首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The massive secretion of salt and water in cholera-induced diarrhea involves binding of cholera toxin (CT) to ganglioside GM1 in the apical membrane of intestinal epithelial cells, translocation of the enzymatically active A1-peptide across the membrane, and subsequent activation of adenylate cyclase located on the cytoplasmic surface of the basolateral membrane. Studies on nonpolarized cells show that CT is internalized by receptor-mediated endocytosis, and that the A1-subunit may remain membrane associated. To test the hypothesis that toxin action in polarized cells may involve intracellular movement of toxin-containing membranes, monolayers of the polarized intestinal epithelial cell line T84 were mounted in modified Ussing chambers and the response to CT was examined. Apical CT at 37 degrees C elicited a short circuit current (Isc: 48 +/- 2.1 microA/cm2; half-maximal effective dose, ED50 integral of 0.5 nM) after a lag of 33 +/- 2 min which bidirectional 22Na+ and 36Cl- flux studies showed to be due to electrogenic Cl- secretion. The time course of the CT-induced Isc response paralleled the time course of cAMP generation. The dose response to basolateral toxin at 37 degrees C was identical to that of apical CT but lag times (24 +/- 2 min) and initial rates were significantly less. At 20 degrees C, the Isc response to apical CT was more strongly inhibited (30-50%) than the response to basolateral CT, even though translocation occurred in both cases as evidenced by the formation of A1-peptide. A functional rhodamine-labeled CT-analogue applied apically or basolaterally at 20 degrees C was visualized only within endocytic vesicles close to apical or basolateral membranes, whereas movement into deeper apical structures was detected at 37 degrees C. At 15 degrees C, in contrast, reduction to the A1-peptide was completely inhibited and both apical and basolateral CT failed to stimulate Isc although Isc responses to 1 nM vasoactive intestinal peptide, 10 microM forskolin, and 3 mM 8Br-cAMP were intact. Re-warming above 32 degrees C restored CT-induced Isc. Preincubating monolayers for 30 min at 37 degrees C before cooling to 15 degrees C overcame the temperature block of basolateral CT but the response to apical toxin remained completely inhibited. These results identify a temperature-sensitive step essential to apical toxin action on polarized epithelial cells. We suggest that this event involves vesicular transport of toxin-containing membranes beyond the apical endosomal compartment.  相似文献   

2.
Endocytosis in filter-grown Madin-Darby canine kidney cells   总被引:20,自引:14,他引:6       下载免费PDF全文
《The Journal of cell biology》1989,109(6):3243-3258
In this paper, we have characterized the apical and basolateral endocytic pathways of epithelial MDCK cells grown on filters. The three- dimensional organization of the endocytic compartments was analyzed by confocal microscopy after internalization of a fluorescent fluid-phase marker from either side of the cell layer. After 5 min of internalization, distinct sets of apical and basolateral early endosomes were observed lining the plasma membrane domain from which internalization had occurred. At later time points, the apical and the basolateral endocytic pathways were shown to converge in the perinuclear region. Mixing of two different fluorescent markers could be detected after their simultaneous internalization from opposite sides of the cell layer. The extent of the meeting was quantitated by measuring the amount of complex formed intracellularly between avidin internalized from the apical side and biotinylated horseradish peroxidase (HRP) from the basolateral side. After 15 min, 14% of the avidin marker was complexed with the biotinylated HRP and this value increased to 50% during a subsequent chase of 60 min in avidin-free medium. We also determined the kinetics of fluid internalization, recycling, transcytosis, and intracellular retention using HRP as a marker. Fluid was internalized with the same rates from either surface domain (1.2 x 10(-4) microns 3/min per microns 2 of surface area). However, significant differences were observed for each pathway in the amounts and kinetics of marker recycled and transcytosed. The content of apical early endosomes was primarily recycled and transcytosed (45% along Bach route after 1 h internalization), whereas delivery to late endocytic compartments was favored from the basolateral early endosome (77% after 1 h). Our results demonstrate that early apical and basolateral endosomes are functionally and topologically distinct, but that the endocytic pathways converge at later stages in the perinuclear region of the cell.  相似文献   

3.
The enterocyte-like cell line Caco-2 forms a polarized epithelium when grown on filters. We have investigated the interaction of endocytic pathways from the apical and basolateral surfaces. The transferrin receptor was an appropriate marker for the basolateral route; uptake of radiolabeled transferrin was highly polarized, and recycling of this ligand back to the basolateral surface occurred with an efficiency of 95%, even after prolonged incubations with transferrin. Using a transferrin-peroxidase conjugate to delineate the morphological pathway, we have identified an early endocytic compartment in the basolateral cytoplasm of the cells. Longer incubations revealed a deeper endocytic compartment in the apical cytoplasm. Concanavalin A complexed to gold was used to simultaneously label the apical endocytic route. After 60 min, extensive mixing of the two labels was seen in endocytic elements throughout the apical cytoplasm, including in the Golgi area, but never in the basal cytoplasm. Using a second double labeling procedure in which antitransferrin receptor antibody complexed to gold was applied to the basolateral surface for up to 2 h and free peroxidase applied to the apical surface for shorter periods, we demonstrated that this apical marker rapidly (within 5 min) reached endosomes containing antibody-gold. Our results indicate that, in Caco-2 cells, the endocytic pathways from the apical and basolateral surfaces meet in an endosomal compartment from which transferrin can still be recycled.  相似文献   

4.
Desmosome formation in MDCK cells was investigated using a Ca(2+) shift. Following preliminary treatment with cycloheximide at 37 degrees C, continued surface transport and subsequent endocytosis were minimized by incubating cells at 19 degrees C to trap nascent glycoproteins within the Golgi body. Release into high Ca(2+) medium (HCM) at 37 degrees C resulted in junction formation as well as relocation of the Golgi body and centrosomes to a subapical location. Desmosome formation occurred in two stages over 2 h, the first occurring within 30 min of the shift to HCM, in 60-nm vesicles containing chiefly Dsc2 and lower concentrations of Dsg and E-cadherin distributed to the entire cell surface. Much of this material was subsequently endocytosed. The second stage involved transport of Dsg, E-cadherin, plakoglobin, and beta-catenin, in more complex vesicles some 200 nm in size, directed to possible nucleation sites on the developing basolateral surface. Plaque proteins such as desmoplakin I/II were added subsequently. Stage-two vesicles, but possibly not those of stage one, were accessible to endocytic markers via retrograde transport from multivesicular bodies prelabeled at 19 degrees C.  相似文献   

5.
The toxic plant protein ricin binds to both the apical and basolateral surface domains of MDCK (strain I) cells grown on polycarbonate filters. Endocytosis of 125I-labeled ricin was not only higher from the basolateral than from the apical surface--an observation which can be explained by the higher surface area of the basolateral surface--but it also appeared to be more efficient when measured as a percentage of total cell-associated ricin. Monovalent ricin-horseradish peroxidase (Ri-HRP), which is known to behave like native ricin with respect to intracellular transport, also binds to, and is taken up from, both the apical and the basolateral surfaces. Initially, after 10 to 15 min, molecules taken up from the two surface domains at 37 degrees C are present in two separate (basolateral and apical) early endosomal populations. This can also be obtained by incubating for 60 min at 18 degrees C. However, after 30 to 60 min at 37 degrees C, most internalized ligand is found in apical lysosomes, regardless from which surface endocytosis took place. Experiments with endocytosis of cationized ferritin from the apical pole and HRP or Ri-HRP from the basolateral pole showed that intermixing in apical lysosomes (or prelysosomes) of molecules taken up from the two poles occurs. Bidirectional transcytosis involving coated pits of both 125I-labeled ricin and Ri-HRP was demonstrated and was found to be most efficient (as measured in per cent of endocytosed toxin) from the apical pole. Transcytosis was strongly reduced at 18 degrees C, and no transepithelial transport of ricin could be measured at 4 degrees C. Transcytosed ricin was intact and could intoxicate new cells. Finally, delivery of ricin internalized from both the apical and the basolateral surface to the apically localized trans-Golgi network occurred at 37 degrees C but not at 18 degrees C, and ricin inhibited protein synthesis largely with the same kinetics following uptake from the two poles. Incubation at 18 degrees C strongly inhibited the toxic effect of ricin. These data show that ricin can intoxicate epithelia from both sides and also penetrate tight epithelial barriers in intact form.  相似文献   

6.
Treatment with cytochalasin D, a drug that acts by inducing the depolymerization of the actin cytoskeleton, selectively blocked endocytosis of membrane bound and fluid phase markers from the apical surface of polarized MDCK cells without affecting the uptake from the basolateral surface. Thus, in MDCK cell transformants that express the VSV G protein, cytochalasin blocked the internalization of an anti-G mAb bound to apical G molecules, but did not reduce the uptake of antibody bound to the basolateral surface. The selective effect of cytochalasin D on apical endocytosis was also demonstrated by the failure of the drug to reduce the uptake of 125I-labeled transferrin, which occurs by receptor-mediated endocytosis, via clathrin-coated pits, almost exclusively from the basolateral surface. The actin cytoskeleton appears to play a critical role in adsorptive as well as fluid phase apical endocytic events, since treatment with cytochalasin D prevented the apical uptake of cationized ferritin, that occurs after the marker binds to the cell surface, as well as uptake of Lucifer yellow, a fluorescent soluble dye. Moreover, the drug efficiently blocked infection of the cells with influenza virus, when the viral inoculum was applied to the apical surface. On the other hand, it did not inhibit the basolateral uptake of Lucifer yellow, nor did it prevent infection with VSV from the basolateral surface, or with influenza when this virus was applied to monolayers in which the formation of tight junctions had been prevented by depletion of calcium ions. EM demonstrated that cytochalasin D leads to an increase in the number of coated pits in the apical surface where it suppresses the pinching off of coated vesicles. In addition, in drug-treated cells cationized ferritin molecules that were bound to microvilli were not cleared from the microvillar surface, as is observed in untreated cells. These findings indicate that there is a fundamental difference in the process by which endocytic vesicles are formed at the two surfaces of polarized epithelial cells and that the integrity and/or the polymerization of actin filaments are required at the apical surface. Actin filaments in microvilli may be part of a mechanochemical motor that moves membrane components along the microvillar surface towards intermicrovillar spaces, or provides the force required for converting a membrane invagination or pit into an endocytic vesicle within the cytoplasm.  相似文献   

7.
《The Journal of cell biology》1991,115(6):1573-1584
Using surface immunoprecipitation at 37 degrees C to "catch" the transient apical or basolateral appearance of an endogenous MDCK lysosomal membrane glycoprotein, the AC17 antigen, we demonstrate that the bulk of newly synthesized AC17 antigen is polarly targeted from the Golgi apparatus to the basolateral plasma membrane or early endosomes and is then transported to lysosomes via the endocytic pathway. The AC17 antigen exhibits very similar properties to members of the family of lysosomal-associated membrane glycoproteins (LAMPs). Parallel studies of an avian LAMP, LEP100, transfected into MDCK cells revealed colocalization of the two proteins to lysosomes, identical biosynthetic and degradation rates, and similar low levels of steady-state expression on both the apical (0.8%) and basolateral (2.1%) membranes. After treatment of the cells with chloroquine, newly synthesized AC17 antigen, while still initially targeted basolaterally, appears stably in both the apical and basolateral domains, consistent with the depletion of the AC17 antigen from lysosomes and its recycling in a nonpolar fashion to the cell surface.  相似文献   

8.
Quantitative confocal microscopic analyses of living, polarized MDCK cells demonstrate different pH profiles for apical and basolateral endocytic pathways, despite a rapid and extensive intersection between the two. Three-dimensional characterizations of ligand trafficking demonstrate that the apical and basolateral endocytic pathways share early, acidic compartments distributed throughout the medial regions of the cell. Polar sorting for both pathways occurs in these common endosomes as IgA is sorted from transferrin to alkaline transcytotic vesicles. While transferrin is directly recycled from the common endosomes, IgA is transported to a downstream apical compartment that is nearly neutral in pH. By several criteria this compartment appears to be equivalent to the previously described apical recycling endosome. The functional significance of the abrupt increase in lumenal pH that accompanies IgA sorting is not clear, as disrupting endosome acidification has no effect on polar sorting. These studies provide the first detailed characterizations of endosome acidification in intact polarized cells and clarify the relationship between the apical and basolateral endocytic itineraries of polarized MDCK cells. The extensive mixing of apical and basolateral pathways underscores the importance of endocytic sorting in maintaining the polarity of the plasma membrane of MDCK cells.  相似文献   

9.
Bacterial lipopolysaccharide (LPS) at the apical surface of polarized intestinal epithelial cells was previously shown to be transported from the apical to the basolateral pole of the epithelium (Beatty, W.L., and P.J. Sansonetti. 1997. Infect. Immun. 65:4395-4404). The present study was designed to elucidate the transcytotic pathway of LPS and to characterize the endocytic compartments involved in this process. Confocal and electron microscopic analyses revealed that LPS internalized at the apical surface became rapidly distributed within endosomal compartments accessible to basolaterally internalized transferrin. This compartment largely excluded fluid-phase markers added at either pole. Access to the basolateral side of the epithelium subsequent to trafficking to basolateral endosomes occurred via exocytosis into the paracellular space beneath the intercellular tight junctions. LPS appeared to exploit other endocytic routes with much of the internalized LPS recycled to the original apical membrane. In addition, analysis of LPS in association with markers of the endocytic network revealed that some LPS was sent to late endosomal and lysosomal compartments.  相似文献   

10.
The polarity of the surface distribution of viral glycoproteins during virus infection has been studied in the Madin-Darby canine kidney epithelial cell line on nitrocellulose filters. Using a surface radioimmunoassay on Madin-Darby canine kidney strain I cells that had been infected with vesicular stomatitis virus or with avian influenza fowl plague virus, we found that the surface G protein was 97% basolateral, whereas the fowl plague virus hemagglutinin was 88% apical. Newly synthesized, pulse-labeled vesicular stomatitis virus appeared first on the basolateral plasma membrane as measured by an immunoprecipitation assay in which the anti-G protein antibody was applied to the monolayer either from the apical or the basolateral side. Labeled G protein could be accumulated inside the cell at a late stage of transport by decreasing the temperature to 20 degrees C during the chase. Reversal to 37 degrees C led to its rapid and synchronous transport to the basolateral surface at an initial rate 61-fold greater than that of transport to the apical side. These results demonstrate that the newly synthesized G protein is transported directly to the basolateral membrane and does not pass over the apical membrane en route. Since a previous study of the surface appearance of influenza virus hemagglutinins showed that the newly synthesized hemagglutinins were inserted directly from an intracellular site into the apical membrane (Matlin, K., and K. Simons, 1984, J. Cell Biol., 99:2131-2139), we conclude that the divergence of the transport pathway for the apical and basolateral viral glycoproteins has to occur intracellularly, i.e., before reaching the cell surface.  相似文献   

11.
We studied the sorting and surface delivery of three apical and three basolateral proteins in the polarized epithelial cell line Caco-2, using pulse-chase radiolabeling and surface domain-selective biotinylation (Le Bivic, A., F. X. Real, and E. Rodriguez-Boulan. 1989. Proc. Natl. Acad. Sci. USA. 86:9313-9317). While the basolateral proteins (antigen 525, HLA-I, and transferrin receptor) were targeted directly and efficiently to the basolateral membrane, the apical markers (sucrase-isomaltase [SI], aminopeptidase N [APN], and alkaline phosphatase [ALP]) reached the apical membrane by different routes. The large majority (80%) of newly synthesized ALP was directly targeted to the apical surface and the missorted basolateral pool was very inefficiently transcytosed. SI was more efficiently targeted to the apical membrane (greater than 90%) but, in contrast to ALP, the missorted basolateral pool was rapidly transcytosed. Surprisingly, a distinct peak of APN was detected on the basolateral domain before its accumulation in the apical membrane; this transient basolateral pool (at least 60-70% of the enzyme reaching the apical surface, as measured by continuous basal addition of antibodies) was efficiently transcytosed. In contrast with their transient basolateral expression, apical proteins were more stably localized on the apical surface, apparently because of their low endocytic capability in this membrane. Thus, compared with two other well-characterized epithelial models, MDCK cells and the hepatocyte, Caco-2 cells have an intermediate sorting phenotype, with apical proteins using both direct and indirect pathways, and basolateral proteins using only direct pathways, during biogenesis.  相似文献   

12.
Newly synthesized basolateral markers can traverse recycling endosomes en route to the surface of Madin-Darby canine kidney cells; however, the routes used by apical proteins are less clear. Here, we functionally inactivated subsets of endocytic compartments and examined the effect on surface delivery of the basolateral marker vesicular stomatitis virus glycoprotein (VSV-G), the raft-associated apical marker influenza hemagglutinin (HA), and the non-raft-associated protein endolyn. Inactivation of transferrin-positive endosomes after internalization of horseradish peroxidase (HRP)-containing conjugates inhibited VSV-G delivery, but did not disrupt apical delivery. In contrast, inhibition of protein export from apical recycling endosomes upon expression of dominant-negative constructs of myosin Vb or Sec15 selectively perturbed apical delivery of endolyn. Ablation of apical endocytic components accessible to HRP-conjugated wheat germ agglutinin (WGA) disrupted delivery of HA but not endolyn. However, delivery of glycosylphosphatidylinositol-anchored endolyn was inhibited by >50% under these conditions, suggesting that the biosynthetic itinerary of a protein is dependent on its targeting mechanism. Our studies demonstrate that apical and basolateral proteins traverse distinct endocytic intermediates en route to the cell surface, and that multiple routes exist for delivery of newly synthesized apical proteins.  相似文献   

13.
The cytoskeleton is required for multiple cellular events including endocytosis and the transfer of cargo within the endocytic system. Polarized epithelial cells are capable of endocytosis at either of their distinct apical or basolateral plasma membrane domains. Actin plays a role in internalization at both cell surfaces. Microtubules and actin are required for efficient transcytosis and delivery of proteins to late endosomes and lysosomes. Microtubules are also important in apical recycling pathways and, in some polarized cell types, basolateral recycling requires actin. The microtubule motor proteins dynein and kinesin and the class I unconventional myosin motors play a role in many of these trafficking steps. This review examines the endocytic pathways of polarized epithelial cells and focuses on the emerging roles of the actin cytoskeleton in these processes.  相似文献   

14.
To investigate the role of filamentous actin in the endocytic pathway, we used the cell-permeant drug Jasplakinolide (JAS) to polymerize actin in intact polarized Madin–Darby canine kidney (MDCK) cells. The uptake and accumulation of the fluid-phase markers fluorescein isothiocyanate (FITC)-dextran and horseradish peroxidase (HRP) were followed in JAS-treated or untreated cells with confocal fluorescence microscopy, biochemical assays, and electron microscopy. Pretreatment with JAS increased the uptake and accumulation of fluid-phase markers in MDCK cells. JAS increased endocytosis in a polarized manner, with a marked effect on fluid-phase uptake from the basolateral surface but not from the apical surface of polarized MDCK cells. The early uptake of FITC-dextran and HRP was increased more than twofold in JAS-treated cells. At later times, FITC-dextran and HRP accumulated in clustered endosomes in the basal and middle regions of JAS-treated cells. The large accumulated endosomes were similar to late endosomes but they were not colabeled for other late endosome markers, such as rab7 or mannose-6-phosphate receptor. JAS altered transport in the endocytic pathway at a later stage than the microtubule-dependent step affected by nocodazole. JAS also had a notable effect on cell morphology, inducing membrane bunching at the apical pole of MDCK cells. Although other studies have implicated actin in endocytosis at the apical cell surface, our results provide novel evidence that filamentous actin is also involved in the endocytosis of fluid-phase markers from the basolateral membrane of polarized cells.  相似文献   

15.
We have investigated the distribution of newly synthesized lysosomal enzymes in endocytic compartments of normal rat kidney (NRK) cells. The mannose-6-phosphate (Man6-P) containing lysosomal enzymes could be iodinated in situ after internalization of lactoperoxidase (LPO) by fluid phase endocytosis and isolated on CI-MPR affinity columns. For EM studies, the ectodomain of the CI-MPR conjugated to colloidal gold was used as a probe specific for the phosphomannosyl marker of the newly synthesized hydrolases. In NRK cells, approximately 20-40% of the phosphorylated hydrolases present in the entire pathway were found in early endocytic structures proximal to the 18 degrees C temperature block including early endosomes. These structures were characterized by a low content of endogenous CI-MPR and were accessible to fluid phase markers internalized for 5-15 min at 37 degrees C. The bulk of the phosphorylated lysosomal enzymes was found in late endocytic structures distal to the 18 degrees C block, rich in endogenous CI-MPR and accessible to endocytic markers internalized for 30-60 min at 37 degrees C. The CI-MPR negative lysosomes were devoid of phosphorylated hydrolases. This distribution was unchanged in cells treated with Man6-P to block recapture of secreted lysosomal enzymes. However, lysosomal enzymes were no longer detected in the early endosomal elements of cells treated with cycloheximide. Immunoprecipitation of cathepsin D from early endosomes of pulse-labeled cells showed that this hydrolase is a transient component of this compartment. These data indicate that in NRK cells, the earliest point of convergence of the lysosomal biosynthetic and the endocytic pathways is the early endosome.  相似文献   

16.
Although recent data from our laboratory have established the occurrence of receptor-mediated endocytosis in intrahepatic bile duct epithelial cells (IBDEC) isolated from normal rat liver, no studies have assessed the role of isolated IBDEC in fluid-phase endocytosis. Therefore, to determine if IBDEC participate in fluid-phase endocytosis, we incubated morphologically polar doublets of IBDEC isolated from normal rat liver with horseradish peroxidase (HRP, 5 mg/ml), a protein internalized by fluid-phase endocytosis, and determined its intracellular distribution by electron microscopic cytochemistry. Pulse-chase studies using quantitative morphometry were also performed to assess the fate of HRP after internalization. After incubation at 37 degrees C, IBDEC internalized HRP exclusively at the apical (i.e., luminal) domain of their plasma membrane; internalization was completely blocked at 4 degrees C. After internalization, HRP was seen in acid phosphatase-negative vesicles and in acid phosphatase-positive multivesicular bodies (i.e., secondary lysosomes). Small acid phosphatase-negative vesicles containing HRP moved progressively from the apical to the basal domain of IBDEC. Pulse-chase studies showed that HRP was then discharged by exocytosis at the basolateral cell surface. These results demonstrate that IBDEC prepared from normal rat liver participate in fluid-phase endocytosis. After internalization, HRP either is routed to secondary lysosomes or undergoes exocytosis after transcytosis from the luminal to the basolateral cell surface. Our results suggest that IBDEC modify the composition of bile by internalizing both biliary proteins and fluid via endocytic mechanisms.  相似文献   

17.
Madin-Darby canine kidney (MDCK) cells (strain I) grown on 0.45 micron pore size nitrocellulose filters formed monolayers which were highly polarized and had high transepithelial electrical resistance (greater than 3000 ohm X cm2). Morphometric analysis showed that the area of the basolateral surface domain was 7.6 times larger than that of the apical. The uptake of fluid-phase markers [3H]inulin and horseradish peroxidase (HRP) was studied from the apical and the basal side of the monolayer. Uptake of [3H]inulin was biphasic and the rate during the first 40 min corresponded to a fluid phase uptake of 20.5 X 10(-8) nl/min per cell from the basolateral side, and 1.0 X 10(-8) nl/min per cell from the apical side. Electron micrographs of the monolayers after HRP uptake showed that the marker was rapidly delivered into endosome-like vesicles and into multivesicular bodies. No labelling of the Golgi complex could be observed during 2 h of uptake. Evidence was obtained for the transport of fluid phase markers across the cell. HRP and fluorescein isothiocyanate-dextran crossed the monolayers in either direction at a rate corresponding to approximately 3 X 10(-8) nl of fluid/min/cell. Adding the transcytosis rate to the rate of fluid accumulation into the cell yielded a total basolateral endocytic rate which was 6-fold greater than the apical rate. When the uptake rates were normalized for membrane area the apical and basolateral endocytic rates were about equal per unit cell surface area.  相似文献   

18.
Polarized epithelial cells maintain the asymmetric composition of their apical and basolateral membrane domains by at least two different processes. These include the regulated trafficking of macromolecules from the biosynthetic and endocytic pathway to the appropriate membrane domain and the ability of the tight junction to prevent free mixing of membrane domain-specific proteins and lipids. Cdc42, a Rho family GTPase, is known to govern cellular polarity and membrane traffic in several cell types. We examined whether this protein regulated tight junction function in Madin-Darby canine kidney cells and pathways that direct proteins to the apical and basolateral surface of these cells. We used Madin-Darby canine kidney cells that expressed dominant-active or dominant-negative mutants of Cdc42 under the control of a tetracycline-repressible system. Here we report that expression of dominant-active Cdc42V12 or dominant-negative Cdc42N17 altered tight junction function. Expression of Cdc42V12 slowed endocytic and biosynthetic traffic, and expression of Cdc42N17 slowed apical endocytosis and basolateral to apical transcytosis but stimulated biosynthetic traffic. These results indicate that Cdc42 may modulate multiple cellular pathways required for the maintenance of epithelial cell polarity.  相似文献   

19.
《The Journal of cell biology》1995,129(5):1241-1250
In polarized epithelial MDCK cells, all known endogenous endocytic receptors are found on the basolateral domain. The influenza virus hemagglutinin (HA) which is normally sorted to the apical plasma membrane, can be converted to a basolateral protein by specific mutations in its short cytoplasmic domain that also create internalization signals. For some of these mutations, sorting to the basolateral surface is incomplete, allowing internalization of two proteins that differ by a single amino acid of the internalization signal to be compared at both the apical and basolateral surfaces of MDCK cells. The rates of internalization of HA-Y543 and HA-Y543,R546 from the basolateral surface of polarized MDCK cells resembled those in nonpolarized cells, whereas their rates of internalization from the apical cell surface were fivefold slower. However, HA-Y543,R546 was internalized approximately threefold faster than HA-Y543 at both membrane domains, indicating that apical endocytic pits in polarized MDCK cells retained the ability to discriminate between different internalization signals. Slower internalization from the apical surface could not be explained by a limiting number of coated pits: apical membrane contained 0.7 as many coated pits per cell cross-section as did basolateral membranes. 10-14% of HA-Y543 at the apical surface of polarized MDCK cells was found in coated pits, a percentage not significantly different from that observed in apical coated pits of nonpolarized MDCK cells, where internalization was fivefold faster. Thus, there was no lack of binding sites for HA-Y543 in apical coated pits of polarized cells. However, at the apical surface many more shallow pits, and fewer deep, mature pits, were observed than were seen at the basolateral. These results suggest that the slower internalization at the apical surface is due to slower maturation of coated pits, and not to a difference in recognition of internalization signals.  相似文献   

20.
Membrane polarity is maintained by a complex intermingling of various trafficking pathways, including basolateral and apical endocytosis. The present work was undertaken to better define the role of basolateral endocytic transport in apical membrane homeostasis. When polarized HepG2 hepatoma cells were incubated with calmodulin antagonists, the cells lost their polarity, as reflected by an inhibition of lipid transport of a fluorescent sphingomyelin to the apical membrane and an impediment of its recycling to the basolateral membrane. Instead, an accumulation of the lipid in dilated early endosomal compartments was observed, presumably due to a frustration of vesiculation. Interestingly, lipid transport to the apical pole, lipid recycling to the basolateral membrane and cell polarity were reestablished, while dilated compartments disappeared, when the cells were simultaneously treated with specific inhibitors of protein kinase C (PKC). Consistently, following activation of PKC, extensive dilation/vacuolation of early sorting endosomes was observed, very similar as seen upon treatment with calmodulin antagonists. Thus, the results indicate that membrane trafficking at early steps of the basolateral endocytic pathway in HepG2 cells is regulated by an intricate interplay between calmodulin and PKC. This interference, although not affecting endocytosis as such, compromises cell polarity by impeding membrane trafficking from early endosomes to the apical membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号