首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Class 1 integrons carried by pathogens have acquired over 100 different gene cassettes encoding resistance to antimicrobial compounds, helping to generate a crisis in the management of infectious disease. It is presumed that these cassettes originated from environmental bacteria, but exchange of gene cassettes has surprisingly never been demonstrated outside laboratory or clinical contexts. We aimed to identify a natural environment where such exchanges might occur, and determine the phylogenetic range of participating integrons. Here we examine freshwater biofilms and show that families of cassettes conferring resistance to quaternary ammonium compounds ( qac ) are found on class 1 integrons identical to those from clinical contexts, on sequence variants of class 1 integrons only known from natural environments, and on other diverse classes of integrons only known from the chromosomes of soil and freshwater Proteobacteria . We conclude that gene cassettes might be readily shared between different integron classes found in environmental, commensal and pathogenic bacteria. This suggests that class 1 integrons in pathogens have access to a vast pool of gene cassettes, any of which could confer a phenotype of clinical relevance. Exploration of this resource might allow identification of resistance or virulence genes before they become part of multi-drug-resistant human pathogens.  相似文献   

3.
Integrons are genetic elements known for their role in the acquisition and expression of genes conferring antibiotic resistance. Such acquisition is mediated by an integron-encoded integrase, which captures genes that are part of gene cassettes. To test whether integrons occur in environments with no known history of antibiotic exposure, PCR primers were designed to conserved regions of the integrase gene and the gene cassette recombination site. Amplicons generated from four environmental DNA samples contained features typical of the integrons found in antibiotic-resistant and pathogenic bacteria. The sequence diversity of the integrase genes in these clones was sufficient to classify them within three new classes of integron. Since they are derived from environments not associated with antibiotic use, integrons appear to be more prevalent in bacteria than previously observed.  相似文献   

4.
Lateral gene transfer has been proposed as a fundamental process underlying bacterial diversity. Transposons, plasmids and phage are widespread and have been shown to significantly contribute to lateral gene transfer. However, the processes by which disparate genes are assembled and integrated into the host regulatory network to yield new phenotypes are poorly known. Recent discoveries about the integron/gene cassette system indicate it has the potential to play a role in this process. Gene cassettes are small mobile elements typically consisting of a promoterless orf and a recombination site. Integrons are capable of acquisition and re-arrangement of gene cassettes and of the expression of their associated genes. The potential of the integron/gene cassette system is thus largely determined by the diversity contained within the cassette pool and the rate at which integrons sample this pool. We show here using a polymerase chain reaction (PCR) approach by which the environmental gene cassette (EGC) metagenome can be directly sampled that this metagenome contains both protein-coding and non-protein coding genes. Environmental gene cassette-associated recombination sites showed greater diversity than previously seen in integron arrays. Class 1 integrons were shown to be capable of accessing this gene pool through tests of recombinational activity with a representative range of EGCs. We propose that gene cassettes represent a vast, prepackaged genetic resource that could be thought of as a metagenomic template for bacterial evolution.  相似文献   

5.
Large population sizes, rapid growth and 3.8 billion years of evolution firmly establish microorganisms as a major source of the planet''s biological and genetic diversity. However, up to 99% of the microorganisms in a given environment cannot be cultured. Culture-independent methods that directly access the genetic potential of an environmental sample can unveil new proteins with diverse functions, but the sequencing of random DNA can generate enormous amounts of extraneous data. Integrons are recombination systems that accumulate open reading frames (gene cassettes), many of which code for functional proteins with enormous adaptive potential. Some integrons harbor hundreds of gene cassettes and evidence suggests that the gene cassette pool may be limitless in size. Accessing this genetic pool has been hampered since sequence-based techniques, such as hybridization or PCR, often recover only partial genes or a small subset of those present in the sample. Here, a three-plasmid genetic strategy for the sequence-independent recovery of gene cassettes from genomic libraries is described and its use by retrieving functional gene cassettes from the chromosomal integron of Vibrio vulnificus ATCC 27562 is demonstrated. By manipulating the natural activity of integrons, we can gain access to the caches of functional genes amassed by these structures.  相似文献   

6.
7.
Class 1 integrons have strongly influenced the evolution of multiple antibiotic resistance. Diverse integrons have recently been detected directly in a range of natural environments. In order to characterize the properties of these environmental integrons, we sought to isolate organisms containing integrons from soils, which resulted in the isolation of Pseudomonas stutzeri strain Q. Further isolation efforts targeted at this species resulted in recovery of two other strains (P and BAM). 16S rRNA sequences and chromosome mapping showed that these three strains are very closely related clonal variants in a single genomovar of P. stutzeri. Only strains Q and BAM were found to contain an integron and an associated gene cassette array. The intI and attI components of these strains showed 99 and 90% identity, respectively. The structure of these integrons and their associated gene cassettes was similar to that reported previously for other integron classes. The two integrons contained nonoverlapping sets of cassette-associated genes. In contrast, many of the cassette-associated recombination sites in the two integrons were similar and were considered to constitute a distinct subfamily consisting of 59-base element (59-be) recombination sites (the Pseudomonas subfamily). The recombination activity of P. stutzeri integron components was tested in cointegrate assays. IntIPstQ was shown to catalyze site-specific recombination between its cognate attI site and 59-be sites from antibiotic resistance gene cassettes. While IntIPstQ did not efficiently mediate recombination between members of the Pseudomonas 59-be subfamily and other 59-be types, the former sites were functional when they were tested with IntI1. We concluded that integrons present in P. stutzeri possess recombination activity and represent a hot spot for genomic diversity in this species.  相似文献   

8.
A hundred and six Pseudomonas aeruginosa isolates from clinical cases were screened using PCR for the presence of integrons and associated resistance gene cassettes. Forty-four isolates harboured class 1 integrons (41.5%), of which 29 isolates (66%) also carried gene cassettes. The aacA gene was most frequently found within class 1 integrons (69%), followed by blaOXA family genes (52%). From class 1 integron-positive strains, we detected a total of 15 isolates (34%) carrying no gene cassettes. Restriction fragment-length polymorphism analysis of the integrons variable region revealed some identical structures, as well as distinct profiles indicating heterogeneity among these cassette regions. Multiresistance was observed in 71% of isolates, nevertheless no strong correlation was observed between integron presence and multiresistance. This is the first report showing class 1 integron prevalence and gene cassette content in P. aeruginosa isolates from clinical settings in the Brazilian Amazon.  相似文献   

9.
The vast majority of bacteria in the environment have yet to be cultured. Consequently, a major proportion of both genetic diversity within known gene families and an unknown number of novel gene families reside in these uncultured organisms. Isolation of these genes is limited by lack of sequence information. Where such sequence data exist, PCR directed at conserved sequence motifs recovers only partial genes. Here we outline a strategy for recovering complete open reading frames from environmental DNA samples. PCR assays were designed to target the 59-base element family of recombination sites that flank gene cassettes associated with integrons. Using such assays, diverse gene cassettes could be amplified from the vast majority of environmental DNA samples tested. These gene cassettes contained complete open reading frames, the majority of which were associated with ribosome binding sites. Novel genes with clear homologies to phosphotransferase, DNA glycosylase, methyl transferase, and thiotransferase genes were identified. However, the majority of amplified gene cassettes contained open reading frames with no identifiable homologues in databases. Accumulation analysis of the gene cassettes amplified from soil samples showed no signs of saturation, and soil samples taken at 1-m intervals along transects demonstrated different amplification profiles. Taken together, the genetic novelty, steep accumulation curves, and spatial heterogeneity of genes recovered show that this method taps into a vast pool of unexploited genetic diversity. The success of this approach indicates that mobile gene cassettes and, by inference, integrons are widespread in natural environments and are likely to contribute significantly to bacterial diversity.  相似文献   

10.
The vast majority of bacteria in the environment have yet to be cultured. Consequently, a major proportion of both genetic diversity within known gene families and an unknown number of novel gene families reside in these uncultured organisms. Isolation of these genes is limited by lack of sequence information. Where such sequence data exist, PCR directed at conserved sequence motifs recovers only partial genes. Here we outline a strategy for recovering complete open reading frames from environmental DNA samples. PCR assays were designed to target the 59-base element family of recombination sites that flank gene cassettes associated with integrons. Using such assays, diverse gene cassettes could be amplified from the vast majority of environmental DNA samples tested. These gene cassettes contained complete open reading frames, the majority of which were associated with ribosome binding sites. Novel genes with clear homologies to phosphotransferase, DNA glycosylase, methyl transferase, and thiotransferase genes were identified. However, the majority of amplified gene cassettes contained open reading frames with no identifiable homologues in databases. Accumulation analysis of the gene cassettes amplified from soil samples showed no signs of saturation, and soil samples taken at 1-m intervals along transects demonstrated different amplification profiles. Taken together, the genetic novelty, steep accumulation curves, and spatial heterogeneity of genes recovered show that this method taps into a vast pool of unexploited genetic diversity. The success of this approach indicates that mobile gene cassettes and, by inference, integrons are widespread in natural environments and are likely to contribute significantly to bacterial diversity.  相似文献   

11.
Gene cassettes and cassette arrays in mobile resistance integrons   总被引:7,自引:0,他引:7  
Gene cassettes are small mobile elements, consisting of little more than a single gene and recombination site, which are captured by larger elements called integrons. Several cassettes may be inserted into the same integron forming a tandem array. The discovery of integrons in the chromosome of many species has led to the identification of thousands of gene cassettes, mostly of unknown function, while integrons associated with transposons and plasmids carry mainly antibiotic resistance genes and constitute an important means of spreading resistance. An updated compilation of gene cassettes found in sequences of such 'mobile resistance integrons' in GenBank was facilitated by a specially developed automated annotation system. At least 130 different (<98% identical) cassettes that carry known or predicted antibiotic resistance genes were identified, along with many cassettes of unknown function. We list exemplar GenBank accession numbers for each and address some nomenclature issues. Various modifications to cassettes, some of which may be useful in tracking cassette epidemiology, are also described. Despite potential biases in the GenBank dataset, preliminary analysis of cassette distribution suggests interesting differences between cassettes and may provide useful information to direct more systematic studies.  相似文献   

12.
Ke X  Gu B  Pan S  Tong M 《Archives of microbiology》2011,193(11):767-774
Integrons are gene capture and expression systems that are characterized by the presence of an integrase gene. This encodes an integrase, a recombined site, and a promoter. They are able to capture gene cassettes from the environment and incorporate them using site-specific recombination. The role of integrons and gene cassettes in the dissemination of multidrug resistance in Gram-negative bacteria is significant. In Shigella species, antimicrobial resistance is often associated with the presence of class 1 and class 2 integrons that contain resistance gene cassettes. Multiple and complex expression regulation mechanisms involving mobile genetic elements in integrons have been developed in the evolution of Shigella strains. Knowledge of the epidemiology and molecular mechanisms of antimicrobial resistance in this important pathogen is essential for the implementation of intervention strategies. This review was conducted to introduce the structures and functions of integrons in Shigella species and mechanisms that control integron-mediated events linked to antibiotic resistance.  相似文献   

13.
Integrons and gene cassettes: hotspots of diversity in bacterial genomes   总被引:1,自引:0,他引:1  
Integrons are genetic units found in many bacterial species that are defined by their ability to capture small mobile elements called gene cassettes. Cassettes usually contain only one gene, potentially any gene, and an attC recombination site, and thousands of cassettes have been sequenced. A specialized IntI site-specific recombinase encoded by the integron recognizes attC and incorporates cassettes into an attI site located adjacent to the intI gene. Over 100 types of integrons have been found, most in bacterial chromosomes. They can all potentially share the same cassettes and, as recombination between attC in a cassette and an attI can occur repeatedly, an integron can contain from zero to hundreds of cassettes. Cassette arrays that are not located next to an intI gene, or solo cassettes at apparently random sites, are also seen. Hence, integrons contribute to generation of diversity in bacterial, plasmid, and transposon genomes and facilitate extensive sharing of information among bacteria.  相似文献   

14.
The integron is a mobile gene element which harbors antibiotic-resistance gene cassettes capable of site-specific integration. Among the four known types of integrons, the class 1 integron has been associated with multidrug-resistance in pathogenic bacteria. These gene cassettes have been the focus of a series of studies. The gene cassettes share a common promoter, and their expression levels are affected not only by their proximity to the promoter, but also by the strength (weak, hybrid and strong) of the common promoter, P1, as well as the presence of the additional promoter, P2. In this study, we developed molecular methods for the differentiation of promoter structures using PCR, restriction enzyme analysis, and polyacrylamide gel electrophoresis, and have applied them to the characterization of class 1 integrons in 33 non-typhoidal Salmonella serotypes in Korea. Class 1 integrons were detected in four serotypes: S. Derby (SD), S. Istanbul (SI), S. Paratyphi B (SPB), and S. Livingstone (SL), and the amplicon sizes were 1.0 Kb (SD, SI and SPB) and 2.0 Kb (SL). All of the 1.0 kb amplicons harbored gene cassettes (aadA1 or aadA2), but the 2.0 kb amplicon harbored three (dhfrXII-orfF-aadA2) gene cassettes, which conferred streptomycin/spectinomycin (aadA) and trimethoprim (dhfr) resistances. Our promoter structure study revealed three types of promoters; strong P1 (SD), weak P1 (SPB and SL), and weak P1+P2 (SI). In conclusion, the class 1 integrons were detected in Korean NTS, and their promoter structures were found to be variable. Therefore, our methods may prove helpful in terms of our understanding of molecular diversity, as well as the transmission of class 1 integrons and phenotype-genotype relationships in antibiotic-resistance.  相似文献   

15.
Integrons are horizontal gene transfer (HGT) systems containing elements necessary for site-specific recombination and expression of foreign DNA. The overall phylogenetic distribution of integrons and range of genes that can be transferred by integrons are unknown. This report contains an exploration of integrons in an environmental microbial community and an investigation of integron evolution. First, using culture-independent techniques, we explored the diversity of integrons and integron-transferred genes in heavy-metal-contaminated mine tailings. Using degenerate primers, we amplified integron integrase genes from the tailings. We discovered 14 previously undescribed integrase genes, including six novel gene lineages. In addition, we found 11 novel gene cassettes in this sample. One of the gene cassettes that we sequenced is similar to a gene that codes for a step in a pathway for nitroaromatic catabolism, a group of compounds associated with mining activity. This suggests that integrons may be important for gene transfer in response to selective pressures other than the presence of antibiotics. We also investigated the evolution of integrons by statistically comparing the phylogenies of 16S rRNA and integrase genes from the same organisms, using sequences from GenBank and various sequencing projects. We found significant differences between the organismal (16S rRNA) and integrase trees, and we suggest that these differences may be due to HGT.  相似文献   

16.
Integrons are horizontal gene transfer (HGT) systems containing elements necessary for site-specific recombination and expression of foreign DNA. The overall phylogenetic distribution of integrons and range of genes that can be transferred by integrons are unknown. This report contains an exploration of integrons in an environmental microbial community and an investigation of integron evolution. First, using culture-independent techniques, we explored the diversity of integrons and integron-transferred genes in heavy-metal-contaminated mine tailings. Using degenerate primers, we amplified integron integrase genes from the tailings. We discovered 14 previously undescribed integrase genes, including six novel gene lineages. In addition, we found 11 novel gene cassettes in this sample. One of the gene cassettes that we sequenced is similar to a gene that codes for a step in a pathway for nitroaromatic catabolism, a group of compounds associated with mining activity. This suggests that integrons may be important for gene transfer in response to selective pressures other than the presence of antibiotics. We also investigated the evolution of integrons by statistically comparing the phylogenies of 16S rRNA and integrase genes from the same organisms, using sequences from GenBank and various sequencing projects. We found significant differences between the organismal (16S rRNA) and integrase trees, and we suggest that these differences may be due to HGT.  相似文献   

17.
Salmonella are well-known pathogens. Virulence determinants can be present on the chromosome, usually encoded on pathogenicity islands, or on plasmids and bacteriophages. Antibiotic resistance determinants usually are encoded on plasmids, but can also be present on the multidrug resistance region of Salmonella Genomic Island 1 (SGI1). Virulence plasmids show a remarkable diversity in the combination of virulence factors they encode, which appears to adapt them to specific hosts and the ability to cause gastroenteritidis or systemic disease. The appearance of plasmids with two replicons may help to extend the host range of these plasmids and thereby increase the virulence of previously non- or low pathogenic serovars. Antibiotic resistance among Salmonella is also increasing. This increase is not only in the percentage isolates resistant to a particular antibiotic, but also the development of resistance against newer antibiotics. The increased occurrence of integrons is particularly worrying. Integrons can harbour a varying set of antibiotic resistance encoding gene cassettes. Gene cassettes can be exchanged between integrons. Although the gene cassettes currently present in Salmonella integrons encode for older antibiotics (however, some still frequently used) gene cassettes encoding resistance against the newest antibiotics has been documented in Enterobacteriaceae. Furthermore, beta-lactamases with activity against broad-spectrum cephalosporins, which are often used in empiric therapy, have been found associated with integrons. So, empiric treatment of Salmonella infections becomes increasingly more difficult. The most worrisome finding is that virulence and resistance plasmids form cointegrates. These newly formed plasmids can be selected by antibiotic pressure and thereby for virulence factors. Taken together these trends may lead to more virulent and antibiotic-resistant Salmonella.  相似文献   

18.
Integrons are genetic elements that contribute to lateral gene transfer in bacteria as a consequence of possessing a site-specific recombination system. This system facilitates the spread of genes when they are part of mobile cassettes. Most integrons are contained within chromosomes and are confined to specific bacterial lineages. However, this is not the case for class 1 integrons, which were the first to be identified and are one of the single biggest contributors to multidrug-resistant nosocomial infections, carrying resistance to many antibiotics in diverse pathogens on a global scale. The rapid spread of class 1 integrons in the last 60 years is partly a result of their association with a specific suite of transposition functions, which has facilitated their recruitment by plasmids and other transposons. The widespread use of antibiotics has acted as a positive selection pressure for bacteria, especially pathogens, which harbor class 1 integrons and their associated antibiotic resistance genes. Here, we have isolated bacteria from soil and sediment in the absence of antibiotic selection. Class 1 integrons were recovered from four different bacterial species not known to be human pathogens or commensals. All four integrons lacked the transposition genes previously considered to be a characteristic of this class. At least two of these integrons were located on a chromosome, and none of them possessed antibiotic resistance genes. We conclude that novel class 1 integrons are present in a sediment environment in various bacteria of the beta-proteobacterial class. These data suggest that the dispersal of this class may have begun before the "antibiotic era."  相似文献   

19.
Bacterial superintegrons, a source of new genes with adaptive functions   总被引:1,自引:0,他引:1  
Data on the structural organization of the platform of integrons, gene cassettes, and integrons with integrated cassettes of genes encoding drug resistance are briefly summarized. Data obtained during recent years about superintegrons or chromosomal integrons, characteristics of their organization, the presence of genes with known adaptive and unidentified functions in them, as well as data on the differences between superintegrons and previously described multiple resistance integrons, are considered in more detail. Studies that provide evidence for translocations of gene cassettes from stationary chromosomal integrons into integrons associated with mobile elements resulting in gene flows in natural bacterial populations, which favors their survival and adaptation to changing environment, are also reviewed.  相似文献   

20.
Bacterial superintegrons, a source of new genes with adaptive functions   总被引:1,自引:0,他引:1  
Il'ina TS 《Genetika》2006,42(11):1536-1546
Data on the structural organization of the platform of integrons, gene cassettes, and integrons with integrated cassettes of genes encoding drug resistance are briefly summarized. Data obtained during recent years about superintegrons or chromosomal integrons, characteristics of their organization, the presence of genes with known adaptive and unidentified functions in them, as well as data on the differences between superintegrons and previously described multiple resistance integrons, are considered in more detail. Studies that provide evidence for translocations of gene cassettes from stationary chromosomal integrons into integrons associated with mobile elements resulting in gene flows in natural bacterial populations, which favors their survival and adaptation to changing environment, are also reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号