首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During starvation, muscle glycogen in Boleophthalmus boddaerti was utilized preferentially over liver glycogen. In the first 10 days of fasting, the ratio of the active‘a’form of glycogen phosphorylase to total phosphorylase present in the liver was small. During this period, the active‘I’form of glycogen synthetase increased in the same tissue. In the muscle, the phosphorylase‘a’activity declined during the first 7 days and increased thereafter while the total glycogen synthetase activity showed a drastic decline during the first 13 days of fasting. The glycogen level in the liver and muscle of mudskippers starved for 21 days increased after refeeding. After 6 and 12 h refeeding, liver glycogen level was 8·5 ± 2·3 and 6·9 ± 4·5 mg·g wet wt 1, respectively, as compared to 5·8 ± l·6mg·g wet wt 1 in unfed fish. Muscle glycogen level after 6 and 12 h refeeding was 0·96±0·76 and 0·82 ± 0·50 mg·g wet wt 1, respectively, as opposed to 0·21 ± 0·12 mg·g wet wt 1 in the 21-days fasted fish. At the same time, activities of glycogen phosphorylase in the muscle and liver increased while the active‘I’form of glycogen synthetase showed higher activity in the liver. Since glycogen was resynthesized upon refeeding, this eliminated the possibility that glycogen depletion during starvation was due to stress or physical exhaustion after handling by the investigator. Throughout the experimental starvation period, the body weight of the mudskipper decreased, with a maximum of 12% weight loss after 21 days. Liver lipid reserves were utilized at the onset of fasting but were thereafter resynthesized. Muscle proteins were also metabolized as the fish were visibly thinner. However, no apparent change in protein content expressed as per gram wet weight was detected as the tissue hydration state was maintained constant. The increased degradation of liver and muscle reserves was coupled to an increase in the activities of key gluconeogenic enzymes in the liver (G6Pase, FDPase, PEPCK, MDH and PC). The increase in glucose synthesis was possibly necessary to counteract hypoglycemia brought about by starvation in B. boddaerti.  相似文献   

2.
Effects of feeding and starvation on the moult cycle and on the ultrastructure of hepatopancreas cells were studied in Stage I lobster larvae (Homarus americanus Milne-Edwards). The relative significance of yolk and first food was quite different in larvae originating from two females. This difference was evident also in the amounts of stored lipid in the R-cells of the larval hepatopancreas. Most larvae from one hatch were, in principle, able to develop exclusively with yolk reserves (without food) to the second instar. The larvae from the second hatch showed lecithotrophic development only to the transition between late intermoult and early premoult (Stages C/D0 of Drachs's moult cycle) of the first larval instar. When initial starvation in this group lasted for 3 days or more, the point of no return (PNR) was exceeded. After the PNR, consumption of food was still possible, but development ceased in the transition C/D0 or in late premoult (D3–4). It is suggested that these stages of the moult cycle are critical points were cessation of development and increased mortality are particularly likely in early larval lobsters under nutritional stress. Examination of hepatopancreas R-cells suggested that the PNR is caused by an irreversible loss of the ability to restore lipid reserves depleted during initial starvation. Initial periods of starvation ending before the PNR prolonged mainly Stage D0 of the same instar (I). During this delay, structural changes in the R-cells caused by the preceding period of starvation were reversed: reduced lipid inclusions, swollen mitochondria, an increased number of residual bodies indicating autolysis, and a reduction of the microvillous processes. Continually starved larvae which showed lecithotrophic development throughout the first instar and were then re-fed after moulting successfully, had later a prolonged intermoult (Stage C) period in the second instar. This shows that, despite occasional lecithotrophy, food is an important factor in early larval development of the lobster.  相似文献   

3.
SUMMARY. Increase in body wet weight of Gammarus pulex fed on decaying elm leaves was followed to senescence and death. Growth in juveniles was approximately exponential; from birth to death it conformed to a logistic growth curve, with maximum absolute increments in weight about half-way through a life span of 350–450 days at 15°C. Some individuals lived longer, for up to 640–700 days. The instantaneous or specific growth rate was maximal near birth, at c. 5–6% wet wt day?1, and declined exponentially with increasing size and age. Over the range 4.7–14.8°C there was a log-log relationship between temperature and specific growth rate. Growth was maximal at 20°C in newborn animals and at 15°C in 6–9-mg animals. The specific growth rate of young individuals was fastest on decaying leaves of elm with a well developed flora of fungi and other microorganisms. Leached elm leaves without this flora supported growth at a lower rate. The latter diet was sufficient for survival and growth of newborn individuals; detritus, faeces or other food items were not needed. Isolated specimens grew as fast as those kept in groups. Growth was generally slower on leached leaves of oak and sycamore. In newborn animals fed on the fine roots of aquatic plants (Veronica, Rorippa and Glyceria), growth was as fast as on decaying elm leaves; growth on the green living leaves of the plants was slower, as on detritus from two streams and on a pure culture of an aquatic fungus. Consumption of leached elm leaves was related to leaf thickness. In a full gut the wet weight (1.34–1.37 mg) and volume (3.8–4.1 mm3) (for 20-mg animals) was independent of leaf thickness but dependent on animal size, increasing 4-fold over the range 2–50 mg body wt. Daily consumption (dry wt) was approximately equivalent to 50% body dry wt at 5 mg and 20% at 50 mg body wet wt. Individuals fed on thick leaves ingested 50% more dry weight per day and absorbed more in the gut than when fed on thin leaves, but the relative efficiency of absorption was the same at 36–59% for 10–20-mg animals. Weight-specific absorption in the gut was highest in juveniles and decreased with increasing body weight; relative efficiency of absorption was generally lower in the larger individuals. Assuming an energy value of 5 cal mg?1 dry wt for elm leaves, daily mean energy intake by absorption in thegutof G. pu/ex was2.2 cal mg?1 animaldry wt (9.2 J mg?1) in individuals of 0.4 mgdry wt (2 mg wet wt), decreasing to 0.3 cal mg?1 (1.3 J mg?1) at 10 mg dry wt (50 mg wet wt). Growth in Gammarus is briefly reviewed in the hght of work on other animals and it is emphasized that all aspects of feeding, growth and metabol-ism should be specifically related to size and age of the individuals, using well defined diets.  相似文献   

4.
1. This paper investigates moult stage and size-specific changes in whole body composition during growth in juvenile crayfish in order to better describe the nature of growth and energy use. 2. Composition is described in terms of moult stage and size-specific wet, dry and ash-free dry weight, water, carbon, protein nitrogen, non-protein nitrogen, ash and energy. Dry weight and ash-free dry weight (AFDW) peaked in the middle and in the later stages of premoult. Both peaks were about 2–2.3 times postmoult weight. Losses in tissue weight during ecdysis were substantial in the smallest crayfish but declined with size. Water was taken up between late premoult and early postmoult. Tissue accumulation occurred primarily between B and D1.3, with further weight gain largely the result of fluid uptake. Ash increased immediately postmoult with a major peak occurring during intermoult. Mean organic carbon varied between 33 and 35.5% of the body and 49% of the exuvia. Chitin varied between 9 and 17% of body AFDW and made up about 50.5% of the exuvia. Protein content varied between 47 and 62% of body AFDW and about 25% of the exuvia. Carbon, chitin and protein were not affected by moult stage but protein declined with ocular carapace length (OCL) in larger crayfish. Mean caloric content varied between 19 and 22 J mg-1 AFDW depending on size and moult stage. Caloric content increased with OCL during premoult and early intermoult then declined with size until part of the way through premoult. 3. Relationships between protein, chitin and remaining carbon (organic carbon minus chitin) were examined. It is suggested that protein and some carbon are catabolized during the moulting process, possibly to fuel metabolism. Models are presented showing changes in proximate composition over the moult cycle for two sizes of crayfish, and tissue and energy accumulation and loss over a series of moult cycles and sizes from 3.1 mm to 17 mm OCL.  相似文献   

5.
SUMMARY. The interval between moults is an extension of egg development time, increasing from birth to sexual maturity which is probably reached at instar 6 or 7. The duration of each instar increased with the animal's age. Incubation time for eggs and the intermoult interval have the same curvilinear inverse relationship with water temperature in the range 3.5–25°C. Results are expressed as degree-days above predicted threshold temperatures of 3.8°C for eggs and 3.2°C for instar 1 after birth, but inverse power-law relationships were a better fit to the results, with exponents of - 1.355 for eggs, - 1.263 for instar 1 and - 1.37 to - 1.92 for instars 2–4. Temperature — dependence apparently altered in instars 5 and 6 at 15–25°C. From a multiple regression of geometric mean moult interval (Mi, days) against mean age (A) and temperature (T, °C), Mi= 56.4 T?0.7 e0.016A, with mean ages of 106 days at 15°C and 85 days at 25°C after six moults. The mean number of primary flagellar segments on the antennules increased from 4.0 in instar 1 to 6.0 in instar 2 and 8.0 in instar 3. Thereafter, segments were added less regularly to give a mean of 13.2 in instar 7. In a natural population, when the sexes became distinctive they had 11–13 flagellar segments. From birth at c. 0.05 mg wet wt, individual growth rates were highly variable; mean growth rates (Gs, % wet wt day?1) were similar in animals fed on dried, leached elm leaves and living, green leaves of Callitriche; there was a power-law relationship with temperature in the range 3.5–25°C, (Gs= 0.27 T0.59). Faster growth rates were obtained on living leaves of Elodea. Sexual maturity is reached at c. 0.4–0.5 mg wet wt. A brief comparison is made with Gammarus pulex; C. pseudogracilis may be better adapted to warm-water habitats.  相似文献   

6.
Moult cycle and morphogenesis in larval instars (zoea I, zoea II, megalopa) of the spider crabHyas araneus (L.) were studied in the laboratory. Changes in the epidermis and cuticle were documented photographically at daily intervals to characterize the stages of the moult cycle. Stage A (early postmoult) is a very short period during which the larva takes up water. During late postmoult (B) and intermoult (C) the endocuticle is secreted, and there is conspicuous epidermal tissue condensation and growth. The onset of early premoult (D0) is characterized by epidermal apolysis, occurring first at the bases of the setae in the telson of zoeal instars or in the rostrum of the megalopa, respectively. Intermediate premoult (D1) is the main period of morphogenesis, in particular of setogenesis: in the setae of the zoeal telson and carapace there is invagination or (in the zoea II) degeneration of epidermal tissues. Formation of new setae in the interior of epidermal tubules was observed in zoeal maxillipeds and in the antennae of the zoea II and megalopa instars. During late premoult (Stages D2–4) part of the new cuticle is secreted, and the results of morphogenesis become clearly visible. For technical reasons (rigid exoskeleton) only a preliminary account of the moult cycle in the megalopa can be given. A time schedule is suggested for the stages of the moult cycle. It is estimated that postmoult (A–B) takes ca 9 to 15 % of total instar duration, intermoult (C) ca 22 to 37 %, and premoult (D) ca 48 to 69 %. There is an increasing trend of relative portions of time (% of total instar duration) from instar to instar in Stages A–C (mainly in the latter) and a decreasing trend in Stage D (mainly in D0 and D2–4).  相似文献   

7.
Water ingestion at ecdysis by the western rock lobster. Panulirus longipes (Milne Edwards) was investigated using the reference markers 51Cr-EDTA and 58Co-EDTA. Two possible mechanisms controlling water absorption were examined: first, changes in osmolarity of blood and muscle and secondly, the effects of extracts of central nervous system.Water ingestion was 16.071 ± 2.365 mlkg?1h?1 during swelling just before ecdysis (stage D4(S)) and 23.099 ± 1.238 mlkg?1h?1 during stage A. There was no significant absorption in the foregut or hindgut and the digestive gland appeared to be the site of major absorption. Total water ingested during stages D4(S) and A was 13.7% of the proecdysis weight. Calculating total water uptake by wet weight differences plus wet weight of exuviae gave a value that was too high and instead weight increases were calculated from a carapace length-weight formula. Allowing for postecdysis increase in weight the net increase at ecdysis was 18.4–21.4% which was 4.7–7.7% more than the water ingested. It was concluded from this that water enters the body at ecdysis both by ingestion and by absorption through the external surface. It is suggested that water ingestion provides the main source of swelling of the cephalothorax in stage D4(S) and after ecdysis both ingested water and external absorption enables the flaccid abdomen and appendages to swell rapidly.Statistically significant differences were found in the concentrations of total cations and chloride in leg muscle during the transition from stage C4 to late D4 but the trends were not consistent and probably have no functional significance. There were no changes in the concentration of osmotically active organic constituents. The freezing-point depression of the blood in stage D4 was significantly higher than that in stage C4(P < 0.02) but the mean difference was only 1.8%. It was concluded that osmoticchanges were unlikely to be an important mechanism of water uptake.Water-soluble extract (WSE) and acetone-soluble extract (ASE) of brains and first ventral ganglia were without significant effect when compared together with controls. There was a barely significant decrease, however, in water in the proventriculus of WSE-treated animals compared with that of controls (P < 0.05). and further investigation on the effects of such extracts on water uptake at ecdysis is warranted.  相似文献   

8.
《Bone and mineral》1990,8(3):185-193
Two experiments were undertaken to study the abilities of clomiphene citrate (20 mg/kg body wt/wk s.c.) and tamoxifen citrate (20 mg/kg body wt/wk s.c.) to slow bone resorption mediated by (a) endogenous parathyroid hormone (PTH) and (b) exogenous calcitriol (1,25(OH)2D3) in vivo in rats with intact ovarian function. Groups of rats with 45Ca-labelled bones were fed a low-calcium (0.01% Ca) diet to stimulate secretion of PTH. Neither clomiphene nor tamoxifen slowed the mobilization of 45Ca from femoral bone or prevented the reduction in bone calcium induced by feeding this diet. Moreover these drugs did not depress the urinary excretion of 45Ca or hydroxyproline. These observations indicated that clomiphene and tamoxifen did not inhibit PTH-mediated bone resorption. Administering calcitriol (50 ng/day) orally for 14 days raised plasma calcium, increased urinary 45Ca and its specific activity and decreased femur 45Ca: all these responses were similar in animal, receiving calcitriol alone and calcitriol with clomiphene or tamoxifen. The femur 45Ca values (dpm × 10−3) were: (means ± SD, n = 8) placebo, 1901 ± 127; 1,25(OH)2D3, 1727 ± 967; clomiphene + 1,25(OH)2D3, 1694 ± 937; tamoxifen + 1,25(OH)2D3, 1664 ± 617. (7 = P < 0.01). Thus neither clomiphene nor tamoxifen prevented calcitriol-mediated bone resorption in vivo in the rat.  相似文献   

9.
Abstract— A simple, sensitive and specific method for assaying cyclic AMP in various tissues is reported. Cyclic AMP was isolated from contaminating nucleotides and was converted to ATP with a phosphodiesterase-myokinase-pyruvate kinase system. The ATP was determined enzymically in a liquid scintillation counter by the firefly luciferin-luciferase technique. This procedure was capable of detecting as little as 5 × 10?14 mol of cyclic AMP and could therefore be used for analyses on less than 1 mg of brain. The assay was reproducible and linear over a wide range of tissue concentrations. In the rat, the highest levels of cyclic AMP (2.7–4.2 pmol/mg wet wt. of tissue) were present in the pineal, heart, pituitary, thyroid, cerebellar cortex, kidney, adrenal, liver and pyloric region of the stomach; intermediate levels (1.5–2.7 pmol/mg wet wt. of tissue) were found in testis, skin, aorta, intestine, submaxillary gland, spleen, muscle and cerebral cortex, moderately low levels (1.0–1.5 pmol/mg wet wt. of tissue) were found in lung, trachea and greater curvature of the stomach; whereas low levels (0.15–0.60 pmol/mg wet wt. of tissue) were found in adipose tissue.  相似文献   

10.
The present study assesses the effects of starvation and refeeding on 1-[14C]-methyl aminoisobutyric acid (14C-MeAIB) uptake, 14C-total lipids, 14CO2 production from 14C-glycine, 14C-protein synthesis from 14C-leucine and Na+–K+-ATPase activity in jaw muscle of Neohelice granulata previously maintained on a carbohydrate-rich (HC) or high-protein (HP) diet. In N. granulata the metabolic adjustments during starvation and refeeding use different pathways according to the composition of the diet previously offered to the crabs. During starvation, 14CO2 production from 14C-glycine, and 14C-protein synthesis from 14C-leucine were reduced in HC-fed crabs. In crabs maintained on the HP or HC diet, 14C-total lipid synthesis increased after 15 days of starvation. In crabs fed HP diet, 14C-MeAIB uptake and Na+–K+-ATPase activity decreased in refeeding state. In crabs refeeding HC diet, 14C-MeAIB uptake and 14CO2 production decreased during the refeeding. In contrast, the 14C-protein synthesis increased after 120 h of refeeding. In both dietary groups, 14C-total lipid synthesis increased during refeeding. Changes in the carbon amino acid flux between different metabolic pathways in muscle are among the strategies used by this crab to face starvation and refeeding. Protein or carbohydrate levels in the diet administered to this crab modulate the carbon flux between the different metabolic pathways.  相似文献   

11.
Slices of rabbit cerebral cortex, from the foetal stage to the adult have been used to compare lipid synthesis from fatty acids synthesized de novo from [U-14C]glucose and [1-14C]acetate, with lipid synthesis from exogenous albumin-bound [1-14C]palmitate. Incorporation into cellular lipid has been determined in terms of DNA, protein, wet wt. of tissue and wet weight of whole brain. On a wet wt. basis, maximum incorporation of glucose carbon into lipid occurred in the foetal brain while lipid synthesis from acetate and palmitate was maximum at 4–14 days after birth. Glucose and acetate were incorporated into a diversity of lipids (with increasing amounts of phosphatidylcholine synthesized during maturation), while palmitate was incorporated into the free fatty acid and triglyceride fractions. A greater proportion of acetate was incorporated into fatty acids of chain-length longer than C16 compared with the incorporation of palmitate. However, on a molar basis de novo synthesized and exogenous palmitate were elongated, desaturated and incorporated into phospholipids at a similar rate, while exogenous palmitate was incorporated to a greater extent than de nova synthesized fatty acid into the triglyceride fraction. This difference in metabolism may be due to the different size of the non-esterified fatty acid pool in the two situations. At the period of their most active formation, the very long-chain fatty acids may be synthesized from a pool of the C18 series of fatty acids (saturated and monoenoic) not in equilibrium with the bulk of C18 acids in cerebral lipids. This could be a pool of acyl groups derived from ethanolamine phospholipids.  相似文献   

12.
The Arctic pteropod Clione limacina was collected in Kongsfjorden, Svalbard, in mid June 2004, to study the lipid metabolism within the sites of lipid storage structures during long-term starvation. Animals survived in an aquarium without any food for nearly 1 year (356 days). Size, number of lipid droplets, dry and lipid mass, lipid class and fatty acid compositions of C. limacina were determined and separately analysed for the digestive gland and the remaining integument. During the starvation period, animals shrunk from 22.4 to 12 mm in length on average, and the number of lipid droplets decreased from 1,600 to 1,000 per animal. Dry mass (DM) and total lipid mass both dropped by about 80% from day 200 to the end. The lipid content as percentage DM of the total organism did not decrease significantly ranging from 43.8 to 32.3%DM. The lipid content of the trunk was moderate with about 20%DM. The digestive gland was very rich in lipids with more than 70%DM throughout the experiment and is the major site of lipid metabolism and storage. Triacylglycerols (TAG) decreased, in the total organism, from high initial levels of 62.6 to 43% of total lipid at the end. In contrast, the proportions of 1-O-alkyldiacylglycerols [diacylglycerol ethers (DAGE)] remained almost constant, varying between 20.4 and 28.4%. In the digestive gland, TAG ranged from 60.3 to 64.8% and DAGE from 23.6 to 32.2% from day 200 to the end of the experiment. TAG and DAGE of the trunk were most likely located in the lipid droplets and were almost depleted at the end of starvation. Besides their function as lipid deposit DAGE may also act as protecting substance against bacterial and fungal infections. During the first 200 days of starvation, the fatty acid compositions showed only small variations. Thereafter, fatty acids typical for storage lipids decreased in all body compartments. In adaptation to long periods of food scarcity, C. limacina has evolved various strategies as body shrinkage, utilisation of body constituents not essential for survival, a very low metabolism and slow lipid consumption.  相似文献   

13.
The effect of cultivation temperature on the ATP pool and adenylate energy charge (EC) in Escherichia coli has been studied in both batch and continuous cultures. In batch culture, μmax and the ATP pool increased with increasing growth temperatures between 27–42°C (from 0.26 to 0.62 h−1, and from 5.1 to 8.2 nmol/mg dry wt., respectively). In continuous culture at a constant dilution rate (D = 0.2 h−1), with increasing growth temperatures between 28–43°C, the ATP pool increased about 2-fold (from 4.2 to 8.1 nmol/mg dry wt) and the EC from 0.80 to 0.99.  相似文献   

14.
Hemolymph glucose, alkaline phosphatase, lactic dehydrogenase, and creatine phosphokinase in Biomphalaria glabrata infected with Angiostrongylus costaricensis were significantly higher on day 27 postinfection (PI) than in uninfected snails. Hemolymph total calcium from infected snails was less on days 6, 12, and 27 PI than that from controls. Total hemolymph protein was similar for controls and infected animals during the entire study. Throughout the study the mean number of amoebocytes/mm3 hemolymph from infected snails was significantly less than that for controls. Mean total wet weights of digestive gland and foot muscle from infected and uninfected snails was similar throughout the study. Mean μg glycogen/mg wet weight of digestive gland from infected snails was significantly greater on days 24, 27, and 28 PI than that from controls. Mean μg glycogen/mg wet weight of foot muscle from infected snails was significantly reduced between days 12 and 28 PI from that of uninfected snails. It is suggested that hemolymph glucose and digestive gland glycogen in infected snails are augmented by glycogen breakdown in the foot muscle of parasitized animals. Elevations in hemolymph enzymes are due to tissue destruction by larvae emerging from the foot muscle of infected snails. Parasite-induced derangements in shell metabolism underlie observed changes in hemolymph calcium in infected snails.  相似文献   

15.
In all larval stages of Carcinus maenas L. oxygen consumption was measured at three temperatures (12,18,25 °C). Values increased during development and were in the range of 0.037 ± 0.01 (zoea-1, 12°C, x? ± 95% CL) to 0.734 ± 0.047 μl O2 · h?1 · ind?1 (megalopa, 25 °C). Growing larvae showed temperature dependent trends in weight specific respiration rates (referred to dry wt; DW), with values between ≈2.4 and 9.4 μl O2· h?1·mg DW?1. Increase in oxygen consumption of megalops did not differ much at temperatures between 18 and 25 °C. This points to an exceptional physiological position of this stage. Fed zoea-1 of C. maenas (18 °C) revealed growth rates in terms of 40% DW, 20% carbon (C), 30% nitrogen (N) and 65% hydrogen (H). At the same time larvae gained individual energy by 13% (J · ind?1), while weight specific energy dropped by ≈ 19% (J · mg DW?1) during the first day and remained constant until the moult. Starved zoea-1 of C. maenas (18 ° C) gained ≈ 20 % in DW through the first day, probably caused by inorganic salts which enter the organism after the moult of the prezoea. DW dropped to ≈ 25 % of initial value, when starvation continued. Single components decreased by ≈50% (C), 54% (N), 57% (J · ind?1). Weight specific energy (J · mg DW?1) decreased by 40% during the first 4 days of starvation, remaining constant thereafter. Individual respiration rate (R) dropped by 61 %, weight specific respiration rate (QO2) by 55 %. Individual energy loss in starved zoea-1 was 0.077 J over a period of 11 days. In this period ≈ 9.3 μl O2·ind?1 were consumed. Thus effective oxygen capacity was lower than in growing larvae. It dropped to 5.3 J·mlO2?1 after 4 days and remained constant if starvation continued, i.e. 65 % of possible energy loss occurred during the first 4 days. Decrease in requirement for oxygen and its effective capacity were both recognized as independent components of survival during starvation. Partitioning of energy through individual larval development of C. maenas was investigated for all five larval stages. The cumulative budget could be calculated: consumption (C) = 28.23 J, growth (G) = 0.92 J, exoskeleton (Ex) = 0.20 J, metabolism (M) = 5.30 J, egestion and excretion (E) = 21.82 J. Mean gross and net growth efficiency were, K1 = 3.3% and K2 = 14.8%, respectively.  相似文献   

16.
Effects of starvation on the suryival period and the respiratory rate in adults of a wolf spider, Pardosa astrigera (L. Koch ), were investigated. The spiders used were divided into four groups: well-fed, starved and two limited food groups; in the latter two, each spider was supplied with one leafhopper every second or third day. Adult males and females of P. astrigera could survive for a long time; 28.8±2.7 days and 54.4±18.9 days, respectively, without any food. The longevities shown here were 73.8% for males and 78.6% for females of those of well-fed spiders, indicating that P. astrigera adults have a strong tolerance to starvation. The respiratory rate of well-fed adults showed no tendency to increase or decrease with their aging; the mean respiratory rates were 4.86×10−4 mg CO2/mg f.w. (fresh body weight)/hr for males and 3.80×10−4 mg CO2/mg f.w./hr for females. The respiratory rates of starved spiders increased during the first two days of starvation but decreased markedly from the third to the twelfth day, and thereafter retained an almost constant level for each sex. The mean respiratory rates after the twelfth day of starvation were 2.49×10−4 mg CO2/mg f.w./hr for males and 2.76×10−4 mg CO2/mg f.w./hr for females; these values were respectively 48.4% and 63.0% of those prior to starvation. The fresh body weight of starved spiders decreased linearly with time but the rate was small. The respiratory rates of the limited food groups tended to decline with time and thereby their weight losses were minimized. The decrease in the respiratory rate under starvation was considered not to be due to spider exhaustion or senescence but due to an intrinsic change in behaviour and/or metabolism, because when the spiders were supplied with ample food for five days after starvation, the respiratory rate and the body weight rapidly recovered to near the levels prior to starvation. It is suggested that starved spiders use a higher ratio of fat as catabolic substrate than normally fed or satiated ones. Feeding strategies of poikilo-therm predators are discussed.  相似文献   

17.
Cell populations of the marine bacterium ANT-300, from either batch or continuous culture with dilution rates ranging from D = 0.015 h−1 to D = 0.200 h−1, were monitored for viability, direct counts, and optical density for 98 days under starvation conditions. Three stages of starvation survival were observed for each of the cell populations. Although direct counts remained at 2 × 107 to 3 × 107 cells ml−1 throughout the starvation period, large fluctuations occurred in cell viability during stage 1 (0 to 14 days) of starvation survival. Stage 2 (14 to 70 days) involved an overall decrease in viability for each of the cell populations; the rate of viability loss was dependent upon the growth rate. Cell viability stabilized at approximately 0.3% of the direct count in stage 3 (70 to 98 days). Long-term starvation corresponded to the prolongation of stage 3 starvation survival. Cell volumes for each of the cell populations decreased with the length of the starvation period. However, the cell volume of starved cells was also dependent more on growth rate than on the length of the time starved. We hypothesize that the cell population with the slowest growth rate is most closely representative of cells found in the oligotrophic marine environment.  相似文献   

18.
Aharon Levy 《Life sciences》1981,29(10):1065-1070
The density of specific 3H-quinuclidinyl benzilate binding-sites in mouse brain was found to increase during ontogenic development from 0.51±0.08 pmoles/mg protein at day 8 postpartum to 1.54± 0.04 pmoles/mg protein at day 20. Repeated injections of the cholinesterase inhibitor diisopropyl flourophophase (1 mg/kg) at days 8, 10, 12 and 14 resulted in gradual decrease in the number of binding-sites, while apparent KD values remained unchanged (0.24±0.03 nM). Following termination of this treatment, the density of binding-sites approached the control levels within a few days.  相似文献   

19.
The study investigates the change in osmolality and haemolymph constituents in marron Cherax cainii and yabbies Cherax destructor associated with moult stages, body weights and their feeding status. A total of 582 haemolymph samples from 5 moult stages (postmoult-AB, intermoult-C, and premoult stages – D0, D1, D2), two body weight classes (2–15 g and 61–75 g) and nutritional status were used for analysis of osmolality, protein, glucose, and ionic concentrations of potassium and chloride following the standard biochemical procedures. The haemolymph protein, glucose, potassium and chloride levels were highest at intermoult and early premoult stages, and lowest at postmoult in both crayfish species. Except protein, no significant differences were seen in analyzed parameters between various weight classes and two species. Haemolymph osmolality, protein and glucose were significantly higher in fed crayfish, whereas no variations in haemolymph potassium and chloride concentrations were observed between the fed and unfed crayfish. Maximum osmolality was recorded at 7–8 h after feeding in both crayfish species. The results showed that the biochemical changes in the haemolymph of marron and yabbies are related to moult stages, body weight and feeding and thus can be used as tools for determining suitable diets.  相似文献   

20.
1. Measurements were made of milk yield, mammary blood flow and arteriovenous differences of each plasma lipid fraction, and their specific radioactivities, during the infusion of [U-14C]stearate, [U-14C]oleate, [U-14C]palmitate and [1-14C]acetate into fed lactating goats. 2. Entry rates of fatty acids into the circulation were 4·2mg./min./kg. body wt. for acetate, and 0·18, 0·28 and 0·42mg./min./kg. for stearate, oleate and palmitate respectively. Acetate accounted for 23% of the total carbon dioxide produced by the whole animal, and contributed to the oxidative metabolism of the mammary gland to about the same extent. Corresponding values for each of the long-chain acids were less than 1%. 3. There were no significant arteriovenous differences of phospholipids, sterols or sterol esters, and their fatty acid composition showed no net changes during passage through the mammary gland. 4. There were large arteriovenous differences of plasma triglycerides, and their fatty acid composition showed marked changes across the gland. The proportions of palmitate and stearate fell, and that of oleate increased. 5. Arteriovenous differences of plasma free fatty acids (FFA) were small and variable, but a large fall in the specific radioactivity of each of the long-chain acids examined indicated substantial uptake of plasma FFA, accompanied by roughly equivalent FFA release from mammary tissue. The uptake of FFA was confirmed by the extensive transfer of radioactivity into milk. The FFA of milk were similar in composition and radioactivity to the milk triglyceride fatty acids, and quite unlike plasma FFA. 6. The formation of large amounts of oleic acid (18–21 mg./min.) from stearic acid was demonstrated. 7. During the terminal stages of the [14C]acetate infusion, milk triglyceride fatty acids of chain length C4–C14 showed specific radioactivities that were 75–90% of that of blood acetate, and that of palmitate was roughly one-quarter of this value. Oleate and stearate were unlabelled. 8. The results confirmed that milk fatty acids of chain length C4–C14 arise largely from blood acetate, and palmitate is derived partly from acetate and partly from plasma triglyceride, the latter fraction being almost the sole precursor of oleate and stearate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号