, in one series of animals (including controls) the root of the cremaster was constricted for 2–4 min prior to sacrifice, and the tissues were fixed under conditions of mild venous congestion. Electron micrographs were taken of 599 nuclei from the endothelium of small blood vessels representing the various experimental situations. Nuclear deformations were classified into four types of increasing tightness (notches, foldsl closing folds, and pinches. In the latter the apposed surfaces of the nuclear membrane are in contact). It was found that: (1) venous congestion tends to straighten the nuclei in al groups; (2) mediators cause a highly significant increase in the number of pinches (P < 0.001), also if the vessels are distended by venous congestion; (3) fixation without venous congestion causes vascular collapse. The degree of endothelial recoil, as measured by nuclear pinches, is very different from that caused by mediators (P < 0.001). (4) Pinched nuclei are more frequent in leaking vessels, and in cells adjacent to gaps (P < 0.001); (5) mediators also induce, in the endothelium, cytoplasmic changes suggestive of contraction, and similar to those of contracted smooth muscle; (6) there is no evidence of pericyte contraction under the conditions tested. Occasional pericytes appeared to receive fine nerve endings. Various hypotheses to explain nuclear pinching are discussed; the only satisfactory explanation is that which requires endothelial contraction.  相似文献   

4.
Summary Pericytes are cells of mesodermal origin which are closely associated with the microvasculature. Despite numerous studies little is known about their function. We have studied the relationship between pericytes and the endothelium in rat myocardial capillaries employing ultrastructural and immunogold techniques. 14% of the subendothelial cell membrane is covered by comparatively small pericytic cell processes. About half of these processes are completely embedded in baseement membrane material, whereas the remaining half forms closer contacts with the endothelium. These contacts are devoid of anti-laminin immunogold label, a marker for basement membranes. A small fraction of these contacts has been identified as tight junctions resembling those seen between endothelial cells in capillaries of the same tissue. The remaining majority of junctions reveals a cleft of approximately 18 nm between the apposed membranes in which a succession of cleft-spanning structures can often bedetected. It was also found that pericytic processes are preferentially located close to interendothelial junctions. We suggest that the high frequency of intimate junctions between pericytes and the endothelium and the preferential localisation near paracellular clefts may have functional significance.  相似文献   

5.
Summary Three types of pericytes outline the vascular bed in Golgi preparations of the newborn rabbit brain. Elongate cells (Type I) are restricted to capillaries, elements resembling smooth muscle cells (Type II) surround vessels of intermediate size, and large flat forms (Type III) cover the surface of arterioles and venules. Electron microscopy shows all types to be located within a well defined perivascular basement membrane. It also reveals the presence of filaments in the cytoplasm of some pericytes resembling the myofilaments of smooth muscle cells. It suggests the possibility that some pericytes are capable of contraction and may participate in regulating blood flow in small vessels.Microglia cells bear no resemblance to pericytes in terms of their shape, distribution or staining characteristics. Microglia cells are located outside the vascular basement membrane (external basal lamina) in the brain parenchyma, and they vary in form according to their location and the character of the surrounding extracellular space. This study does not support the hypothesis that microglia cells arise from pericytes but indicates that they originate either by in situ division or from hematogenous elements that enter the brain by crossing the vessel wall.Support provided by N.I.H. Grants No. NS 10864 and NS 07938 from the U.S. Public Health Service.  相似文献   

6.
The effects of hyperthermia on the developing 2- and 3-day chick embryo were studied by vital microscopy, in vivo microangiography and electron microscopy of post-capillary venules of the pellucid area of the yolk sac. Hyperthermia of 3 degrees C and 4 degrees C produced significant microvascular changes and perivascular oedema. The microvascular defects were characterized by interruption of the endothelial lining and the presence of blood cells breaking through the vessel walls. In addition, there were numerous inter-endothelial gaps with wide subendothelial spaces. Microangiography showed leakage from the vessel walls. It is concluded that hyperthermia produces vessel wall injury and induces the formation of gaps between endothelial cells resulting in extravasation of plasma and blood cells. These gaps are similar to those produced by biochemical mediators of inflammation. It is suggested that these microvascular changes with pathological leakage may play important roles in abnormal vascular and embryonic development.  相似文献   

7.
We have affinity-fractionated rabbit antiactin immunoglobulins (IgG) into classes that bind preferentially to either muscle or nonmuscle actins. The pools of muscle- and nonmuscle-specific actin antibodies were used in conjunction with fluorescence microscopy to characterize the actin in vascular pericytes, endothelial cells (EC), and smooth muscle cells (SMC) in vitro and in situ. Nonmuscle-specific antiactin IgG stained the stress fibers of cultured EC and pericytes but did not stain the stress fibers of cultured SMC, although the cortical cytoplasm associated with the plasma membrane of SMC did react with nonmuscle-specific antiactin. Whereas the muscle-specific antiactin IgG failed to stain EC stress fibers and only faintly stained their cortical cytoplasm, these antibodies reacted strongly with the fiber bundles of cultured SMC and pericytes. Similar results were obtained in situ. The muscle-specific antiactin reacted strongly with the vascular SMC of arteries and arterioles as well as with the perivascular cells (pericytes) associated with capillaries and post-capillary venules. The non-muscle-specific antiactin stained the endothelium and the pericytes but did not react with SMC. These findings indicate that pericytes in culture and in situ possess both muscle and nonmuscle isoactins and support the hypothesis that the pericyte may represent the capillary and venular correlate of the SMC.  相似文献   

8.
Ultrastructure of pericytes in mouse heart   总被引:5,自引:0,他引:5  
The pericytes of mouse myocardium are extensively branched cells that form an incomplete layer around the endothelium of capillaries and postcapillary venules. The membranes of pericytes and endothelial cells are connected by specialized junctions. Microtubules, intermediate (10-nm) filaments and microfilaments are oriented within circumferentially-arranged cytoplasmic processes of pericytes so as partially to encircle the endothelial cylinder. The intracellular organization of these myocardial pericytes suggests that they are smooth muscle-like cells which may be capable of influencing microvascular dynamics in the heart.  相似文献   

9.
In these studies we have compared the relative amounts and isoforms of tropomyosin in capillary and postcapillary venule pericytes, endothelial cells, and vascular smooth muscle cells in four rat microvascular beds: heart, diaphragm, pancreas, and the intestinal mucosa. The results, obtained by in situ immunoperoxidase localization, indicate that (a) tropomyosin is present in capillary and postcapillary venule pericytes in relatively high concentration; (b) the tropomyosin content of pericytes appears to be somewhat lower than in vascular smooth muscle cells but higher than in endothelia and other vessel-associated cells; and (c) pericytes, unlike endothelia and other nonmuscle cells, contain detectable levels of tropomyosin immunologically related to the smooth muscle isoform. These results and our previous findings concerning the presence of a cyclic GMP-dependent protein kinase (Joyce, N., P. DeCamilli, and J. Boyles, 1984, Microvasc. Res. 28:206-219) in pericytes demonstrate that these cells contain significant amounts of at least two proteins important for contraction regulation. Taken together, the evidence suggests that pericytes are contractile elements related to vascular smooth muscle cells, possibly involved, as are the latter, in the regulation of blood flow through the microvasculature.  相似文献   

10.
The development of blood vessels during the first three postnatal weeks was studied in the ventral stripe of the spinotrapezius muscle of the rat by use of India ink-gelatine injections, and electron microscopy. The number of terminal arterioles and collecting venules remained unchanged postnatally in the observed area. A remarkable proximodistal gradient of vascular development was apparent: while the basic structure of the hilar vessels remained unchanged in the time studied, the intramuscular arteries and veins matured gradually. More peripherally, gradual maturation of terminal and precapillary arterioles was observed. The capillary endothelium and the pericytes showed immature features, and remained unchanged during the time studied. An intense rebuilding activity was found in the endothelial cells of the growing venules, expressed by various forms of gaps, covered by an intact basal lamina and pericytes. Numerous mast cells and macrophages were found along all vessels. Intramuscular lymphatics were not present prior to the first postnatal week.  相似文献   

11.
Bandopadhyay  R.  Orte  C.  Lawrenson  J.G.  Reid  A.R.  De Silva  S.  Allt  G. 《Brain Cell Biology》2001,30(1):35-44
Evidence from a variety of sources suggests that pericytes have contractile properties and may therefore function in the regulation of capillary blood flow. However, it has been suggested that contractility is not a ubiquitous function of pericytes, and that pericytes surrounding true capillaries apparently lack the machinery for contraction. The present study used a variety of techniques to investigate the expression of contractile proteins in the pericytes of the CNS. The results of immunocytochemistry on cryosections of brain and retina, retinal whole-mounts and immunoblotting of isolated brain capillaries indicate strong expression of the smooth muscle isoform of actin (α-SM actin) in a significant number of mid-capillary pericytes. Immunogold labelling at the ultrastructural level showed that α-SM actin expression in capillaries was exclusive to pericytes, and endothelial cells were negative. Compared to α-SM actin, non-muscle myosin was present in lower concentrations. By contrast, smooth muscle myosin isoforms, were absent. Pericytes were strongly positive for the intermediate filament protein vimentin, but lacked desmin which was consistently found in vascular smooth muscle cells. These results add support for a contractile role in pericytes of the CNS microvasculature, similar to that of vascular smooth muscle cells.  相似文献   

12.
An electron microscopic study of the fine blood vessels in the skin and muscle of 25 newborn rats (sucklings, and therefore subject to physiologic lipemia) has shown that blood-borne lipid particles may leave the lumen of these vessels by two pathways, intercellular and intracellular. (a) An intercellular pathway: Some capillaries, venous capillaries and venules contain intramural, extracellular deposits of lipid which is presumably hematogenous. In some animals these deposits are quite numerous; available evidence suggests that they are a consequence of intercellular gaps, too small or too transient to be observed except in rare instances. Plasma apparently escapes through these gaps and filters across the basement membrane, while lipid particles are retained, usually in sufficient number to fill the small defect; some lipid particles are then taken up by endothelial cells and pericytes, while a few escape and are incorporated into free phagocytes. These focal defects, though few in number, may explain the apparent incapacity of blood vessels of newborn rats to leak any further after a local injection of histamine. Discontinuities in the endothelium were found also in the renal glomerulus, sometimes accompanied by extensive interstitial accumulations of lipid particles. Similar intercellular gaps are known to exist in other types of immature endothelia. (b) An intracellular pathway: This is best demonstrated in the capillaries, venous capillaries and venules which supply the developing subcutaneous adipose tissue. Here the lipid particles adhere in large numbers to the endothelial surface; the morphologic evidence suggests that they are also taken up into the endothelium through phagocytosis by "flaps," or into pockets or crevices. The lipid is apparently metabolized in the vascular wall; some is found in the multivesicular bodies. There was no evidence of active transport by vesicles or vacuoles. Neither pathway was demonstrable in the adult.  相似文献   

13.
Two categories of cysteinyl-leukotrienes have been proposed, namely, CysLT1 and CysLT2. These receptors are found not only on the vascular smooth muscle but also on the endothelium. Activation of the receptor(s) on vascular smooth muscle provokes contraction whereas activation of the receptors on the endothelium produces contraction and/or relaxation. These endothelium dependent effects are due to the release of both contractile and relaxant factors derived from the endothelium. While factors derived from either the cyclooxygenase or nitric oxide pathways are involved, in some vascular preparations other mediators such as endothelin may be involved. However, in isolated human pulmonary vascular preparations, this appears not to be the case and presently the nature and origin of the contractile factor remains to be established.  相似文献   

14.
Genetic studies in mice and humans have revealed a pivotal function for transforming growth factor-beta (TGF-β) in vascular development and maintenance of vascular homeostasis. Mice deficient for various TGF-β signaling components develop an embryonic lethality due to vascular defects. In patients, mutations in TGF-β receptors have been linked to vascular dysplasia like Hereditary Hemorrhagic Telangiectasia (HHT) and pulmonary arterial hypertension (PAH). Besides indirect effects by regulating the expression of angiogenic regulators, TGF-β also has potent direct effects on endothelial cell growth and migration, and we have proposed that TGF-β regulates the activation state of the endothelium via two opposing type I receptor/Smad pathways, activin receptor-like kinase (ALK)1 and ALK5. TGF-β is also critical for the differentiation of mural precursors into pericytes and smooth muscle cells. Furthermore, defective paracrine TGF-β signaling between endothelial and neighboring mural cells may be responsible for a leaky vessel phenotype that is characteristic of HHT. In this review, we discuss our current understanding of the TGF-β signaling pathway and its regulation of endothelial and vascular smooth muscle cell function.  相似文献   

15.
It is well known that endothelial cells (EC) are highly sensitive to mechanical influences such as hemodynamic conditions or pulsatile stretch. However, it is still unknown, how endothelium responds to the changed gravity. The results of some studies suggest that cellular elements of vascular wall and, particularly, endothelium, may directly participate in development of physiological responces to microgravity. On our suggestion, this is extremely attractive since vascular endothelium is one of the main regulators of vascular tone (via its interaction with vascular smooth muscle cells) and, consequently, can play not last role in maintaining of normal cardiovascular system operation in microgravity. On the other hand, the endothelium itself may be regarded as a widely dispersed organ of approximately 1.5 kg in weight (in the adult human organism). Finally, endothelium is not just a passive barrier between vascular wall and circulating blood but synthesizes, metabolizes, and releases a substances which act on adjacent cell systems or distant cell structures. The main aims of this study were: 1) the development of experimental model, allowing to study functional parameters of human endothelial cells in hypogravity conditions in vitro; 2) the verification of endothelial sensitivity to gravitational micro-environment.  相似文献   

16.
Lipid transfer between endothelial and smooth muscle cells in coculture   总被引:5,自引:0,他引:5  
A coculture system was employed to study the interactions between endothelium and vascular smooth muscle cells in arachidonic acid metabolism. Bovine aortic endothelial cells grown on micropore filters impregnated with gelatin and coated with fibronectin are mounted on polystyrene chambers and suspended over confluent smooth muscle cultures. The endothelial basal laminae are oriented toward the underlying smooth muscle, and the two layers are separated by only 1 mm. Each cell layer was assayed individually: apical and basolateral fluid also was collected separately for assay. Fatty acids, including arachidonic acid, are readily transferred between the endothelial and smooth muscle cells in this system. Distribution of the incorporated fatty acids among the lipids of each cell is the same as when the fatty acid is added directly to the culture medium. Arachidonic acid released from endothelial cells is available as a substrate for prostaglandin production by smooth muscle. In addition, fatty acids released from the smooth muscle cells can pass through the endothelium and accumulate in the fluid bathing the endothelial apical surface. These fatty acid interchanges may be involved in cell-cell signaling within the vascular wall, the clearance of lipids from the vascular wall, or the redistribution of arachidonic acid and other polyunsaturated fatty acids between adjacent cell types. Furthermore, the findings suggest that prostaglandin production by smooth muscle cells can occur in response to stimuli that cause arachidonic acid release from endothelial cells.  相似文献   

17.
We previously demonstrated that progenitors of both endothelium and smooth muscle cells in the aortic wall originated from the somite in the trunk of the embryo. However whether the contribution to vascular Smooth Muscle Cells (vSMC) is restricted to the aorta or encompasses other vessels of the trunk is not known. Moreover, the somitic compartment that gives rise to vSMC is yet to be defined. Quail-chick orthotopic transplantations of either the segmental plate or the dorsal or ventral halves from single somites demonstrate that 1° vSMC of the body wall including those of the limbs originate from the somite. 2° Like vSMC, aortic pericytes originate from the somite. 3° The sclerotome is the somite compartment that gives rise to vSMC and pericytes. PAX1 and FOXC2, two molecular markers of the sclerotomal compartment, are expressed by vSMC and pericytes during the earliest phases of vascular wall formation. Later on, PDGFR-β and MYOCARDIN are also expressed by these cells. In contrast, the dermomyotome gives rise to endothelium but never to cells in the vascular wall. Taken together, out data point out to the critical role of the somite in vessel formation and demonstrate that vSMC and endothelial cells originate from two independent somitic compartments.  相似文献   

18.
Local application of inflammatory mediators to the hamster cheek pouch produces an immediate increase in the number of leaking postcapillary venules as observed by intravital light microscopy. Leaks are illuminated by using fluorescein-labeled dextran given i.v. before mediator challenge. All mediators that have been tested produce a similar pattern of vascular leakage exclusively from postcapillary venules. Mediators can be characterized by their effects on vascular permeability and whether they produce dilation (bradykinin, prostaglandins [PGs]) or constriction (leukotrienes [LTs]) of arterioles. The rank order potency for vascular leakage is LTs greater than bradykinin greater than histamine greater than PGs. A linear regression for the relation between dose of mediator and number of leaky venules has been shown for several mediators, e.g., bradykinin, histamine, and LTs. Inhibition of mediator-induced vascular leakage is produced by a wide variety of substances subsequent to a direct effect on the venular endothelial cell. Morphological, physiological, and pharmacological findings are consistent, and provide evidence for the regulation of macromolecular permeability by the endothelial cells in the postcapillary venules.  相似文献   

19.
Atherosclerosis is an inflammatory process, triggered by the presence of lipids in the vascular wall, and encompasses a complex interaction among inflammatory cells, vascular elements, and lipoproteins through expression of several adhesion molecules and cytokines. Subendothelial retention of lipoproteins is the key initiating event in atherosclerosis, provoking a cascade of events to pathogenic response. High levels of plasma lipids, particularly low-density (LDL) and very-low-density lipoproteins (VLDL) are among the pathophysiologic stimuli that induce endothelial dysfunction. Endothelial cells regulate coagulation, thrombosis and the fibrinolytic system; the endothelium modulates the activity of smooth muscle cells (vascular tone/proliferation) and controls the traffic of macromolecules and inflammatory cells to the vessel wall. Furthermore, LDLs have been implicated in the induction of changes in permeability, cell adhesion and secretion of vasoactive molecules (nitric oxide [NO]), while VLDLs seem to modulate the fibrinolytic system [tissue plasminogen activator (TPA) and plasminogen activator inhibitor-1 (PAI-1)]. In this review, we will focus on the pathophysiologic functions of lipoproteins in the vascular wall.  相似文献   

20.
This report describes the morphology of the smooth muscle cells, pericytes, and the perivascular autonomic nerve plexus of blood vessels in the rat mammary gland as visualized by scanning electron microscopy after removal of connective-tissue components. From the differences in cellular morphology, eight vascular segments were identified: 1) terminal arterioles (10-30 microns in outer diameter), with a compact layer of spindle-shaped and circularly oriented smooth muscle cells; 2) precapillary arterioles (6-12 microns), with a less compact layer of branched smooth muscle cells having circular processes; 3) arterial capillaries (4-7 microns), with " spidery " pericytes having mostly circularly oriented processes; 4) true capillaries (3-5 microns), with widely scattered pericytes having longitudinal and several circular processes; 5) venous capillaries (5-8 microns), with spidery pericytes having ramifying processes; 6) postcapillary venules (10-40 microns), with clustered spidery pericytes; 7) collecting venules (30-60 microns), with a discontinuous layer of circularly oriented and elongated stellate or branched spindle-shaped cells which may represent primitive smooth muscle cells; and 8) muscular venules (over 60 microns), with a discontinuous layer of ribbon-like smooth muscle cells having a series of small lateral projections. No focal precapillary sphincters were found. The nerve plexus appears to innervate terminal arterioles densely and precapillary arterioles less densely. Fine nerve fibers are only occasionally associated with arterial capillaries. Venous microvessels in the rat mammary gland seemingly lack innervation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号