首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 290 毫秒
1.
Climate change and loss of saltmarshes: consequences for birds   总被引:3,自引:0,他引:3  
R. G. Hughes 《Ibis》2004,146(S1):21-28
Saltmarshes are areas of vegetation subject to tidal inundation and are important to birds for several reasons. Saltmarshes are areas of high primary productivity and their greatest significance for coastal birds is probably as the base of estuarine food webs, because saltmarshes export considerable amounts of organic carbon to adjacent habitats, particularly to the invertebrates of mudflats. In addition, saltmarshes are of direct importance to birds by providing sites for feeding, nesting and roosting. Climate change can affect saltmarshes in a number of ways, including through sea-level rise. When sea-level rises the marsh vegetation moves upward and inland but sea walls that prevent this are said to lead to coastal squeeze and loss of marsh area. However, evidence from southeast England, and elsewhere, indicates that sea-level rise does not necessarily lead to loss of marsh area because marshes accrete vertically and maintain their elevation with respect to sea-level where the supply of sediment is sufficient. Organogenic marshes and those in areas where sediment may be more limiting (e.g. some west coast areas) may be more susceptible to coastal squeeze, as may other marshes, if some extreme predictions of accelerated rates of sea-level rise are realized.  相似文献   

2.
董欣怡  祝明建  栾博  管少平  林丰泽 《生态学报》2024,44(12):5116-5127
全球气候变暖所导致的海平面上升和快速城镇化将对沿海生境的分布和景观格局造成重大影响。评估海平面上升影响下的滨海湿地的脆弱性是对区域生态环境进行修复治理的重要依据。以粤港澳大湾区为例,基于SLAMM模型和Fragstas模型,针对六种海平面上升和土地利用耦合情景,对红树林、盐沼和潮滩三类海岸生境在2100年的面积变化、分布状况和脆弱程度进行了预测和分析。结果表明:1) 随着海平面上升,红树林和潮滩生境遭受严重退化。其中,红树林高脆弱性区主要分布在西江口、珠江口和黄茅海东岸。潮滩高脆弱性区则平均分布在大湾区沿海地带。相比之下,盐沼生境受海平面上升的影响较小。2) 与红树林和潮滩相比,土地利用模式对盐沼生境的影响最为显著。在保护已开发用地的情景下,珠江口西侧的盐沼面积大幅增加,脆弱性程度低。在保护所有旱地的情景下,盐沼生境面积虽然基本维持,但景观格局破坏严重,脆弱性程度高。本研究建议针对高脆弱区,动态调整土地利用策略,清理沿海湿地向内迁移的空间,增强沿海生境应对海平面上升的适应性。本研究可为沿海湿地的管理和保护提供科学支持。  相似文献   

3.
The objectives of this study were to identify processes that contribute to resilience of coastal wetlands subject to rising sea levels and to determine whether the relative contribution of these processes varies across different wetland community types. We assessed the resilience of wetlands to sea-level rise along a transitional gradient from tidal freshwater forested wetland (TFFW) to marsh by measuring processes controlling wetland elevation. We found that, over 5 years of measurement, TFFWs were resilient, although some marginally, and oligohaline marshes exhibited robust resilience to sea-level rise. We identified fundamental differences in how resilience is maintained across wetland community types, which have important implications for management activities that aim to restore or conserve resilient systems. We showed that the relative importance of surface and subsurface processes in controlling wetland surface elevation change differed between TFFWs and oligohaline marshes. The marshes had significantly higher rates of surface accretion than the TFFWs, and in the marshes, surface accretion was the primary contributor to elevation change. In contrast, elevation change in TFFWs was more heavily influenced by subsurface processes, such as root zone expansion or compaction, which played an important role in determining resilience of TFFWs to rising sea level. When root zone contributions were removed statistically from comparisons between relative sea-level rise and surface elevation change, sites that previously had elevation rate deficits showed a surplus. Therefore, assessments of wetland resilience that do not include subsurface processes will likely misjudge vulnerability to sea-level rise.  相似文献   

4.
To avoid submergence during sea‐level rise, coastal wetlands build soil surfaces vertically through accumulation of inorganic sediment and organic matter. At climatic boundaries where mangroves are expanding and replacing salt marsh, wetland capacity to respond to sea‐level rise may change. To compare how well mangroves and salt marshes accommodate sea‐level rise, we conducted a manipulative field experiment in a subtropical plant community in the subsiding Mississippi River Delta. Experimental plots were established in spatially equivalent positions along creek banks in monospecific stands of Spartina alterniflora (smooth cordgrass) or Avicennia germinans (black mangrove) and in mixed stands containing both species. To examine the effect of disturbance on elevation dynamics, vegetation in half of the plots was subjected to freezing (mangrove) or wrack burial (salt marsh), which caused shoot mortality. Vertical soil development was monitored for 6 years with the surface elevation table‐marker horizon system. Comparison of land movement with relative sea‐level rise showed that this plant community was experiencing an elevation deficit (i.e., sea level was rising faster than the wetland was building vertically) and was relying on elevation capital (i.e., relative position in the tidal frame) to survive. Although Avicennia plots had more elevation capital, suggesting longer survival, than Spartina or mixed plots, vegetation type had no effect on rates of accretion, vertical movement in root and sub‐root zones, or net elevation change. Thus, these salt marsh and mangrove assemblages were accreting sediment and building vertically at equivalent rates. Small‐scale disturbance of the plant canopy also had no effect on elevation trajectories—contrary to work in peat‐forming wetlands showing elevation responses to changes in plant productivity. The findings indicate that in this deltaic setting with strong physical influences controlling elevation (sediment accretion, subsidence), mangrove replacement of salt marsh, with or without disturbance, will not necessarily alter vulnerability to sea‐level rise.  相似文献   

5.
Dike material was used as fill to construct high, mid, and low intertidal elevations in a subsided marsh located in the South Slough National Estuarine Research Reserve, Oregon. Marsh surface elevation change (including fill consolidation and compression of the original marsh soils), vertical accretion, tidal channel development, emergent vegetation colonization, and fish use were monitored over 3 years. Significant marsh surface elevation loss was detected at all elevations, with fill consolidation accounting for 70% of the loss at the highest elevation. Vertical accretion averaged 0.19 cm/yr in the sparsely vegetated Kunz Marsh compared with 0.70 cm/yr at the densely vegetated reference sites. Tidal channel development was influenced as much by marsh surface gradient as by marsh surface elevation. Vegetation colonization was directly correlated with elevation, whereas density and species richness of fish was inversely correlated with elevation. Manipulating the marsh surface to mid‐marsh elevations favors rapid vegetation colonization and facilitates vertical accretion‐dominated tidal channel development. Low marsh elevations result in initially slower developing vegetation colonization and channel development but are more beneficial to fish during the early stages of marsh recovery. High marsh elevations appear to sacrifice tidal channel development and associated fish access for rapid vegetation colonization.  相似文献   

6.
Effective tidal marsh restoration requires predictive models that can serve as planning and design tools to answer basic questions such as which, if any, plant species will colonize a proposed restoration site. To develop such a tool, a predictive model of oligohaline tidal marsh vegetation was developed from reference marshes in the Skagit River Delta (Washington, USA) and applied to a 1.1-ha restoration treatment site. Probability curves for the elevational distributions of common marsh species were generated from RTK-GPS point samples of reference tidal marshes. The probability curves were applied to a LIDAR-derived digital elevation model to generate maps predicting the occurrence probability of each species within treatment and control sites. The treatment and control sites, located within a recently restored area that had been diked but never completely drained, were covered by a mono-culture of non-native Typha angustifolia L. (narrow-leaf cattail) growing 40–60 cm lower in elevation than in the reference marsh. The T. angustifolia was mowed repeatedly in the treatment site to allow colonization by predicted native marsh species. Four years after mowing, T. angustifolia was replaced on 60 % of the treatment site by native sedges (Carex lyngbyei, Eleocharis palustris), consistent with the predictive vegetation model; the control site remained covered by T. angustifolia. The mowing experiment confirmed that pre-emptive competition from T. angustifolia was preventing vegetation recovery in the restoration site following dike removal, and implied that some vegetation species may be refractory to environmental change, such as dike removal or sea-level rise, because of differences in recruitment and adult niches.  相似文献   

7.
The cycling and sequestration of carbon are important ecosystem functions of estuarine wetlands that may be affected by climate change. We conducted experiments across a latitudinal and climate gradient of tidal marshes in the northeast Pacific to evaluate the effects of climate- and vegetation-related factors on litter decomposition. We manipulated tidal exposure and litter type in experimental mesocosms at two sites and used variation across marsh landscapes at seven sites to test for relationships between decomposition and marsh elevation, soil temperature, vegetation composition, litter quality, and sediment organic content. A greater than tenfold increase in manipulated tidal inundation resulted in small increases in decomposition of roots and rhizomes of two species, but no significant change in decay rates of shoots of three other species. In contrast, across the latitudinal gradient, decomposition rates of Salicornia pacifica litter were greater in high marsh than in low marsh. Rates were not correlated with sediment temperature or organic content, but were associated with plant assemblage structure including above-ground cover, species composition, and species richness. Decomposition rates also varied by litter type; at two sites in the Pacific Northwest, the grasses Deschampsia cespitosa and Distichlis spicata decomposed more slowly than the forb S. pacifica. Our data suggest that elevation gradients and vegetation structure in tidal marshes both affect rates of litter decay, potentially leading to complex spatial patterns in sediment carbon dynamics. Climate change may thus have direct effects on rates of decomposition through increased inundation from sea-level rise and indirect effects through changing plant community composition.  相似文献   

8.
Vegetation dieback is an important component of wetland loss in low salinity marshes of coastal Louisiana. A field experiment was conducted to determine the factors responsible for vegetation dieback within oligohaline marshes of Louisiana. Sections of marsh, dominated by Sagittaria lancifolia L., were transplanted into one of four locations depending on the treatment: (1) increased submergence—sods were lowered 15 cm below the donor marsh surface, (2) increased salinity—sods were transplanted into a higher salinity marsh and adjacent dieback pond, (3) increased salinity and submergence—sods were transplanted into a higher salinity marsh and adjacent dieback pond at 15 cm below the marsh surface, and (4) control—sods were exhumed and replaced at the ambient elevation of the donor marsh. Plant biomass and edaphic characteristics were measured after 5 mo. An increase in submergence caused decreased plant growth of the S. lancifolia-dominated marsh community. An increase in salinities to 4–5 g/kg were not detrimental to plant growth. Although saltwater intrusion alone did not cause decreased growth of the S. lancifolia-dominnled plant community, the combination of saltwater intrusion and increased plant submergence caused the greatest decrease in plant growth due to increased toxic sulfides and a likely reduction in the uptake of NH4-N by the wetland vegetation. This illustrates that the dieback of oligohaline marsh vegetation can be alleviated by decreasing plant submergence even at salinities as high as 4.6 g/kg.  相似文献   

9.
Due to their position at the land–sea interface, barrier islands are vulnerable to both oceanic and atmospheric climate change‐related drivers. In response to relative sea‐level rise, barrier islands tend to migrate landward via overwash processes which deposit sediment onto the backbarrier marsh, thus maintaining elevation above sea level. In this paper, we assess the importance of interior upland vegetation and sediment transport (from upland to marsh) on the movement of the marsh–upland boundary in a transgressive barrier system along the mid‐Atlantic Coast. We hypothesize that recent woody expansion is altering the rate of marsh to upland conversion. Using Landsat imagery over a 32 year time period (1984–2016), we quantify transitions between land cover (bare, grassland, woody vegetation, and marsh) and the marsh–upland boundary. We find that the Virginia Barrier Islands have both gains and losses in backbarrier marsh and upland, with 19% net loss from the system during the timeframe of the study and increased variance in marsh to upland conversion. This is consistent with recent work indicating a shift toward increasing rates of landward barrier island migration. Despite a net loss of upland area, macroclimatic winter warming resulted in 41% increase in woody vegetation in protected, low‐elevation areas, introducing new ecological scenarios that increase resistance to sediment movement from upland to marsh. Our analysis demonstrates how the interplay between elevation and interior island vegetative cover influences landward migration of the boundary between upland and marsh (a previously underappreciated indicator that an island is migrating), and thus, the importance of including ecological processes in the island interior into coastal modeling of barrier island migration and sediment movement across the barrier landscape.  相似文献   

10.

Background

Tidal marshes will be threatened by increasing rates of sea-level rise (SLR) over the next century. Managers seek guidance on whether existing and restored marshes will be resilient under a range of potential future conditions, and on prioritizing marsh restoration and conservation activities.

Methodology

Building upon established models, we developed a hybrid approach that involves a mechanistic treatment of marsh accretion dynamics and incorporates spatial variation at a scale relevant for conservation and restoration decision-making. We applied this model to San Francisco Bay, using best-available elevation data and estimates of sediment supply and organic matter accumulation developed for 15 Bay subregions. Accretion models were run over 100 years for 70 combinations of starting elevation, mineral sediment, organic matter, and SLR assumptions. Results were applied spatially to evaluate eight Bay-wide climate change scenarios.

Principal Findings

Model results indicated that under a high rate of SLR (1.65 m/century), short-term restoration of diked subtidal baylands to mid marsh elevations (−0.2 m MHHW) could be achieved over the next century with sediment concentrations greater than 200 mg/L. However, suspended sediment concentrations greater than 300 mg/L would be required for 100-year mid marsh sustainability (i.e., no elevation loss). Organic matter accumulation had minimal impacts on this threshold. Bay-wide projections of marsh habitat area varied substantially, depending primarily on SLR and sediment assumptions. Across all scenarios, however, the model projected a shift in the mix of intertidal habitats, with a loss of high marsh and gains in low marsh and mudflats.

Conclusions/Significance

Results suggest a bleak prognosis for long-term natural tidal marsh sustainability under a high-SLR scenario. To minimize marsh loss, we recommend conserving adjacent uplands for marsh migration, redistributing dredged sediment to raise elevations, and concentrating restoration efforts in sediment-rich areas. To assist land managers, we developed a web-based decision support tool (www.prbo.org/sfbayslr).  相似文献   

11.
Questions: What are the feedbacks among the seed bank, parent vegetation, and landscape structure that control plant species turnover in space and time in a tidal freshwater marsh? How can these feedbacks be used to better understand marsh community dynamics and to establish restoration practices that seek to restore vegetation diversity of this important and widely distributed ecosystem? Location: Potomac River, Virginia, United States (15 km south of Washington, DC). Methods: We sampled the seed bank and standing vegetation in a tidal freshwater marsh and explored similarities between seed bank and vegetation composition through space and time. We then investigated marsh surface elevation, distance to nearest tidal channels, and life history of component species as potential explanations for the observed vegetation patterns. Results: The composition of individual plots changed considerably from year to year; however, the composition at broader spatial (whole marsh) and temporal (4 years) scales was relatively stable. Species composition of the seed bank was dissimilar to both the previous and current year's standing vegetation, and similarity to standing vegetation was particularly low in plots dominated by annual species. Landscape structure and life history characteristics of individual species best explained the spatiotemporal variability in marsh vegetation. Conclusions: Restoration designs should be landscape‐dependent and explicitly incorporate spatially structured elements such as elevation gradients to maximize community diversity in reconstructed tidal freshwater marshes. Optimal designs include areas of high seed input, areas of high species turnover, as well as other areas of greater stability.  相似文献   

12.
明晰滨海盐沼湿地景观格局演化模式和驱动因素,有助于制定合理的盐沼湿地修复策略、维护区域生态系统健康和可持续发展。以黄河三角洲滨海盐沼湿地为例,基于Landsat系列卫星影像获取1973—2020年共十个时期土地利用/覆被数据,得出盐沼湿地时空变化及其与周边土地利用/覆被的相互转化;利用改进的景观格局状态与演化识别模型(SEDMS),分析盐沼湿地景观格局演化模式,并利用地理探测器探究其空间分异驱动因素。结果表明:(1)1973—2020年,盐沼湿地面积减少了252.35 km2,空间范围总体向外海迁移且趋于集中。盐沼湿地转出类型主要为草地、养殖池/盐田和耕地,转入类型主要为滩涂未利用地和水体。(2)盐沼湿地景观格局演化模式呈明显的阶段性特征:1973—1995年为动荡期,演化模式以消失和破碎为主导;1995—2010为过渡期,格局演化模式逐渐由消失和破碎为主导转变为扩张为主导;2010年后为稳定期,格局发生演化的区域较少,总体以新增和扩张为主。(3)36%的盐沼湿地出现了多次格局演变模式的转变,滩涂未利用地、耕地对于景观格局演化频数的影响最为显著,人工表面、养殖池/...  相似文献   

13.
Efforts are underway to restore tidal flow in New England salt marshes that were negatively impacted by tidal restrictions. We evaluated a planned tidal restoration at Mill Brook Marsh (New Hampshire) and at Drakes Island Marsh (Maine) where partial tidal restoration inadvertently occurred. Salt marsh functions were evaluated in both marshes to determine the impacts from tidal restriction and the responses following restoration. Physical and biological indicators of salt marsh functions (tidal range, surface elevations, soil water levels and salinities, plant cover, and fish use) were measured and compared to those from nonimpounded reference sites. Common impacts from tidal restrictions at both sites were: loss of tidal flooding, declines in surface elevation, reduced soil salinity, replacement of salt marsh vegetation by fresh and brackish plants, and loss of fish use of the marsh.Water levels, soil salinities and fish use increased immediately following tidal restoration. Salt-intolerant vegetation was killed within months. After two years, mildly salt-tolerant vegetation had been largely replaced in Mill Brook Marsh by several species characteristic of both high and low salt marshes. Eight years after the unplanned, partial tidal restoration at Drakes Island Marsh, the vegetation was dominated bySpartina alterniflora, a characteristic species of low marsh habitat.Hydrologic restoration that allowed for unrestricted saltwater exchange at Mill Brook restored salt marsh functions relatively quickly in comparison to the partial tidal restoration at Drakes Island, where full tidal exchange was not achieved. The irregular tidal regime at Drakes Island resulted in vegetation cover and patterns dissimilar to those of the high marsh used as a reference. The proper hydrologic regime (flooding height, duration and frequency) is essential to promote the rapid recovery of salt marsh functions. We predict that functional recovery will be relatively quick at Mill Brook, but believe that the habitat at Drakes Island will not become equivalent to that of the reference marsh unless the hydrology is further modified.Corresponding Editor: R.E. Turner Manuseript  相似文献   

14.
Efforts are underway to restore tidal flow in New England salt marshes that were negatively impacted by tidal restrictions. We evaluated a planned tidal restoration at Mill Brook Marsh (New Hampshire) and at Drakes Island Marsh (Maine) where partial tidal restoration inadvertently occurred. Salt marsh functions were evaluated in both marshes to determine the impacts from tidal restriction and the responses following restoration. Physical and biological indicators of salt marsh functions (tidal range, surface elevations, soil water levels and salinities, plant cover, and fish use) were measured and compared to those from nonimpounded reference sites. Common impacts from tidal restrictions at both sites were: loss of tidal flooding, declines in surface elevation, reduced soil salinity, replacement of salt marsh vegetation by fresh and brackish plants, and loss of fish use of the marsh. Water levels, soil salinities and fish use increased immediately following tidal restoration. Salt-intolerant vegetation was killed within months. After two years, mildly salt-tolerant vegetation had been largely replaced in Mill Brook Marsh by several species characteristic of both high and low salt marshes. Eight years after the unplanned, partial tidal restoration at Drakes Island Marsh, the vegetation was dominated bySpartina alterniflora, a characteristic species of low marsh habitat. Hydrologic restoration that allowed for unrestricted saltwater exchange at Mill Brook restored salt marsh functions relatively quickly in comparison to the partial tidal restoration at Drakes Island, where full tidal exchange was not achieved. The irregular tidal regime at Drakes Island resulted in vegetation cover and patterns dissimilar to those of the high marsh used as a reference. The proper hydrologic regime (flooding height, duration and frequency) is essential to promote the rapid recovery of salt marsh functions. We predict that functional recovery will be relatively quick at Mill Brook, but believe that the habitat at Drakes Island will not become equivalent to that of the reference marsh unless the hydrology is further modified.  相似文献   

15.
Feedbacks between plant biomass density and sedimentation maintain intertidal marshes in equilibrium with mean sea level (MSL). Stable marshes exist at an elevation that is supraoptimal for the biomass density of marsh macrophytes. At this elevation, biomass density is sensitive to changes in MSL, and adjustments in productivity and sedimentation rate help to maintain the marsh in a dynamic equilibrium with sea level, provided that the surface elevation remains within the supraoptimal range of the vegetation. The equilibrium elevation varies inversely with the rate of sea-level rise and directly with biomass density. It was also shown that a succession of intertidal plant communities depends upon the rate of sea level rise and the distribution of biomass density as a function of hydroperiod. Soft engineering solutions to coastal flooding could incorporate planting of marsh vegetation in the intertidal zone for the purpose of promoting sedimentation and dissipating wave energy. A successful design would employ plant species that have varying degrees of tolerance to flooding, maximum drag at their preferred depths, broad ranges within the intertidal zone, and that form a successional series.  相似文献   

16.
A Wetland Change Model has been developed to identify the vulnerability of coastal wetlands at broad spatial (regional to global (mean spatial resolution of 85 km)) and temporal scales (modelling period of 100 years). The model provides a dynamic and integrated assessment of wetland loss, and a means of estimating the transitions between different vegetated wetland types and open water under a range of scenarios of sea-level rise and changes in accommodation space from human intervention. This paper is an overview of key issues raised in the process of quantifying broad-scale vulnerabilities of coastal wetlands to forcing from sea-level rise discussing controlling factors of tidal range, sediment availability and accommodation space, identification of response lags and defining the threshold for wetland loss and transition.  相似文献   

17.
An intertidal San Francisco Bay salt marsh was used to study the spatial relationships between vegetation patterns and hydrologic and edaphic variables. Multiple abiotic variables were represented by six metrics: elevation, distance to major tidal channels and to the nearest channel of any size, edaphic conditions during dry and wet circumstances, and the magnitude of tidally induced changes in soil saturation and salinity. A new approach, quantitative differential electromagnetic induction (Q-DEMI), was developed to obtain the last metric. The approach converts the difference in soil electrical conductivity (ECa) between dry and wet conditions to quantitative maps of tidally induced changes in root zone soil water content and salinity. The result is a spatially exhaustive map of edaphic changes throughout the mapped area of the ecosystem. Spatially distributed data on the six metrics were used to explore two hypotheses: (1) multiple abiotic variables relevant to vegetation zonation each exhibit different, uncorrelated, spatial patterns throughout an intertidal salt marsh; (2) vegetation zones and habitats of individual plant species are uniquely characterized by different combinations of key metrics. The first hypothesis was supported by observed, uncorrelated spatial variability in the metrics. The second hypothesis was supported by binary logistic regression models that identified key vegetation zone and species habitat characteristics from among the six metrics. Based on results from 108 models, the Q-DEMI map of saturation and salinity change was the most useful metric of those tested for distinguishing different vegetation zones and plant species habitats in the salt marsh.  相似文献   

18.
From 1990 to 2004, we carried out a study on accretionary dynamics and wetland loss in salt marshes surrounding two small ponds in the Mississippi delta; Old Oyster Bayou (OB), a sediment-rich area near the mouth of the Atchafalaya River and Bayou Chitigue (BC), a sediment-poor area about 70 km to the east. The OB site was stable, while most of the marsh at BC disappeared within a few years. Measurements were made of short-term sedimentation, vertical accretion, change in marsh surface elevation, pond wave activity, and marsh soil characteristics. The OB marsh was about 10 cm higher than BC; the extremes of the elevation range for Spartina alterniflora in Louisiana. Vertical accretion and short-term sedimentation were about twice as high at BC than at OB, but the OB marsh captured nearly all sediments deposited, while the BC marsh captured <30%. The OB and BC sites flooded about 15% and 85% of the time, respectively. Marsh loss at BC was not due to wave erosion. The mineral content of deposited sediments was higher at OB. Exposure and desiccation of the marsh surface at OB increased the efficiency that deposited sediments were incorporated into the marsh soil, and displaced the marsh surface upward by biological processes like root growth, while also reducing shallow compaction. Once vegetation dies, there is a loss of soil volume due to loss of root turgor and oxidation of root organic matter, which leads to elevation collapse. Revegetation cannot occur because of the low elevation and weak soil strength. The changes in elevation at both marsh sites are punctuated, occurring in steps that can either increase or decrease elevation. When a marsh is low as at BC, a step down can result in an irreversible change. At this point, the option is not restoration but creating a new marsh with massive sediment input either from the river or via dredging.  相似文献   

19.
To thrive in a time of rapid sea‐level rise, tidal marshes will need to migrate upslope into adjacent uplands. Yet little is known about the mechanics of this process, especially in urbanized estuaries, where the adjacent upland is likely to be a mowed lawn rather than a wooded natural area. We studied marsh migration in a Long Island Sound salt marsh using detailed hydrologic, edaphic, and biotic sampling along marsh‐to‐upland transects in both wooded and lawn environments. We found that the overall pace of marsh development was largely unaffected by whether the upland being invaded was lawn or wooded, but the marsh‐edge plant communities that developed in these two environments were quite different, and some indicators (soil salinity, foraminifera) appeared to migrate more easily into lawns. In addition, we found that different aspects of marsh structure and function migrated at different rates: Wetland vegetation appeared to be a leading indicator of marsh migration, while soil characteristics such as redox potential and surface salinity developed later in the process. We defined a ‘hydrologic migration zone’, consisting of elevations that experience tidal inundation with frequencies ranging from 20% to 0.5% of high tides. This hydrologically defined zone – which extended to an elevation higher than the highest astronomical tide datum – captured the biotic and edaphic marsh‐upland ecotone. Tidal inundation at the upper border of this migration zone is highly variable over time and may be rising more rapidly than mean sea level. Our results indicate that land management practices at the upland periphery of tidal marshes can facilitate or impede ecosystem migration in response to rising sea level. These findings are applicable to large areas of tidal marsh along the U.S. Atlantic coast and in other urbanized coastal settings.  相似文献   

20.
Salt marshes exhibit striking vegetation zonation corresponding to spatially variable elevation gradients which dictate their frequency of inundation by the tides. The salt marshes in the upper Bay of Fundy, a dynamic hypertidal system, are of considerable interest due to increasing recognition of salt marsh ecosystem values and the extent of prior conversion of salt marshes to agricultural lands, much of which are no longer in use. To determine the suitability of two potential restoration sites at Beausejour Marsh in New Brunswick, Canada, geomatics technologies and techniques were used to assess vegetation and elevation patterns in an adjacent reference salt marsh and the proposed restoration sites. Light detection and ranging digital elevation models (DEMs) were created for the reference marsh and the restoration sites in both the spring (leaf-off) and late summer (leaf-on, maximum biomass) periods. Aerial photographs and Quickbird multispectral imagery were used to visually interpret vegetation zones on the reference marsh and were field validated using vegetation characteristics from quadrats referenced with differential GPS. Elevation limits of the salt marsh vegetation zones were extracted from the DEM of the reference marsh and applied to the DEM of the restoration sites to determine the percentage area of each site that would be immediately suitable for new salt marsh growth. Of the two restoration sites assessed, one had experienced significant subsidence since dyking; only about 40 % of the site area was determined to be of sufficient elevation for immediate vegetation colonization. The second site, while more than 88 % suitable, would require the installation of a large dyke on the landward side of the restoration site to prevent flooding of adjacent lands. This study provides essential high resolution elevation and vegetation zonation data for use in restoration site assessments, and highlights the usefulness of applied geomatics in the salt marsh restoration planning process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号