首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When grown under a 12-12 light-dark regime, Amphidinium, Biddulphia, Chaetoceros, Chroomonas, Cylindrotheca, Dunaliella, Pavlova, and Phaeodactylum had a higher photosynthetic rate and photosynthesis: respiration ratio than when grown under constant illumination. The chlorophyll content was also higher (except for Biddulphia and Chaetoceros), the assimilation number was higher (except for Pavlova), but growth was less (except for Biddulphia which showed no difference and for Amphidinium which grew faster).  相似文献   

2.
Young plants of Laminaria hyperborea collected from the field were grown for 2·5–4 weeks in blue, green, red and white (simulated underwater) light fields at 5, 20 and 100 μmol m-2s-1. The absolute concentrations of all pigments showed little variation with irradiance in green and white light, but decreased in high irradiances of red and blue light. The ratio of fucoxanthin to chlorophyll a also increased in the latter treatments, as did the chlorophyll c:a ratio in bright red light. There was little difference in the action spectrum for photosynthesis between the different light qualities at any one irradiance, but the action spectra for plants grown at 100 μmol m-2s-1 showed deeper troughs and higher peaks than those for plants grown at lower irradiances. Gross photosynthesis per unit of thallus area at 10 μmol m-2s-1 decreased in plants with low total pigment concentrations, but the photosynthesis per unit of pigment concentration increased. This suggestion of self-shading of pigment molecules within the algal thalli was supported by a flattening of the action spectrum in plants with higher chlorophyll a contents. The variations observed between the action spectra for different plants could thus be attributed to the decrease in pigment content at high irradiances, and not to the light quality in which the plants were grown.  相似文献   

3.
Light quality is a significant environmental factor that influences photosynthetic pigments in cyanobacteria. In the present study, we illuminated the marine cyanobacteria Synechococcus sp. with white (350 ~ 700 nm), red (630 nm), green (530 nm), and blue (450 nm) light emitting diodes (LEDs) and measured pigment levels (chlorophyll, carotenoid, and phycobiliprotein) and expression of photosynthesis-related genes (pebA, psbB, and psaE). The amount of photosynthetic pigments (total pigments, chlorophyll, and phycobiliproteins) was higher in the green and blue LED groups than in the white and red LED groups after 8 days of culture. The cells were prepared in a 1.5 mL solution for the analysis of the total pigments, chlorophyll, and carotenoid, and in a 2 mL for analysis of phycobiliproteins. The mRNA expression levels of pebA and psbB significantly increased after 8 days of cultivation under green and blue light, while the mRNA expression levels of psaE decreased. These results indicate that green and blue light increase the accumulation of photosynthetic pigments. In contrast red light induced mRNA expression of psaE and stimulated cell growth in Synechococcus sp.  相似文献   

4.
To understand how light quality influences plant photosynthesis, we investigated chloroplastic ultrastructure, chlorophyll fluorescence and photosynthetic parameters, Rubisco and chlorophyll content and photosynthesis-related genes expression in cucumber seedlings exposed to different light qualities: white, red, blue, yellow and green lights with the same photosynthetic photon flux density of 100 μmol m?2 s?1. The results revealed that plant growth, CO2 assimilation rate and chlorophyll content were significantly reduced in the seedlings grown under red, blue, yellow and green lights as compared with those grown under white light, but each monochromatic light played its special role in regulating plant morphogenesis and photosynthesis. Seedling leaves were thickened and slightly curled; Rubisco biosynthesis, expression of the rca, rbcS and rbcL, the maximal photochemical efficiency of PSII (Fv/Fm) and quantum yield of PSII electron transport (ФPSII) were all increased in seedlings grown under blue light as compared with those grown under white light. Furthermore, the photosynthetic rate of seedlings grown under blue light was significantly increased, and leaf number and chlorophyll content of seedlings grown under red light were increased as compared with those exposed to other monochromatic lights. On the contrary, the seedlings grown under yellow and green lights were dwarf with the new leaves etiolated. Moreover, photosynthesis, Rubisco biosynthesis and relative gene expression were greatly decreased in seedlings grown under yellow and green light, but chloroplast structural features were less influenced. Interestingly, the Fv/Fm, ФPSII value and chlorophyll content of the seedlings grown under green light were much higher than those grown under yellow light.  相似文献   

5.
Previous work has shown that exposing broiler eggs to white light during incubation can improve hatchability and post-hatch animal welfare. It was hypothesized that due to how different wavelengths of light can affect avian physiology differently, and how pigmented eggshells filter light that different monochromatic wavelengths would have differential effects on hatchability and post-hatch animal welfare indicators. To determine, we incubated chicken eggs (n=6912) under either no light (dark), green light, red light or white light; the light level was 250 lux. White and red light were observed to increase hatch of fertile (P<0.05) over dark and green light incubated eggs. White, red and green light exposure during incubation improved (P<0.05) the proportion of non-defect chicks over dark incubated eggs. Post-hatch 45-day weight and feed conversion was not affected by light exposure of any wavelength (P>0.05). Fear response of during isolation and tonic immobility was reduced (P<0.05) in broilers incubated under white or red light when compared with either green or dark broilers. Broilers incubated with white or red light had lower (P<0.05) composite asymmetry scores and higher (P<0.05) humoral immunity titers than dark incubated broilers, however, green light broilers did not differ (P>0.05) from dark incubated broilers. All light incubated broilers had lower (P<0.05) plasma corticosterone and higher (P<0.05) plasma serotonin concentrations than dark incubated broilers. These results indicate that white light and red light that is a component of it are possibly the key spectrum to improving hatchability and lower fear and stress susceptibility, whereas green light is not as effective. Incubating broiler eggs under these spectrums could be used to improve hatchery efficiency and post-hatch animal welfare at the same time.  相似文献   

6.
Changes in photosynthetic pigment ratios showed that the Chlorophyll d-dominated oxyphotobacterium Acaryochloris marina was able to photoacclimate to different light regimes. Chl d per cell were higher in cultures grown under low irradiance and red or green light compared to those found when grown under high white light, but phycocyanin/Chl d and carotenoid/Chl d indices under the corresponding conditions were lower. Chl a, considered an accessory pigment in this organism, decreased respective to Chl d in low irradiance and low intensity non-white light sources. Blue diode PAM (Pulse Amplitude Modulation) fluorometry was able to be used to measure photosynthesis in Acaryochloris. Light response curves for Acaryochloris were created using both PAM and O2 electrode. A linear relationship was found between electron transport rate (ETR), measured using a PAM fluorometer, and oxygen evolution (net and gross photosynthesis). Gross photosynthesis and ETR were directly proportional to one another. The optimum light for white light (quartz halogen) was about 206 ± 51 μmol m− 2 s− 1 (PAR) (Photosynthetically Active Radiation), whereas for red light (red diodes) the optimum light was lower (109 ± 27 μmol m− 2 s− 1 (PAR)). The maximum mean gross photosynthetic rate of Acaryochloris was 73 ± 7 μmol mg Chl d− 1 h− 1. The gross photosynthesis/respiration ratio (Pg/R) of Acaryochloris under optimum conditions was about 4.02 ± 1.69. The implications of our findings will be discussed in relation to how photosynthesis is regulated in Acaryochloris.  相似文献   

7.
Acclimation of the photosynthetic apparatus to light absorbed primarily by photosystem I (PSI) or by photosystem II (PSII) was studied in the unicellular red alga Porphyridium cruentum (ATCC 50161). Cultures grown under green light of 15 microeinsteins per square meter per second (PSII light; absorbed predominantly by the phycobilisomes) exhibited a PSII/PSI ratio of 0.26 ± 0.05. Under red light (PSI light; absorbed primarily by chlorophyll) of comparable quantum flux, cells contained nearly five times as many PSII per PSI (1.21 ± 0.10), and three times as many PSII per cell. About 12% of the chlorophyll was attributed to PSII in green light, 22% in white light, and 39% in red light-grown cultures. Chlorophyll antenna sizes appeared to remain constant at about 75 chlorophyll per PSII and 140 per PSI. Spectral quality had little effect on cell content or composition of the phycobilisomes, thus the number of PSII per phycobilisome was substantially greater in red light-grown cultures (4.2 ± 0.6) than in those grown under green (1.6 ± 0.3) or white light (2.9 ± 0.1). Total photosystems (PSI + PSII) per phycobilisome remained at about eight in each case. Carotenoid content and composition was little affected by the spectral composition of the growth light. Zeaxanthin comprised more than 50% (mole/mole), β-carotene about 40%, and cryptoxanthin about 4% of the carotenoid pigment. Despite marked changes in the light-harvesting apparatus, red and green light-grown cultures have generation times equal to that of cultures grown under white light of only one-third the quantum flux.  相似文献   

8.
Halymenia floresii is an edible species consumed in some Asian markets. In the Yucatan peninsula coast of Mexico, H. floresii dominates rocky substrata between 3 and 40 m where it grows up to 50 cm high. After analyzing the seasonal pattern of pigment content on H. floresii, we evaluate if and how the spectral composition of light affects growth and pigment dynamics under laboratory cultivation. Unialgal cultures were exposed to white, blue, red and green light in a 3-week experiment. Green light resulted in the highest algal growth rates. Synthesis of chlorophyll a, α-carotene and lutein, but not of β-carotene, was induced by white or green light. Phycocyanin synthesis was stimulated by blue light and phycoerythrin synthesis by blue or red light. Light quality treatments may be used to manipulate pigment composition in Halymenia floresii cultures.  相似文献   

9.
Growth and pigment concentrations of the, estuarine dinoflagellate, Prorocentrum mariae-lebouriae (Parke and Ballantine) comb. nov., were measured in cultures grown in white, blue, green and red radiation at three different irradiances. White irradiances (400–800 nm) were 13.4, 4.0 and 1.8 W · m?2 with photon flux densities of 58.7 ± 3.5, 17.4 ± 0.6 and 7.8 ± 0.3 μM quanta · m?2· s?1, respectively. All other spectral qualities had the same photon flux densities. Concentrations of chlorophyll a and chlorophyll c were inversely related to irradiance. A decrease of 7- to 8-fold in photon flux density resulted in a 2-fold increase in chlorophyll a and c and a 1.6- to 2.4-fold increase in both peridinin and total carotenoid concentrations. Cells grown in green light contained 22 to 32% more peridinin per cell and exhibited 10 to 16% higher peridinin to chlorophyll a ratios than cells grown in white light. Growth decreased as a function of irradiance in white, green and red light grown cells but was the same at all blue light irradiances. Maximum growth rates occurred at 8 μM quanta · m?2· s?1 in blue light, while in red and white light maximum growth rates occurred at considerably higher photon flux densities (24 to 32 μM quanta · m?2· s?1). The fastest growth rates occurred in blue and red radiation. White radiation producing maximum growth was only as effective as red and blue light when the photon flux density in either the red or blue portion of the white light spectrum was equivalent to that of a red or of blue light treatment which produced maximum growth rates. These differences in growth and pigmentation indicate that P. mariae-lebouriae responds to the spectral quality under which it is grown.  相似文献   

10.
Growth rates in terms of area increase per 30 min were measured in flat thalli of several seaweed, species by means of computer-assisted image analysis, at 12 h light per day and a photon fluence rate of 20 μmol · m-2· s?1. Light fields included white fluorescent, imitated underwater, blue, green, and red light. In the green alga Ulva pseudocurvata Koeman et Hoek, blue light caused an immediate reduction of thallus area and growth rate after the onset of light, whereas green light and red light resulted in an initial peak in growth rate followed by inhibition 60 min after the onset of light. More growth was observed in darkness than in blue light in U. pseudocurvata. All brown and red algae tested, with Laminaria saccharina (L.) Lamour. and Palmaria palmata Stackh. as the main investigated species, grew faster during the day than during the night, irrespective of light quality during the main light phase. The upper intertidal red alga Porphyra umbilicalis (L.) J. Ag. achieved most of its thallus expansion per 24 h during the first 3 h of the light phase, with maximum growth rates of 2–3% increase in area per hour. Maximal growth rates were 0.7% for juvenile laminarian sporophytes and were lower than this in Palmaria palmata and other perennial red algae. The temporary growth inhibition by light in Ulva pseudocurvata suggests photomorphogenetic events, similar to the kinetics of stem elongation in higher plant seedlings after blue or red light pulses in darkness.  相似文献   

11.
The effect of light quality on the composition, function and structure of the thylakoid membranes, as well as on the photosynthetic rates of intact fronds from Asplenium australasicum, a shade plant, grown in blue, white, or red light of equal intensity (50 microeinsteins per square meter per second) was investigated. When compared with those isolated from plants grown in white and blue light, thylakoids from plants grown in red light have higher chlorophyll a/chlorophyll b ratios and lower amounts of light-harvesting chlorophyll a/b-protein complexes than those grown in blue light. On a chlorophyll basis, there were higher levels of PSII reaction centers, cytochrome f and coupling factor activity in thylakoids from red light-grown ferns, but lower levels of PSI reaction centers and plastoquinone. The red light-grown ferns had a higher PSII/PSI reaction center ratio of 4.1 compared to 2.1 in blue light-grown ferns, and a larger apparent PSI unit size and a lower PSII unit size. The CO2 assimilation rates in fronds from red light-grown ferns were lower on a unit area or fresh weight basis, but higher on a chlorophyll basis, reflecting the higher levels of electron carriers and electron transport in the thylakoids.

The structure of thylakoids isolated from plants grown under the three light treatments was similar, with no significant differences in the number of thylakoids per granal stack or the ratio of appressed membrane length/nonappressed membrane length. The large freeze-fracture particles had the same size in the red-, blue-, and white-grown ferns, but there were some differences in their density. Light quality is an important factor in the regulation of the composition and function of thylakoid membranes, but the effects depend upon the plant species.

  相似文献   

12.
Pigments absorbing 350–1,050 nm radiation have had an important role on the Earth for at least 3.5 billion years. The ion pumping rhodopsins absorb blue and green photons using retinal and pump ions across cell membranes. Bacteriochlorophylls (BChl), absorbing in the violet/blue and near infra red (NIR), power anoxygenic photosynthesis, with one photoreaction centre; and chlorophylls (Chl), absorbing in the violet/blue and red (occasionally NIR) power oxygenic photosynthesis, with two photoreaction centres. The accessory (bacterio)chlorophylls add to the spectral range (bandwidth) of photon absorption, e.g., in algae living at depth in clear oceanic water and in algae and photosynthetic (PS) bacteria in microbial mats. Organism size, via the package effect, determines the photon absorption benefit of the costs of synthesis of the pigment–protein complexes. There are unresolved issues as to the evolution of Chls vs. BChls and the role of violet/blue and NIR radiation in PS bacteria.  相似文献   

13.
Few studies have dealt with the importance of colours per se in warning signalling, with the use of a broader array of different colours. We tested the reactions of great tits (Parus major) to colour modifications (red, orange, yellow, white, blue, violet, and green) of the warning signal of the red firebug (Pyrrhocoris apterus), preserving its typical black pattern. We used the edible Guyana spotted roach (Blaptica dubia) as the prey, each of which carried a paper sticker shield of a particular colour on its back. With such prey, the effects of the other traits of the red firebug (e.g. shape of the legs and antennae or chemical signals) on the birds’ reactions were removed. All of the conspicuous forms of the prey, possessing a black pattern, were protected against great tits better than the non-patterned brown control form. The level of protection decreased from those forms with colours similar to the model and commonly occurring in warning signals in nature (red, orange, yellow), through other conspicuous colours rarely occurring in warning signals in nature (white, violet, blue), to the colour which usually occurs as cryptic in nature (green). In the green form, repeated encounters were necessary to reach avoidance. Avoidance learning came to pass despite the fact that the presented prey was neither inedible nor distasteful.  相似文献   

14.
Chlorophyll b was first detectable after 10 minutes of illumination of etiolated pea seedlings (Pisum sativum L. var Greenfeast) with continuous white light. The chlorophyll a/b ratio decreased from 300 at 10 minutes to 15 after 1 hour. There was little change in the chlorophyll a/b ratio between 1 and 2 hours, and it declined to 3 between 2 and 5 hours of illumination. In red light, the time courses of total chlorophyll synthesis and chlorophyll a/b ratio were similar to those in white light for the first 5 hours of illumination. But with increasing time of illumination with red light, there was an increase in the chlorophyll a/b ratio to 7 after 30 hours. Illumination with white light of very low intensity also gave high chlorophyll a/b ratios. Seedlings which had been illuminated for varying periods and then returned to darkness always showed an increase in chlorophyll a/b ratio during the dark period. It is concluded that the synthesis of chlorophyll b is controlled by light.  相似文献   

15.
Changes in photosynthetic pigment ratios showed that the Chlorophyll d-dominated oxyphotobacterium Acaryochloris marina was able to photoacclimate to different light regimes. Chl d per cell were higher in cultures grown under low irradiance and red or green light compared to those found when grown under high white light, but phycocyanin/Chl d and carotenoid/Chl d indices under the corresponding conditions were lower. Chl a, considered an accessory pigment in this organism, decreased respective to Chl d in low irradiance and low intensity non-white light sources. Blue diode PAM (Pulse Amplitude Modulation) fluorometry was able to be used to measure photosynthesis in Acaryochloris. Light response curves for Acaryochloris were created using both PAM and O(2) electrode. A linear relationship was found between electron transport rate (ETR), measured using a PAM fluorometer, and oxygen evolution (net and gross photosynthesis). Gross photosynthesis and ETR were directly proportional to one another. The optimum light for white light (quartz halogen) was about 206+/-51 micromol m(-2) s(-1) (PAR) (Photosynthetically Active Radiation), whereas for red light (red diodes) the optimum light was lower (109+/-27 micromol m(-2) s(-1) (PAR)). The maximum mean gross photosynthetic rate of Acaryochloris was 73+/-7 micromol mg Chl d(-1) h(-1). The gross photosynthesis/respiration ratio (P(g)/R) of Acaryochloris under optimum conditions was about 4.02+/-1.69. The implications of our findings will be discussed in relation to how photosynthesis is regulated in Acaryochloris.  相似文献   

16.
Terborgh J 《Plant physiology》1966,41(9):1401-1410
Growth of the giant unicellular green alga, Acetabularia crenulata, stops in red light of broad spectral composition, but can be restored by the addition of small quantities of blue light. Long-term records of O2 evolution indicate that the photosynthesis of Acetabularia responds in a parallel manner to blue light. Cells photosynthesizing at a light-limited rate in white light were given red light at an intensity that served to match or somewhat increase the instantaneous rate of O2 production. A rapid decline in the rate commenced within 15 minutes and continued for 2 hours or more until it had fallen to 20 to 40% of the initial level. Very small doses of violet or blue radiation (<10−8 Einstein/cm2) then affected a complete, though temporary, restoration of the original rate of photosynthesis. Responses began after a lag of 4 to 5 minutes, regardless of their magnitude, and in the most favorable instances persisted 4 to 6 hours after the stimulus. Blue light treatments were effective as flashes as brief as 2.5 seconds, given simultaneously or in sequence with the red measuring light, or as low-intensity continuous irradiations. Blue-light induction of the response was stable over at least 5 minutes of darkness. After a suitable red-light pretreatment, 2 other algae, Chlamydomonas reinhardi and Fucus vesiculosus, were shown to respond similarly to low-intensity irradiations with blue or blue-green light.  相似文献   

17.
Phycobilisomes of Tolypothrix tenuis, a cyanobacterium capable of complete chromatic adaptation, were studied from cells grown in red and green light, and in darkness. The phycobilisome size remained constant irrespective of the light quality. The hemidiscoidal phycobilisomes had an average diameter of about 52 nanometers and height of about 33 nanometers, by negative staining. The thickness was equivalent to a phycocyanin molecule (about 10 nanometers). The molar ratio of allophycocyanin, relative to other phycobiliproteins always remained at about 1:3. Phycobilisomes from red light grown cells and cells grown heterotrophically in darkness were indistinguishable in their pigment composition, polypeptide pattern, and size. Eight polypeptides were resolved in the phycobilin region (17.5 to 23.5 kilodaltons) by isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Half of these were invariable, while others were variable in green and red light. It is inferred that phycoerythrin synthesis in green light resulted in a one for one substitution of phycocyanin, thus retaining a constant phycobilisome size. Tolypothrix appears to be one of the best examples of phycobiliprotein regulation with wavelength. By contrast, in Nostoc sp., the decrease in phycoerythrin in red light cells was accompanied by a decrease in phycobilisome size but not a regulated substitution.  相似文献   

18.
Acclimation of the photosynthetic apparatus to light absorbed primarily by phycobilisomes (which transfer energy predominantly to photosystem II) or absorbed by chlorophyll a (mainly present in the antenna of photosystem I) was studied in the macroalga Palmaria palmata L. In addition, the influence of blue and yellow light, exciting chlorophyll a and phycobilisomes, respectively, ivas investigated. All results were compared to a white light control. Complementary chromatic adaptation in terms of an enhanced ratio of phycoerythrin to phycocyanin under green light conditions was observed. Red light (mainly absorbed by chlorophyll a) and green light (mainly absorbed by phycobilisomes) caused an increase of the antenna system, which was not preferentially excited. Yellow and blue light led to intermediate states comparable to each other and white light. Growth was reduced under all light qualities in comparison to white light, especially under conditions preferably exciting phycobilisomes (green light-adapted algae had a 58% lower growth rate compared to white light-adapted algae). Red and blue light-adapted algae showed maximal photosynthetic capacity with white light excitation and significantly lower values with green light excitation. In contrast, green and yellow light-adapted algae exhibited comparable photosynthetic capacities at all excitation wavelengths. Low-temperature fluorescence emission analysis showed an increase of photosystem II emission in red light-adapted algae and a decrease in green light-adapted algae. A small increase of photosystem I emission teas also found in green light-adapted algae, but this was much less than the photosystem II emission increase observed in red light-adapted algae (both compared to phycobilisome emission). Efficiency of energy transfer from phycobilisomes to photosystem II was higher in red than in green light-adapted algae. The opposite was found for the energy transfer efficiency from phycobilisomes to photosystem I. Zeaxanthin content increased in green and blue light-adapted algae compared to red, white, and yellow light-adapted algae. Results are discussed in comparison to published data on unicellular red algae and cyanobacteria.  相似文献   

19.
We determined the effects of various light spectra (white, green, blue, and red) on the growth rate, biochemical composition, and fatty acid content of Tisochrysis lutea (Haptophyta, Isochrysidales) maintained in batch cultures. The growth rate peaked with white and blue light, and the lowest rate was observed with green and red light. The chlorophyll a content differed significantly between light spectra and growth phases—higher values were recorded with blue and red light in both growth phases. The proximal composition varied significantly with growth phases and light spectrum. In the exponential growth phase, protein content was significantly greater with blue light and in the stationary phase with green light. The level of carbohydrates in the exponential growth phase was significantly higher for white light, but unchanged in the stationary growth phase between light spectra. The lipid percentages were similar in the exponential phase but differed significantly in the stationary growth phase. The lipid percentages peaked in the stationary growth phase with red and green light. The highest eicosapentaenoic acid (EPA) levels were seen in white light in the exponential growth phase and under green light in the stationary growth phase. Docosahexaenoic acid (DHA) levels were greatest in the exponential growth phase with red light and in the stationary growth phase with green light. Blue light increased the DHA content in both growth phases. We conclude that T. lutea alters its metabolic pathways and experience shifts in growth rate, proximate composition, and fatty acid content, depending on the type of light used.  相似文献   

20.
Effect of Colored Light on Stomatal Opening Rates of Vicia faba L   总被引:3,自引:2,他引:1       下载免费PDF全文
The average opening rate of Vicia faba L. stomata was determined over an initial 20-minute light period following darkness. Nonsaturating intensities of broad band red and blue light had similar quantum effectiveness for the promotion of opening, whereas broad band green was about 40% and far red about 5% as effective. The opening rates under saturating red, green, and blue light were the same. Net photosynthesis was measured under various intensities of the same red, green, and blue light spectra. Red and blue light were equally efficient in causing photosynthesis, whereas green was 60% as effective. The light compensation points for the three colors were at higher intensities than those which saturated the opening rate response. These data suggest that only a single pigment system, probably the photosynthetic pigments, is responsible for initiating the light-induced opening response in V. faba stomata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号