首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sialidases cleave off sialic acid residues from the oligosaccharide chain of gangliosides in their catabolic pathway while sialyltransferases transfer sialic acid to the growing oligosaccharide moiety in ganglioside biosynthesis. Ganglioside GM3 is a common substrate for both types of enzymes, for sialidase acting on ganglioside GM3 as well as for ganglioside GD3 synthase. Therefore, it is possible that both enzymes recognize similar structural features of the sialic acid moiety of their common substrate, ganglioside GM3. Based on this idea we used a variety of GM3 derivatives as glycolipid substrates for a bacterial sialidase (Clostridium perfringens) and for GD3 synthase (of rat liver Golgi vesicles). This study revealed that those GM3 derivatives that were poorly degraded by sialidase also were hardly recognized by sialyltransferase (GD3 synthase). This may indicate similarities in the substrate binding sites of these enzymes.  相似文献   

2.
Treatment of BHK fibroblasts with V. cholerae sialidase for 20 min caused the breakdown of about 70% of total cellular ganglioside GM3 and the production of an approximately equivalent amount of lactosylceramide. On removal of the enzyme, a slow resynthesis of GM3 from lactosylceramide was observed, equivalent to about 5-6%/h of the degraded GM3. Resynthesis of degraded surface ganglioside has not previously been observed, but its magnitude is similar to previous measurements of the rate of protein resialylation after sialidase treatment. This suggests that resialylation of both lipid and protein is limited by vesicular transport of plasma membrane components through the trans-Golgi network [TGN] where sialyltransferase is thought to be localized. In contrast, resynthesis of sphingomyelin which has been degraded at the cell surface by exogenous sphinogomyelinase is about five times faster than resynthesis of GM3 and may involve non-vesicular transport of ceramide.  相似文献   

3.
Cellulosimicrobium cellulans employs extracellular sialidase to selectively convert polysialogangliosides to ganglioside GM1. We cloned this novel sialidase gene (ccsia) from C. cellulans sp. 21, and overexpressed recombinant sialidase (CcSia) protein in E. coli BL21 (DE3) by high cell density fermentation. The presence of an N-terminal hexa-His tag allowed for purification using nickel affinity chromatography (2.3-fold, specific activity 41.5 U/mg). As determined by gel electrophoresis and gel filtration chromatography, the molecular weight of CcSia was found to be about 75 kDa, consistent with sequence analysis (75,271 Da). CcSia transformed polysialogangliosides GD1a, GD1b and GT1b into GM1. For this reaction, the response surface approach showed that optimal conditions in a 1-L system were 2 h incubation at 32.5 °C and pH 5.2, with substrate concentrations of 10 g/L and crude enzyme concentration 1 g/L, respectively. Under above conditions, 10 g/L of ganglioside was completely converted to the product GM1 with a yield of 52%. Our studies demonstrate CcSia could be used for industrial preparation of ganglioside GM1 by the pharmaceutical industry.  相似文献   

4.
5.
Previous syntheses of ganglioside GM3 (NeuAc alpha3Gal beta4Glc beta1Cer) are reviewed, and both chemoenzymatic and chemical total synthetic approaches were investigated. In a chemoenzymatic approach, (2S,3R,4E)-5'-acetyl-alpha-neuraminyl-(2' --> 3')-beta-galactopyranosyl-(1' --> 4')-beta-glucopyranosyl-(1' <--> 1)-2-azido-4-octadecene-1,3-diol (azidoGM3) was readily prepared utilizing recombinant beta-Gal-(1' --> 3'/4')-GlcNAc alpha-(2' --> 3')-sialyltransferase enzyme, and was evaluated as a synthetic intermediate to ganglioside GM3. The chemical total synthesis of ganglioside GM3 was performed on one of the largest scales yet reported. The highlights of this synthesis include minimizing the steps necessary to prepare the lactosyl acceptor as a useful anomeric mixture, which was present in excess for the highly regioselective and fairly stereoselective sialylation with a known neuraminyl donor to give the protected GM3 trisaccharide. The synthetic methodology maximized convergence by a subsequent glycosidic coupling of the well-characterized GM3 trisaccharide trichloroacetimidate derivative with protected ceramide. The ganglioside GM3 was nearly homogeneous as the two glycosidic couplings utilized preparative HLPC purifications, and variations in the sphingosine base and fatty acyl group were under 0.1 and 0.2%, respectively.  相似文献   

6.
Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids.  相似文献   

7.
G Yogeeswaran  S Hakomori 《Biochemistry》1975,14(10):2151-2156
Certain enzyme activities for synthesis and degradation of gangliosides and the chemical quantity and incorporation of radioactivity from [14C] galactose into gangliosides have been studied in 3T3 cells and their transformed counterparts at various cell population densities. The chemical quantity of and the incorporation of radioactivity into GD1a ganglioside increased at the early stage of cell contact ("contact response" of ganglisoide), whereas response was not detectable in transformed 3T3 cells at any stage of cell contact. These phenomena were reproduced in five separate qualitative analyses and two quantitative determinations of gangliosides. As the basis of these phenomena, a membrane-bound sialidase activity which acted on gangliosides was suppressed in 3T3 cells at the "touching" stage of cell-to-cell contact. Transformed cells did not display the change of sialidase activity at any stage of cell contact.  相似文献   

8.
9.
Addition of GM3 (10(-7) or 5.10(-5) M) did not affect the specific activity of adenyl and guanyl cyclase in confluent cultures of C6 glioma cells. Higher concentrations inhibit the cyclases.  相似文献   

10.
The influence of ganglioside GM3 and some of its breakdown products on phytohemagglutinin-induced blast transformation of human lymphocytes and concanavalin-A-induced T-suppressor activity was studied. The structures of two major hydrolysis products of GM3 were established by negative-ion fast-atom-bombardment mass spectrometry as neuraminyllactosylsphingosine (NeuLacSph) and neuraminyllactosylceramide (NeuLacCer). Both substances were shown to be potent inhibitors of mitogen-induced lymphoblastic transformation whereas their acetylation products NeuAcLacSphAc and GM3 did not affect the proliferative response of lymphocytes to phytohemagglutinin. On the other hand, only GM3 and NeuLacSph were able to enhance concanavalin-A-induced T-suppressor activity. On the basis of these data, it is suggested that the effects of GM3 and its breakdown products on lymphoblastic transformation and T-suppressor activity must rest on different mechanisms and that N-deacylation of GM3 appears to be an essential step in conversion of the ganglioside into an inhibitor of lymphocyte blast transformation.  相似文献   

11.
A simple procedure is described for preparing GM3 ganglioside, from a few milligrams to grams, from GM1-lactone (Sonnino et al., (1985) Glycoconjugate J 2: 343-54) [1]. The synthesis was carried out under the following optimal conditions: 30 mM GM1-lactone in 0.25 M H2SO4 in DMSO, 30 min, 70 degrees C, nitrogen atmosphere, strong stirring. The yield of GM3 was 55%. The procedure applied to milligram amounts of GD1b-dilactone gave GD3 ganglioside.  相似文献   

12.
Recombinant human cytosolic sialidase (HsNEU2), expressed in Escherichia coli, was purified to homogeneity, and its substrate specificity was studied. HsNEU2 hydrolyzed 4-methylumbelliferyl alpha-NeuAc, alpha 2-->3 sialyllactose, glycoproteins (fetuin, alpha-acid glycoprotein, transferrin, and bovine submaxillary gland mucin), micellar gangliosides GD1a, GD1b, GT1b, and alpha 2-->3 paragloboside, and vesicular GM3. alpha 2-->6 sialyllactose, colominic acid, GM1 oligosaccharide, whereas micellar GM2 and GM1 were resistant. The optimal pH was 5.6, kinetics Michaelis-Menten type, V(max) varying from 250 IU/mg protein (GD1a) to 0.7 IU/mg protein (alpha(1)-acid glycoprotein), and K(m) in the millimolar range. HsNEU2 was activated by detergents (Triton X-100) only with gangliosidic substrates; the change of GM3 from vesicular to mixed micellar aggregation led to a 8.5-fold V(max) increase. HsNEU2 acted on gangliosides (GD1a, GM1, and GM2) at nanomolar concentrations. With these dispersions (studied in detailed on GM1), where monomers are bound to the tube wall or dilutedly associated (1:2000, mol/mol) to Triton X-100 micelles, the V(max) values were 25 and 72 microIU/mg protein, and K(m) was 10 and 15 x 10(-9) m, respectively. Remarkably, GM1 and GM2 were recognized only as monomers. HsNEU2 worked at pH 7.0 with an efficiency (compared with that at pH 5.6) ranging from 4% (on GD1a) to 64% (on alpha(1)-acid glycoprotein), from 7% (on GD1a) to 45% (on GM3) in the presence of Triton X-100, and from 30 to 40% on GM1 monomeric dispersion. These results show that HsNEU2 differentially recognizes the type of sialosyl linkage, the aglycone part of the substrate, and the supramolecular organization (monomer/micelle/vesicle) of gangliosides. The last ability might be relevant in sialidase interactions with gangliosides under physiological conditions.  相似文献   

13.
In chronic myeloid leukemia K562 cells, differentiation is also blocked because of low levels of ganglioside GM3, derived by the high expression of sialidase Neu3 active on GM3. In this article, we studied the effects of Neu3 silencing (40-70% and 63-93% decrease in protein content and activity, respectively) in these cells. The effects were as follows: (a) gangliosides GM3, GM1, and sialosylnorhexaosylceramide increased markedly; (b) cell growth and [(3)H]thymidine incorporation diminished relevantly; (c) as mRNA, cyclin D2, and Myc were much less expressed, whereas cyclin D1 was expressed more like its inhibitor p21; (d) as mRNA, pro-apoptotic proteins Bax and Bad increased with concurrent decrease and increase in the anti-apoptotic proteins Bcl-2 and Bcl-XL, respectively; (e) the apoptosis inducers etoposide and staurosporine were active on Neu3 silencing cells but not on mock cells; (f) as mRNA, the megakaryocytic markers CD10, CD44, CD41, and CD61 increased similar to the case of mock cells stimulated with PMA; (g) the signaling cascades mediated by PLC-beta2, PKC, RAF, ERK1/2, RSK90, and JNK were largely activated. The induction of a GM3-rich ganglioside pattern in K562 cells by treatment with brefeldin A elicited a phenotype similar to that of Neu3 silencing cells. In conclusion, upon Neu3 silencing, K562 cells show a decrease in proliferation, propensity to undergo apoptosis, and megakaryocytic differentiation.  相似文献   

14.
Synthetic thioglycoside-analogs of gangliosides such as Neu5Ac)2-S-6)Glc-(1-1)Ceramide (1) and the GM3 analog Neu5Ac(2-S-6)Gal-(1–4)Glc(1-1)Ceramide (2), competitively inhibited GM3 hydrolysis by the sialidase of different subtypes of human and animal influenza viruses with an apparent Ki value of 2.8×10–6 and 1.5×10–5 M, respectively. The inhibitory activity of the ganglioside GM4 analog [Neu5Ac-(2-S-6)Gal-(1-1)Ceramide (3)], in which the glucose of 1 was substituted by galactose, was lower than that of 1 (Ki =1.0×10–4 M). The thioglycoside-analogs (1, 2, 3) of the gangliosides were nonhydrolyzable substrates for influenza virus sialidase. The inhibitory activity of 1 to bacterial sialidases fromClostridium perfringens andArthrobacter ureafaciens was considerably lower than that to influenza virus sialidase, indicating that the structure of the active site in bacterial and influenza virus sialidase may be different and the analogs may be useful to determine the orientation of the substrate to the active site of sialidases, especially of influenza viruses.Abbreviations Cer ceramide - GM3 Neu5Ac(2–3)Gal(1–4)Glc(1-1)Cer - GM4 Neu5Ac(2–3)Gal(1-1)Cer Gangliosides were abbreviated according to Svennerholm [1] and the recommendation of the IUPAC-IUB Commission on Biochemical Nomenclature [2].  相似文献   

15.
New ganglioside analogs that inhibit influenza virus sialidase   总被引:1,自引:0,他引:1  
Synthetic thioglycoside-analogs of gangliosides such as Neu5Ac alpha(2-S-6)Glc beta(1-1)Ceramide (1) and the GM3 analog Neu5Ac alpha(2-S-6)Gal beta(1-4)Glc beta(1-1)Ceramide (2), competitively inhibited GM3 hydrolysis by the sialidase of different subtypes of human and animal influenza viruses with an apparent Ki value of 2.8 x 10(-6) and 1.5 x 10(-5) M, respectively. The inhibitory activity of the ganglioside GM4 analog [Neu5Ac alpha(2-S-6)Gal beta(1-1)Ceramide (3)], in which the glucose of 1 was substituted by galactose, was lower than that of 1 (Ki = 1.0 x 10(-4) M). The thioglycoside-analogs (1, 2, 3) of the gangliosides were non-hydrolyzable substrates for influenza virus sialidase. The inhibitory activity of 1 to bacterial sialidases from Clostridium perfringens and Arthrobacter ureafaciens was considerably lower than that to influenza virus sialidase, indicating that the structure of the active site in bacterial and influenza virus sialidase may be different and the analogs may be useful to determine the orientation of the substrate to the active site of sialidases, especially of influenza viruses.  相似文献   

16.
We have shown that a syngenic monoclonal antibody, M2590, established after immunization of C57BL/6 mice with B16 melanoma cells, recognized GM3 (NeuAc) ganglioside. Although GM3 is widely distributed among various normal cells and tissues, the antibody did not react with them. However, it reacted exclusively with melanoma cells from mouse, hamster and human. Preliminary experiments suggested that proteins and lipids as well as GM3 density on B16 cells are involved in the reactivity of GM3 with the antibody. Then, we investigated the biological function of the melanoma antigen, which was secreted from B16 cells into the culture medium. This soluble antigen was shown to suppress the positive immune responses by inhibiting CTL activity in the effector phase and by induction of specific suppressor T cells (Ts) that block CTL generation in the induction phase. Liposomes containing GM3 (NeuAc) but not GM3 (NeuGc) can effectively induce the melanoma specific Ts as did the soluble antigen. The results indicated the tumor cells can escape from host-immune system by stimulating the repertoire of Ts for self-antigen, GM3. To understand the biological role of GM3, we have established mutant clones of no-expressor of GM3 recognized by M2590. The clones were found to have lower attachment to laminin and type IV collagen and poor ability of lung metastasis.  相似文献   

17.
The ganglioside GM3 synthase (SAT-I), encoded by a single-copy gene, is a primary glycosyltransferase for the synthesis of complex gangliosides. Although its expression is tightly controlled during early embryo development and postnatal development and maturation in the brain, the physiological role of ganglioside GM3 in the regulation of neuronal functions has not been elucidated. In the present study, we examined motor activity, cognitive and emotional behaviors, and drug administration in juvenile GM3-knockout (GM3-KO) mice. GM3-KO male and female mice showed hyperactivity in the motor activity test, Y-maze test, and elevated plus maze test. In the Y-maze test, there was significantly less spontaneous alternation behavior in GM3-KO male mice than in wild-type mice. In the elevated plus maze test, the amount of time spent on the open arms by GM3-KO male mice was significantly higher than that of sex-matched wild-type mice. In contrast, there was no significant difference between GM3-KO and wild-type female mice in these tests. Thus, juvenile GM3-KO mice show gender-specific phenotypes resembling attention-deficit hyperactivity disorder (ADHD), namely hyperactivity, reduced attention, and increased impulsive behaviors. However, administration of methylphenidate hydrochloride (MPH) did not ameliorate hyperactivity in either male or female GM3-KO mice. Although these data demonstrate the involvement of ganglioside GM3 in ADHD and the ineffectiveness of MPH, the first-choice psychostimulant for ADHD medication, our studies indicate that juvenile GM3-KO mice are a useful tool for neuropsychological studies.  相似文献   

18.
GM2 ganglioside, although scarce in normal adult brain, is the predominant ganglioside accumulating in several types of lysosomal disorders, most notably Tay-Sachs disease. Pyramidal neurons of cerebral cortex in Tay-Sachs, as well as many other types of neuronal storage disorders, are known to exhibit a phenomenon believed unique to storage disorders: growth of ectopic dendrites. Recent studies have shown that a common metabolic abnormality shared by storage diseases with ectopic dendrite growth is the abnormal accumulation of GM2 ganglioside. The correlation between increased levels of GM2 and the presence of ectopic dendrites has been found in both ganglioside and nonganglioside storage disorders, the latter including sphingomyelin-cholesterol lipidosis, mucopolysaccharidosis, and -mannosidosis. Quantitative HPTLC analysis has shown that increases in GM2 occur in proportion to the incidence of ectopic dendrite growth, whereas, other gangliosides, including GM1, lack similar increases. Immunocytochemical studies of all nonganglioside storage diseases which exhibit ectopic dendritogenesis have revealed heightened GM2 ganglioside-immunoreactivity in the cortical pyramidal cell population, whereas neurons in normal adult brain exhibit little or no staining for this ganglioside. Further, studies examining disease development have consistently shown that accumulation of GM2 gangliosideprecedes growth of ectopic dendrites, indicating that it is not simply occurring secondary to new membrane production. These findings have prompted an examination for a similar relationship between GM2 ganglioside and dendritogenesis in cortical neurons of normal developing brain. Results show that GM2 ganglioside-immunoreactivity is consistently elevated in immature neurons during the period when they are undergoing active dendritic initiation, but this staining diminishes dramatically as the dendritic tress of these cells mature. Collectively, these studies on diseased and normal brain offer compelling evidence that GM2 ganglioside plays a pivotal role in the regulation of dendritogenesis in cortical pyramidal neurons.Special issue dedicated to Dr. Leon S. Wolfe.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号