首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of the alpha 2-adrenoreceptors agonist clonidine on the neuronal activity of the medial septal area (MS) and hippocampal EEG was studied in unanaesthetized rabbits. A slight and short-term decrease in the theta-rhythm modulation in the MS neuronal activity and/or EEG was revealed in 30.4% of tests after the bilateral intraventricular injection of a small dose of clonidine (0.5 microgram/5 microliters of water). On the contrary, a high dose of clonidine (5 micrograms/5 microliters) substantially enhanced the theta modulation in 100% of tests. The frequency of the theta bursts in the MS increased, on average, by 1.6 +/- 0.18 Hz (from 5.25 +/- 0.19 to 6.8 +/- 0.17 Hz). The regularity of the theta modulation became almost twice higher: the time constant of damping increased from 0.34 +/- 0.04 to 0.60 +/- 0.08 s. Increase in the neuronal activity in the MS produced by the high dose of clonidine was always accompanied by appearance of continuous stable theta waves in the EEG; the spectral power in the theta range increased, on average, by 480 +/- 98%. This strong effect arose suddenly but was relatively short-lasting (12 +/- 3.5 min) and usually abruptly terminated. It is concluded that the noradrenergic system has a double control over the theta oscillations through the alpha 2-adrenoreceptors agonist. In low concentrations the agonist clonidine acts on the high affinity inhibitory presynaptic autoreceptors reducing the noradrenaline release and suppressing the theta activity. In a high dose clonidine predominantly acts on postsynaptic (low affinity) adrenoreceptors substantially increasing the frequency and regularity of the theta bursts in the activity of septal neurons. Presumably, different types of alpha 2-adrenoreceptors participate in regulation of the theta oscillations in different functional states. It is suggested that the noradrenergic locus coeruleus is a functional synergist of the activating reticular formation participating in the urgent phasic activation of the septohippocampal system during the action of sudden strong stimuli.  相似文献   

2.
To evaluate the direct effects of a barbiturate on cerebral functions without its influence on brain perfusion pressure, circulatory hormones and metabolites, the electroencephalogram (EEG) was studied in the isolated rat head. Male Wistar rats were anesthetized, and EEG electrodes were inserted into the cranium. A Krebs-Ringer bicarbonate buffer solution containing heparinized rat whole blood, 20 mmol/l glucose, 200 mmol/l mannitol and 0.1 mg/ml dexamethasone was used for the perfusate. The bilateral common carotid arteries were cannulated, pumped at a rate of 6 ml/min and the head was isolated. The venous effluent was reoxygenated and recirculated into the brain. Twenty-five min after isolation of the heads pentobarbital was added to the perfusate at concentrations of 0.1, 0.5 and 2.5 mg/ml. EEG was recorded before and during perfusion. EEG activity could be recorded for more than 25 min after the beginning of perfusion. EEG activity gradually declined from 42+/-5 microV before perfusion (in vivo) to 4+/-1 microV at 25 min after the beginning of perfusion. Then, 3 min after the addition of pentobarbital, the EEG activity became significantly higher in the high dose groups; 12+/-3 microV in the 0.5 mg/ml group (p<0.05) and 12+/-1 microV in 2.5 mg/ml group (p<0.05) compared with the group without pentobarbital (2+/-2 microV). The present study suggests that a barbiturate has mitigating effects on the brain damage induced by the in vitro brain perfusion.  相似文献   

3.
The measurement of distortion-product otoacoustic emissions is a noninvasive method that can be used for assessing the sensitivity and the frequency tuning of nonlinear cochlear mechanics. During stimulation with two pure tones f1 and f2, the acoustic 2f1-f2 distortion was recorded in the ear canal of Cryptomys spec. to study specializations in cochlear mechanics that could be associated with the presence of a frequency expanded cochlear region between 0.8–1 kHz. In addition, a distortion threshold curve was obtained which describes relative threshold of nonlinear cochlear mechanics. Sensitive distortion thresholds could be measured for stimulus frequencies between 0.4 to 18 kHz with a broad minimum between 0.75 to 2.5 kHz. The distortion threshold curve extends to higher frequencies than previous neuronal data indicated.As a measure of mechanical tuning sharpness in the cochlea, suppression tuning curves of 2f1-f2 were recorded. The tuning curves reflected the typical mammalian pattern with shallow low frequency and steep high frequency slopes. Their tuning sharpness was poor with Q10dB values between 0.3 and 1.88. In the range of the frequency expanded region, the Q10dB values were below 0.5. This finding emphasizes that the presence of frequency expansion does not necessarily lead to enhanced mechanical tuning in the cochlea and one has to consider if in certain bat species with cochlear frequency expansion and particularly sharp cochlear tuning, the two phenomena may not be interlinked.Abbreviations CF constant frequency component of echolocation call - STC suppression tuning curve  相似文献   

4.
The bushcricket Pantecphylus cerambycinus has two types of stridulatory mechanisms and acoustical signals. The elytro-elytral mechanism typical for tettigonioid bushcrickets is used to produce a narrow-band calling song (peak frequency 15 kHz). An abdomino-alary mechanism is used for disturbance stridulation. Its stridulatory file is situated on the hind edge of the abdominal tergites and consists of 50-70 parallel ridges, covering the whole width of the tergite. The broad-band sound (peak frequency 10 kHz) is produced by the contact between the file and ribs situated on the upper side of the hindwings which are folded in such a way that their upper side is directed toward the tergites. Defensive stridulation in bushcrickets is reviewed here, and its function and evolution discussed in the context of predator avoidance strategies. © 1996 Wiley-Liss, Inc.  相似文献   

5.
The accuracy of the underwater and airborne horizontal localization of different acoustic signals by the northern fur seal was investigated by the method of instrumental conditioned reflexes with food reinforcement. For pure-tone pulsed signals in the frequency range of 0.5-25 kHz the minimum angles of sound localization at 75% of correct responses corresponded to sound transducer azimuth of 6.5-7.5 degrees +/- 0.1-0.4 degrees underwater (at impulse duration of 3-90 ms) and of 3.5-5.5 degrees +/- 0.05-0.5 degrees in air (at impulse duration of 3-160 ms). The source of pulsed noise signals (of 3-ms duration) was localized with the accuracy of 3.0 degrees +/- 0.2 degrees underwater. The source of continuous (of 1-s duration) narrow band (10% of c.fr.) noise signals was localized in air with the accuracy of 2-5 degrees +/- 0.02-0.4 degrees and of continuous broad band (1-20 kHz) noise, with the accuracy of 4.5 degrees +/- 0.2 degrees.  相似文献   

6.
A combination of signals across modalities can facilitate sensory perception. The audiovisual facilitative effect strongly depends on the features of the stimulus. Here, we investigated how sound frequency, which is one of basic features of an auditory signal, modulates audiovisual integration. In this study, the task of the participant was to respond to a visual target stimulus by pressing a key while ignoring auditory stimuli, comprising of tones of different frequencies (0.5, 1, 2.5 and 5 kHz). A significant facilitation of reaction times was obtained following audiovisual stimulation, irrespective of whether the task-irrelevant sounds were low or high frequency. Using event-related potential (ERP), audiovisual integration was found over the occipital area for 0.5 kHz auditory stimuli from 190–210 ms, for 1 kHz stimuli from 170–200 ms, for 2.5 kHz stimuli from 140–200 ms, 5 kHz stimuli from 100–200 ms. These findings suggest that a higher frequency sound signal paired with visual stimuli might be early processed or integrated despite the auditory stimuli being task-irrelevant information. Furthermore, audiovisual integration in late latency (300–340 ms) ERPs with fronto-central topography was found for auditory stimuli of lower frequencies (0.5, 1 and 2.5 kHz). Our results confirmed that audiovisual integration is affected by the frequency of an auditory stimulus. Taken together, the neurophysiological results provide unique insight into how the brain processes a multisensory visual signal and auditory stimuli of different frequencies.  相似文献   

7.
Very little is known about the acoustic repertoire of the Pacific humpback dolphin Sousa chinensis . This study, off eastern Australia, used concurrent observations of surface behaviour and acoustic recordings to gain an insight into the behavioural significance of humpback dolphin vocalizations. Humpback dolphins exhibit five different vocalization categories: broad band clicks; barks; quacks; grunts; and whistles. Broad band clicks were high in frequency (8 kHz to > 22 kHz), were directly related to foraging behaviour and may play a role in social behaviour. Barks and quacks were burst pulse sounds (frequency: 0.6 kHz to > 22 kHz, duration: 0.1–8 s) and were associated with both foraging and social behaviour. The grunt vocalization is a low frequency narrow band sound (frequency 0.5–2.6 kHz, duration 0.06–2 s) and was only heard during socializing. There were 17 different types of whistles, ranging widely in frequency (0.9–22 kHz) and vocal structure (n=329). The predominant whistle types used by the groups were type 1 (46%) and type 2 (17%). Most whistles were heard during both socializing and foraging. The number of whistles recorded in a group increased significantly as the number of mother–calf pairs increased, suggesting that whistles may be used as contact calls. Few vocalizations were heard during either travelling or milling behaviours. Broad band clicks, barks and whistle type 1 were the only vocalizations recorded during either travelling or milling.  相似文献   

8.
To evaluate a possible role of ornithine-delta-aminotransferase (EC 2.6.1.13; Orn-T) as a rate-limiting enzyme for the synthesis of transmitter glutamate and gamma-aminobutyric acid (GABA), respectively, its activity and kinetic properties were analyzed in cultured astrocytes as well as in neuronal cultures consisting mainly of glutamatergic neurons (cerebellar granule cells) or GABAergic neurons (cerebral cortex interneurons). For comparison the activity and kinetics of Orn-T were also assayed in mouse brain homogenates. The highest activity of Orn-T was found in astrocytes and in cerebral cortical neurons (5.3 +/- 0.5 and 5.3 +/- 0.4 nmol X mg-1 X min-1, respectively) whereas the activities of Orn-T in cerebellar granule cell cultures and in mouse brain were found to be about half of these values (3.1 +/- 0.3 and 2.8 +/- 0.1 nmol X min-1 X mg-1, respectively). From a kinetic study of Orn-T in the different preparations only a relatively low affinity for the enzyme with respect to ornithine was found in cerebellar granule cells, astrocytes, and whole brain [apparent Km values (at 0.5 mM alpha-ketoglutarate): 4.7 +/- 0.9, 4.3 +/- 2.2, and 6.8 +/- 2.2 mM, respectively] whereas the corresponding Km value for Orn-T in cerebral cortex interneurons was found to be significantly lower (apparent Km: 0.8 +/- 0.3 mM). The enzyme was not found to be inhibited by GABA (range 0.1 - 10 mM) in any of the preparations.  相似文献   

9.
Summary Auditory brain stem responses (ABR) were recorded from the head surface of non-anesthetized and non-relaxed bottle-nosed dolphins, Tursiops truncatus. The region of best ABR recording was shown to be located 6–9 cm caudal to the blowhole. The threshold values were about 1 mPa for noise bursts and –3 dB re 1 mPa for tone bursts of the optimal frequency (80 kHz). The maximum frequency at which ABR could be evoked was 140 kHz. The duration of temporal summation reached 0.5 ms at intensities near the threshold and decreased with an increase in intensity. When the stimuli were paired clicks of the same intensity, the time to complete recovery from the second response was about 5 ms, while that to its 50% recovery was 0.7 ms. When the conditioning click exceeded the testing one in intensity, prolongation of the recovery period was observed. A 40-dB intensity difference led to an approximately 10-fold prolongation of this period.Abbreviations ABR auditory brain stem response - EP evoked potential  相似文献   

10.
Lippert SA  Rang EM  Grimm MJ 《Biorheology》2004,41(6):681-691
Computer modeling is becoming increasingly important in the realm of brain biomechanics and injury. New computer simulations range from modeling of brain surgery, a low frequency, high strain event, to predicting injury as a result of an impact to the head, a high frequency event with varying strain magnitudes. This range of modeling efforts requires characterization of the tissue over as wide a frequency and strain range as possible. Research done to date has concentrated on the low frequency properties of the tissue. Complex compression and complex shear moduli have been measured at frequencies up to 350 Hz. Impact modeling requires use of frequency data at significantly higher frequencies than these. The "wave-in-a-tube" ultrasonic method was applied to brain tissue to determine mechanical properties at frequencies between 100 kHz and 10 MHz. Of these properties, only complex bulk modulus |K*| is fairly invariant (2133 MPa) with respect to frequency. Complex shear and complex Young's moduli vary with frequency and approach an asymptotic upper limit. Some variation in complex Poisson's ratio was also observed.  相似文献   

11.
12.
Recently, physical exercise has been shown to significantly alter neurochemistry and neuronal function and to increase neurogenesis in discrete brain regions. Although we have documented that physical exercise leads to molecular changes in the posterior hypothalamic area (PHA), the impact on neuronal activity is unknown. The purpose of the present study was to determine whether neuronal activity in the PHA is altered by physical exercise. Spontaneously hypertensive rats (SHR) were allowed free access to running wheels for a period of 10 wk (exercised group) or no wheel access at all (nonexercised group). Single-unit extracellular recordings were made in anesthetized in vivo whole animal preparations or in vitro brain slice preparations. The spontaneous firing rates of PHA neurons in exercised SHR in vivo were significantly lower (8.5 +/- 1.6 Hz, n = 31 neurons) compared with that of nonexercised SHR in vivo (13.7 +/- 1.8 Hz, n = 38 neurons; P < 0.05). In addition, PHA neurons that possessed a cardiac-related rhythm in exercised SHR fired significantly lower (6.0 +/- 1.8 Hz, n = 11 neurons) compared with nonexercised SHR (12.1 +/- 2.4 Hz, n = 18 neurons; P < 0.05). Similarly, the spontaneous in vitro firing rates of PHA neurons from exercised SHR were significantly lower (3.5 +/- 0.3 Hz, n = 67 neurons) compared with those of nonexercised SHR (5.6 +/- 0.5 Hz, n = 58 neurons; P < 0.001). Both the in vivo and in vitro findings support the hypothesis that physical exercise can lower spontaneous activity of neurons in a cardiovascular regulatory region of the brain. Thus physical exercise may alter central neural control of cardiovascular function by inducing lasting changes in neuronal activity.  相似文献   

13.
Aerial and underwater audiograms for two young female northern fur seals ( Callorhinus ursinus ) and one young female California sea lion (Zalophus californianus) were obtained with the same procedure and apparatus. Callorhinus hears over a larger frequency range and is more sensitive to airborne sounds than Zalophus or any other pinniped thus far tested in the frequency range of 500 Hz to 32 kHz. Sensitivity of Callorhinus to waterborne pure tones, ranging from 2 to 28 kHz, is equal or superior to all other pinnipeds tested in this same frequency range. Like Zalophus , the upper frequency limit for underwater hearing (as defined by Masterton et al. 1969) in Callorhinus is about one-half octave lower than the three phocid species thus far tested. Callorhinus' upper frequency limit in air is about 36 kHz and under water it is about 40 kHz. Comparison of air and water audiograms shows Callorhinus is no exception to previous behavioral findings demonstrating that the „pinniped ear” is more suitable for hearing in water than in air. Similar to Zalophus and Phoca vitulina, Callorhinus shows an anomalous hearing loss at 4 kHz in air. The basis for this insensitivity to airborne sounds at 4kHz and not at lower or higher frequencies is presumably caused by specialized middle ear mechanisms matching impedance for waterborne sounds. Critical ratio curves for Callorhinus are similarly shaped to ones obtained for humans but are shifted upwards in frequency. Compared to all other marine mammals thus far evaluated, the critical ratios for Callorhinus are the smallest yet reported.  相似文献   

14.
Joint ECG and EEG measurements were performed in 22 healthy subjects under standardized laboratory conditions. Averaged EEG potentials were computed using the R-peaks in the ECG as reference events. Spatio-temporal potential patterns of heart action-related EEG activity were obtained from 26 scalp channels. A heart action-related positive potential was found, peaking over the parietal scalp regions. Its independence from the cardiac electrical field, the source of an EEG artifact that may be confounded with heart action-related brain potentials, is demonstrated. The potential reaches its maximum amplitude of about 0.5 μV at a latency of about 500 ms after the R-peak. Its topography, with peak amplitudes at the parietal electrode locations, is different from the topography of potentials observed in the few comparable experimental studies published so far. This suggests the presence of somatosensory-evoked components in heart action-related potentials and indicates that a renewed discussion of the underlying neuronal processes is necessary.  相似文献   

15.
Cerebral rates of anaplerosis are known to be significant, yet the rates measured in vivo have been debated. In order to track glutamate metabolism in brain glutamatergic neurons and brain glia, for the first time unrestrained awake rats were continuously infused with a combination of H14CO3- and [1 - 13C]glucose in over 50 infusions ranging from 5 to 60 min. In whole-brain extracts from these animals, the appearance of 14C in brain glutamate and glutamine and appearance of 13C in the C-4 position of glutamate and glutamine were measured as a function of time. The rate of total neuronal glutamate turnover, the anaplerotic rate of synthesis of glutamine and glutamate from H14CO3-, flux through the glutamate/glutamine cycle, and a minimum estimate of whole-brain anaplerosis was obtained. The rate of synthesis of 14C-glutamate from H14CO3- was 1.29 +/- 0.11 nmoles/min/mg protein, whereas the rate of synthesis of 14C-glutamine was 1.48 +/- 0.10 nmoles/min/mg protein compared to total glutamate turnover of 9.39 +/- 0.73 nmoles/min/mg protein. From the turnover rate of glutamine, an upper limit for flux through the glutamate/glutamine cycle was estimated at 4.6 nmoles/min/mg protein. Synthesis of glutamine from H14CO3- was substantial, amounting to 32% of the glutamate/glutamine cycle. These rates were not significantly affected by a single injection of 100 mg/kg of the antiepileptic drug gabapentin. In contrast, acute administration of gabapentin significantly lowered incorporation of H14CO3- into glutamate and glutamine in excised rat retinas, suggesting metabolic effects of gabapentin may require chronic treatment and/or are restricted to brain areas enriched in target enzymes such as the cytosolic branched chain aminotransferase. We conclude that the brain has a high anaplerotic activity and that the combination of two tracers with different precursors affords unique insights into the compartmentation of cerebral metabolism.  相似文献   

16.
It has been described that the frequency ranges at which theta, mu and alpha rhythms oscillate is increasing with age. The present report, by analyzing the spontaneous EEG, tries to demonstrate whether there is an increase with age in the frequency at which the cortical structures oscillate. A topographical approach was followed. The spontaneous EEG of one hundredand seventy subjects was recorded. The spectral power (from 0.5 to 45.5 Hz) was obtained by means of the Fast Fourier Transform. Correlations of spatial topographies among the different age groups showed that older groups presented the same topographical maps as younger groups, but oscillating at higher frequencies. The results suggest that the same brain areas oscillate at lower frequencies in children than in older groups, for a broad frequency range. This shift to a higher frequency with age would be a trend in spontaneous brain rhythm development.  相似文献   

17.
Histamine stimulates cyclic AMP accumulation in astrocyte-enriched and neuronal primary cultures from rat brain in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine. The response in the astrocyte cultures (Emax = 304 +/- 44% over basal, EC50 = 43 +/- 5 microM) was much higher than in neuronal cultures (Emax = 24 +/- 2%, EC50 = 14 +/- 7 microM). The histamine effect in astrocytes was competitively inhibited by the H2 antagonists cimetidine (Ki = 1.1 +/- 0.2 microM) and ranitidine (Ki = 46 +/- 10 nM) but was insensitive to the H1 antagonist mepyramine (1 microM). The two selective H2 agonists impromidine and dimaprit behaved as partial agonists and showed relative potencies (139 and 0.5, respectively) consistent with an interaction with H2 receptors. The more selective H1 agonist 2-thiazolylethylamine (0.01-1 mM) did not potentiate the response to impromidine (10 microM). Thus, in contrast to what is generally observed in intact cell preparations from brain, the histamine-induced cyclic AMP accumulation in astroglial cells is mediated solely by H2 receptors. The small effect shown in neuronal cultures also appears to be mediated by H2 receptors.  相似文献   

18.
Ohnishi S  Lee AL  Edgell MH  Shortle D 《Biochemistry》2004,43(14):4064-4070
To characterize the long-range structure that persists in the unfolded form of the 70-residue protein eglin C, residual dipolar couplings (RDCs) for HN-N and HA-CA bond vectors were measured by NMR spectroscopy for both its low pH, urea denatured state and its native state. When the data sets for the two different structural states were compared, a statistically significant correlation was found, with both sets of dipolar couplings yielding a correlation coefficient of r = 0.47 to 0.51. This finding directly demonstrates that the denatured state of eglin C has a nativelike global structure, a conclusion reached indirectly for staphylococcal nuclease by combining two different types of NMR data. A simple computer simulation showed that the degree of variation in phi and psi angles that yields the RDC correlation of r = 0.5 was inversely dependent on the statistical segment length, ranging from +/-6 to +/-30 degrees at the upper limit. Stable nativelike topologies that persist on unfolding would explain the rapid refolding kinetics displayed by many proteins and might provide a natural barrier against amyloid fibril formation.  相似文献   

19.
The cell population kinetics of the epidermis were studied in 4-month-old pigs. Mitotic figures were confined to the basal cell (L1) and the first suprabasal cell layer (L2). The mitotic index (MI) was 0.17 +/- 0.04% for L1 and 0.08 +/- 0.03% for L2. Labelled nuclei were distributed throughout the viable epidermis, the majority (79.1 +/- 1.1%) were in L1 with 19.5 +/- 1.2% in L2. The labelling indices (LI) in layers L1 and L2 were 7.1 +/- 0.4% and 3.4 +/- 0.1%, respectively. After labelling with two injections of tritiated thymidine [3H]TdR separated by 90 min, the LI increased to 8.2 +/- 0.3% in L1 and to 4.0 +/- 0.2% in L2. This increased labelling confirmed that cell proliferation occurs in both layers, L1 and L2, of the epidermis. The cell production rate (K) in L1 and L2 had an upper limit of 10.7 +/- 1.0 and 6.2 +/- 1.8 cells per 1000 cells per hour respectively. The cell flow rate per hour (cell flux), into and out of the DNA synthesis phase (S), and the duration of DNA synthesis were determined from double-labelling studies with [3H]TdR and [14C]TdR. The cell flux into and out of S was identical and was calculated as 0.6 +/- 0.1%/hr (L1) and 0.5 +/- 0.1%/hr (L2). Values for tS varied from 8 to 10 hr. The cell turnover times (tT) were in the range 89-129 hr and 180-261 hr for L1 and L2, respectively. Log normal curves were fitted to the fraction labelled mitoses data for L1 and L2. Values for tS for cells in L1 and L2 were 9.8 hr and 11.9 hr, respectively. tG2 + 1/2tM was 7.2 hr in L1 and 9.1 hr in L2.  相似文献   

20.
The effects of modulated radio frequency fields on mammalian EEGs were investigated using acute and chronic irradiations at non-thermal level. The EEG signals were computer processed to obtain power spectra. Rabbits were exposed to the field for 2 h a day for 6 weeks at 1-10 MHz (15 Hz modulation) at the level of 0.5-1 kV/M. Silver electrodes placed on the skull surface were used for recording of the EEG. Usually they were removed immediately after initial recordings of the EEG and reinserted before the final and intermediate EEG recordings. With this arrangement, modulated RF fields produced a change in EEG patterns by enhancing the low frequency components and decreasing high frequency activities. On the other hand, acute irradiations did not produce noticeable changes in the EEG at the level of 0.5-1 kV/M (1-30 MHz, 60 Hz modulation) as long as the use of intracranial electrodes was avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号