首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Observations by light, transmission electron and scanning electron microscopy have shown that intercellular spaces (ICS) are formed schizogenously in expanding leaves ofPhaseolus vulgaris. ICS formation occurs in predictable positions at the junctions between three or more cells, and follows three phases of development. The first, initiation, phase occurs soon after cell division, and is marked by the formation of an electron-dense osmiophilic body, probably proteinaceous, at the end of the cell plate/middle lamella of the daughter cell wall and across the adjacent piece of the primary wall of the mother cell. This part of the mother cell wall is digested, involving cellulolysis. The second phase, of cell separation, is marked by the first appearance of the ICS. InPhaseolus primary leaves this phase begins about day 3 after sowing, at which time the leaf area is about 1 cm2. In the final enlargement phase, lysis of cell wall material continues in the region of the middle lamella, and mechanical tensions arising from the rapid expansion of the lamina lead to further separation of the mesophyll cells so that spaces enlarge and merge.  相似文献   

2.
Summary Prolific filamentous intercellular protuberances have been observed in the intercellular spaces of the ground parenchyma tissue in the stems ofCocos nucifera. They are visually similar to some intercellular material reported in several other plant tissues but their chemical composition is unknown. Tests for lignin, cellulose, callose, suberin and waxes have proved negative and those for pectin inconclusive. The amount of intercellular material is closely related to the thickness of the parenchyma cell wall and the protuberances appear to be produced continuously by an active cytoplasm.  相似文献   

3.
Summary In situ hybridization and immunogold labeling were performed to examine the temporal and spatial expression pattern of pathogenesis-related protein 1 (CABPR1) mRNA and PR-1 protein in pepper (Capsicum annuum L.) stem tissues infected by virulent and avirulent isolates ofPhytophthora capsici. CABPR1 mRNA accumulation was confirmed in the infected pepper stem tissue by Northern blot analysis and in situ hybridization. Northern blot analysis showed that the temporal expression ofCABPR1 mRNA varied greatly between compatible and incompatible interactions. An earlier expression of theCABPR1 gene, 6 h after inoculation, was observed in the incompatible interaction. In situ hybridization results revealed thatCABPR1 mRNA was expressed in the phloem areas of vascular bundles in infected pepper stem tissues, but especially strongly in the incompatible interaction. PR-1 protein was predominantly found in the intercellular spaces of pepper stem cells in the compatible and incompatible interactions 24 h after inoculation. Strikingly, the immunogold labeling was associated with fibrillar and electron-dense material localized in the intercellular space. Dense labeling of PR-1 protein was also seen at the interface of the pathogen and the host cell wall, whereas few gold particles were detected over the host cytoplasm. However, PR-1 protein was not detected over the fungal cell wall in either interaction.  相似文献   

4.
Summary The postantennal organ in Onychiurus (group armatus) is a sensory organ comprising one sensory cell, several enveloping cells and cuticular structures.The perikaryon of the sensory cell is located in the central nervous system and distally gives off a dendrite in which one inner and two outer segments are distinguishable. Two ciliary structures connect the outer dendritic segments with the inner segment. The outer segments divide repeatedly, basal to the cuticular structures, into small branches which end distally beneath the cuticular wall. The wall of the cuticular structures is very thin and is pierced by numerous funnel-shaped pores. The pores are filled with electron-dense material which forms a continuous sheath underneath the cuticle. This material encases the small dendritic branches and the processes of the enveloping cells which occupy the lumen of the cuticular structures. There are three types of enveloping cells: one inner, several outer and one basal. Their processes differ in the manner in which they envelop the various regions of the dendrite.At the beginning of moulting outer dendritic branches are not found within the cuticular structures of the organ. They may be assumed to retract inwardly. However, in the later stages, when the cuticle is fully formed, the outer dendritic segments appear to divide. It is assumed that the small dendritic branches reach their targets before ecdysis. The electrondense material which clogs the intermoult cuticular pores is absent until the final stages of the moulting cycle.Supported by a grant from the Deutscher Akademischer Austauschdienst.  相似文献   

5.
Summary During the intercellular nuclear migration of the basidiomycete Schizophyllum commune cytoplasmic microtubules were frequently observed scattered in the hyphae around interphase nuclei and connected with a semiglobular structure at the poles of mitotic and postmitotic nuclei. Thus it seems possible that microtubules, which have been demonstrated to participate in the intracellular nuclear movements in the dikaryotic hyphae of the basidiomycetes, are also involved in the intercellular nuclear movements of these fungi. During hyphal fusion microtubules close to an interphase nucleus were connected with electron-dense structures. It is suggested that these structures are centers for the assembly of microtubules necessary for nuclear movements not associated with nuclear divisions.Abbreviations KCE kinetochore equivalent - ch chromatin - cw cross wall of septum - ge semiglobular end of KCE - gm grey material - m mitochondrion - mp middle plate of KCE - mt microtubules - n nucleus - ne nuclear envelope - nu nucleolus - s electron-dense structure connected with microtubules  相似文献   

6.
Summary The first of two major steps in the infection process in roots ofParasponia rigida (Ulmaceae) following inoculation byRhizobium strain RP501 involves the invasion ofRhizobium into the intercellular space system of the root cortex. The earliest sign of root nodule initiation is the presence of clumps of multicellular root hairs (MCRH), a response apparently unique amongRhizobium-root associations. At the same time or shortly after MCRH are first visible, cell divisions are initiated in the outer root cortex of the host plant, always subjacent to the MCRH. No infection threads were observed in root hairs or cortical cells in early stages. Rhizobial entry through the epidermis and into the root cortex was shown to occur via intercellular invasion at the bases of MCRH. The second major step in the infection process is the actual infectionper se of host cells by the rhizobia and formation of typical intracellular infection threads with host cell accommodation. This infection step is probably the beginning of the truly symbiotic relationship in these nodules. Rhizobial invasion and infection are accompanied by host cortical cell divisions which result in a callus-like mass of cortical cells. In addition to infection thread formation in some of these host cortical cells, another type of rhizobial proliferation was observed in which large accumulations of rhizobia in intercellular spaces are associated with host cell wall distortion, deposition of electron-dense material in the walls, and occasional deleterious effects on host cell cytoplasm.  相似文献   

7.
A periodic acid-Schiff's substance present in the micropylar end of the ovules of Paspalum orbiculare and P. longifolium was further studied by light and electron microscopy of glutaraldehyde-osmium-fixed and freeze-substituted, osmium-fixed tissues. The PAS substance is water soluble and is found in intercellular spaces between the nucellus and inner integument, the inner and outer integuments, the outer integument and ovary wall, and in the micropyle. Structurally the substance consists of fibrils embedded in a dense, amorphous matrix and may be associated with membranous structures in special layers between the plasmalemma and the cell wall in nucellar and integumentary cells. Part of the water soluble substance is believed to be secreted from the nucellar and integumentary cells. A large amount of this substance may be formed as a result of the dissolution of about one third of the distal micopylar portion of the outer integument prior to anthesis. Many of the electron-dense fibrils seem to be fibrillar intercellular substances and others appear to originate from the cell walls, including the cuticle. Both the matrix and the fibrils may be chemically heterogeneous and together form a mucilagenous substance which may facilitate the final growth of pollen tubes in these two species.  相似文献   

8.
B. Galatis 《Planta》1988,176(3):287-297
When cell divisions have ceased, the epithem of the hydathodes of Pilea cadierei Gagnep. et Guill. consists of small polyhedral cells exhibiting a meristematic appearance, and completely lacks intercellular spaces. The cortical microtubules in epithem cells exhibit a unique organization: they are not scattered along the whole wall surface but form groups lying at some distance from each other. In sections, from two to eight groups of microtubules can be observed, each lining a wall region averaging between 0.5 and 1.5 m in length. These groups represent sections of microtubule bundles girdling a major part or the whole of the cell periphery. They are connected to one another by anastomoses, forming a microtubular reticulum. The assembly of microtubule bundles is followed by the appearance of distinct local thickenings in the adjacent wall areas. The cellulose microfibrils in the thickenings are deposited in parallel to the underlying microtubules. Gradually, the vacuolating epithem cells undergo swelling, except for the areas bounded by the wall thickenings. Since the latter, and actually their constituent bundles of cellulose microfibrils, cannot extend in length the differential cell growth results in schizogenous formation of intercellular spaces between contiguous cell walls at their thickened regions. The spaces then broaden and merge to become an extensive intercellular space system. As a result of the above processes, the epithem cells become constricted and finally deeply lobed. The observations show that (i) the cortical microtubules are intimately involved in the morphogenesis of the epithem cells and (ii) the initiation and development of the epithem intercellular spaces is a phenomenon directly related to cell morphogenesis and therefore to the cortical microtubule cytoskeleton. The sites of initiation of these spaces are highly predictable.  相似文献   

9.
Summary The massa caudalis of the subcommissural organ-Reissner's fiber complex of lamprey larvae (Geotria australis) was studied immunocytochemically at the ultrastructural level by use of the immunoperoxidase-silver methenamine procedure. An antiserum raised against bovine Reissner's fiber was utilized as primary antibody.The caudalmost portion of the central canal and its ampulla caudalis communicate, via wide intercellular spaces in their dorsal wall, with large cavities or lacunae. In addition, distinct openings in the dorsal wall of the ampulla establish an open communication between the latter and the lacunae. The lacunae are lined by slender processes of cells of unknown nature. No junctional complexes can be observed between these cells, which lack a basal lamina. The lacunae communicate with structures resembling blood capillaries, however, they are devoid of a basal lamina. These peculiar vessels, in turn, are in direct communication with characteristic blood capillaries.Reissner's fiber (RF) and its massa caudalis are strongly immunoreactive with the antiserum used. The wide intercellular spaces in the dorsal wall of the central canal and the ampulla, as well as the lumina of the (i) lacunae, (ii) modified vessels and (iii) blood capillaries are filled with a flocculent, strongly immunoreactive material. No immunoreactive material was found outside these structures. Thus, the blood capillaries appear to represent the only final target of RF-material arriving at the ampulla caudalis.Supported by Grant I 38259 from the Stiftung Volkswagenwerk, Federal Republic of Germany, Grant S-85-39 from the Dirección de Investigaciones, Universidad Austral de Chile, and Grant 6027 from Fondo Nacional de Desarrollo Científico y Tecnológico, Chile. The authors express their gratitude to Mrs. Elizabeth Santibáñez and Mr. Julio Lamilla for providing the lamprey larvae and to Mr. Humberto Molina for preparing the three-dimensional drawing  相似文献   

10.
以马铃薯晚疫病水平抗性品种LBr-12和感病品种费乌瑞它为材料,采用普通光学和电子显微镜技术,系统研究了马铃薯与晚疫病菌(致病疫霉)互作的组织细胞学反应特征。观察结果显示:(1)接种后,水平抗性材料LBr-12出现过敏反应,病菌被限制在侵染点的几个细胞中,菌丝产生较少的分支和吸器。(2)感病品种费乌瑞它被侵染细胞呈蔓延趋势,菌丝产生较多的分支和吸器。(3)电镜观察发现,抗病品种上病菌的胞间菌丝、吸器母细胞、吸器在细胞和亚细胞水平均发生了一系列异常变化,包括原生质的电子致密度加深、液泡增多变大、菌丝细胞壁不规则增厚、细胞器排列紊乱及解体、吸器母细胞及吸器形态异常、病菌最终畸形坏死,同时发现抗病品种受病菌侵染时可迅速产生结构防卫反应,形成的细胞壁沉积物使胞壁极度增厚或细胞膜上产生乳突状结构。  相似文献   

11.
Summary Structures have been found in the locular space between the tapetal cells and megaspores in Selaginella argentea and S. kraussiana that enter the megaspore wall and extend to the plasma membrane of the megaspore cytoplasm. We have called these structures wicks. Unless special fixation procedures are used wicks are either very poorly preserved or not apparent. Wicks appear to be routes for the transport of materials from the tapetum to developing megaspores. The entry of the wicks into the megaspore wall and their passage throughout the wall implies that the megaspore wall of Selaginella is a three-dimensional mesh-work of inter-connecting spaces. Wicks have several macromolecular-sized subunits, and the results of our histochemical reactions indicated the presence of glycoprotein and/or mucopolysaccharide. X-ray microanalysis of the S. convoluta exospore showed that silicon is present in rod-shaped structures between units of the exospore in mature megaspores. Because of the size and form of the structures between the exospore units we consider that they are remnants of wicks stabilized by silicon.Present address:Cátedra de Palinologia, Museo de La Plata, Paseo del Bosque s/nro., 1900 La Plata, Argentina.  相似文献   

12.
Summary Skeletonema costatum consists of cells joined by open gutter-like connecting spines (strutted tubuli) which form from the margin of the valve face. The intercellular spaces occupied by tubuli are alternately enclosed by finely perforate bands of wall material. The intercellular bands are in the form of overlapping, open ended cylinders attached to the epitheca in the region of the cell girdle. A model is proposed for filament formation explaining the origin of alternating walled and unwalled intercellular spaces.  相似文献   

13.
An in vitro system was used for ectomycorrhizal synthesis of Cenococcum geophilum Fr. with Cathaya argyrophylla Chun et Kuang, an endangered species. Calli initiated from stem segments and adventitious roots differentiated from young seedlings were removed and cocultured with Cenococcum geophllum on a modified Murashlge-Skoog medium. Fungal hyphae were visible within intercellular spaces of the callus 4 weeks after inoculation, but definite and well-developed Hartig net structures did not form in the calU 8 weeks after inoculation. The typical ectomycorrhizal structures (i.e. hyphal mantle and Intracortical Hartig net) were observed in root segments 8 weeks after inoculation. This is the first report of aseptic ectomycorrhlzal-like formation/infection between root organ/callus of Cathaya argyrophylla and the ectomycorrhizal fungus Cenococcum geophflum. This culture system is useful for further investigation of mycorrhizal synthesis in Cathaya trees.  相似文献   

14.
In the spinal cord of Lampetra planeri neurosecretion and glial secretion could be demonstrated with histochemical methods and the aid of the electron microscope. Neurosecretion is present in either all or some “dorsal cells” which are scattered along the whole spinal cord. These cells have the characteristic fine structure of highly active secretory neurons. The cells produce three types of secretory material. One not bound to vesicles in form of a finely granulated substance, a second one in spherical, uniformely electron-dense elementary vesicles with a diameter of 100–140 nm, and a third one in vesicles of the monoamine type. In the most caudal part of the spinal cord glial secretion is present. Groups of glial cells produce a fine, granulated material and release it into the adjacent intercellular space. From there the material extends into other intercellular spaces of the spinal cord. We are of the opinion that the “dorsal cells” are forerunners of the cells of Dahlgren in higher vertebrates and that the neurosecretion and glial secretion in the spinal cord of lampreys demonstrate very primitive conditions.  相似文献   

15.
Living xylem tissues and floral buds of several species of woody plants survive exposure to freezing temperatures by deep supercooling. A barrier to water loss and the growth of ice crystals into cells is considered necessary for deep supercooling to occur. Pectins, as a constituent of the cell wall, have been implicated in the formation of this barrier. The present study examined the distribution of pectin in xylem and floral bud tissues of peach (Prunus persica). Two monoclonal antibodies (JIM5 and JIM7) that recognize homogalacturonic sequences with varying degrees of esterification were utilized in conjunction with immunogold electron microscopy. Results indicate that highly esterified epitopes of pectin, recognized by JIM7, were the predominant types of pectin in peach and were uniformly distributed throughout the pit membrane and primary cell walls of xylem and floral bud tissues. In contrast, un-esterified epitopes of pectin, recognized by JIM5, were confined to the outer surface of the pit membrane in xylem tissues. In floral buds, these epitopes were localized in middle lamellae, along the outer margin of the cell wall lining empty intercellular spaces, and within filled intercellular spaces. JIM5 labeling was more pronounced in December samples than in July/August samples. Additionally, epitopes of an arabinogalactan protein, recognized by JIM14, were confined to the amorphous layer of the pit membrane. The role of pectins in freezing response is discussed in the context of present theory and it is suggested that pectins may influence both water movement and intrusive growth of ice crystals at freezing temperatures.  相似文献   

16.
Peng YB  Li YQ  Hao YJ  Xu ZH  Bai SN 《Protoplasma》2004,224(1-2):71-78
Summary. In an effort to gain a greater understanding of nectar production, we studied the dynamic mechanisms of starch accumulation and transformation and nectar transportation in the Cucumis sativus L. female flower. Starch, which is the main precursor of nectar, accumulates in the epidermis and underlying parenchyma, with the most active accumulation occurring in the parenchyma cells within 3 days prior to anthesis. Thereafter, the starch was successively hydrolyzed and the hydrolyte was transported from the amyloplasts to vacuoles, suggesting that amyloplasts and vacuoles are the centers of nectar production. In addition, we observed few plasmodesmata and the presence of invaginated plasmalemma and electron-dense material in the intercellular spaces, suggesting that the apoplast system is involved in nectar transportation in an ATPase-dependent fashion.Correspondence and reprints: College of Life Sciences, Peking University, Beijing, 100871, Peoples Republic of China  相似文献   

17.
I. M. Miller  D. D. Baker 《Protoplasma》1985,128(2-3):107-119
Summary A correlated light and electron microscopic study was undertaken of the initiation and development of root nodules of the actinorhizal tree species,Elaeagnus angustifolia L. (Elaeagnaceae).Two pure culturedFrankia strains were used for inoculation of plants in either standing water culture or axenic tube cultures. Unlike the well known root hair infection of other actinorhizal genera such asAlnus orMyrica the mode of infection ofElaeagnus in all cases was by direct intercellular penetration of the epidermis and apoplastic colonization of the root cortex. Root hairs were not involved in this process and were not observed to be deformed or curled in the presence of the actinomyceteFrankia. In response to the invasion of the root, host cells secreted a darkly staining material into the intercellular spaces. The colonizingFrankia grew through this material probably by enzymatic digestion as suggested by clear dissolution zones around the hyphal strands. A nodule primordium was initiated from the root pericycle, well in advance of the colonizingFrankia. No random division of root cortical cells, indicative of prenodule formation was observed inElaeagnus. As the nodule primordium grew in size it was surrounded by tanninised cells of a protoperiderm. The endophyte easily traversed this protoperiderm, and once inside the nodule primordium cortex ramified within the intercellular spaces at multiple cell junctions. Invasion of the nodule cortical cells occurred when a hyphal branch of the endophyte was initiated and grew through the plant cell wall, again by apparent enzymatic digestion. The plant cell plasmalemma of invaded cells always remained intact and numerous secretory vesicles fused with it to encapsulate the advancingFrankia within a fibrous cell wall-like material. Once within the host cell some endophyte cells began to differentiate into characteristic vesicles which are the presumed site of nitrogen fixation. This study clearly demonstrates that alternative developmental pathways exist for the development of actinorhizal nitrogen-fixing root symbioses.  相似文献   

18.
Summary The cell-wall components in ectomycorrhizae ofCorylus avellana andTuber magnatum have been investigated by using immunocytochemistry and enzyme/lectin-gold techniques. Observations were performed in differentiated regions of hazel roots in the presence and absence of the ectomycorrhizal fungus. The results provided new information on the location of specific components in both the host and the fungal wall. The cellobiohydrolase I (CBH I)-gold complex and the monoclonal antibody (MAb) CCRC-M1 revealed cellulose and xyloglucans, respectively, in the host wall. MAb JIM 5, which detected un-esterified pectins, labelled only the material occurring at the junctions between three cells, while no labelling was found after treatment with MAb JIM 7, which detected methyl-esterified pectins. MAb CCRC-M7, which recognized an arabinosylated -(1,6)-galactan epitope, weakly labelled tissue sections. MAb MAC 266, which detects a carbohydrate epitope on membrane and soluble glycoproteins, labelled the wall domain adjacent to the plasmamembrane. In the presence of the fungus, host walls were swollen and sometimes degraded. The labelling pattern of uninfected tissue was maintained, but abundant distribution of gold granules was found after CBH I and JIM 5 labelling. None of the probes labelled the cementing electron-dense material between the hyphae in the fungal mantle and in the Hartig net. The probes for fungal walls, i.e., wheat germ agglutinin (WGA) and concanavalin A (Con A) and a polyclonal antibody, revealed the presence of chitin, high-mannose side chains of glycoproteins and -1,3-glucans. Con A alone led to a labelling over the triangular electron-dense material, suggesting that this cementing material may contain a fungal wall component.  相似文献   

19.
The occurrence of species of the cyanophytes Nostoc and Anabaenain the cortex near the algal zone is reported for apogeotropicroots of Macrozamia communis L. Johnson. Algae were found tooccur both intercellularly and intracellularly in cells of theinner and outer cortex. This is the first record of intracellularalgae in the cycads and only the second report of this phenomenonin vascular plants. By examination of cells at various stagesof invasion by algae, it is interpreted that algal invasionof cortical cells and intercellular spaces is preceded by mucusapparently secreted by algal zone cells of the host, and depositedin intercellular spaces of cortical parenchyma cells nearby.Also algal penetration of cortical cells is preceded by an algalinvasion front of finely granular mucal material which bypassesmucus already deposited in intercellular spaces and may eitherlyse part of the host cell wall or enter through the plasmo-desmata,filling much of the cell cavity. Subsequently, large numbersof the algal symbionts enter the cell and may be enclosed withinhost wall material. Electron microscopic techniques are nowbeing employed to further clarify these invasion processes.  相似文献   

20.
Summary The stigmas of the heterostylous genusPrimula are of the dry type without a free-flowing surface secretion. The papillae of the stigma surface cells of the two morphs, in pin (stigma exserted) and thrum (stamens exserted), bear a thin proteinaceous surface pellicle, overlying a discontinuous cuticle. The vacuoles of the papillate cells contain tannins, and tannin cells extend in files through the stigma heads and form a loose sheath surrounding the pollen-tube transmitting tract in the styles. The cells of the transmitting tissue in the stigma heads have a normal complement of organelles, and abundant ribosomal endoplasmic reticulum. The intercellular spaces contain an internal secretion which reacts cytochemically for both carbohydrate and protein. The transmitting tract in the styles forms a central core surrounded by several vascular strands. The cells are elongated, and the intercellular spaces here also have a carbohydrate-protein content. In a compatible pollination, thrum pollen tubes enter the stigma by penetrating the cuticle at the tip or on the flank of the pin papilla. Pin tubes on the thrum stigma enter between adjacent papillae, penetrating the thin cuticle at the base. The tubes grow through the transmitting tracts in the intercellular material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号