首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Continuing efforts in development of non-invasive prenatal genetic tests have focused on the isolation of fetal nucleated red blood cells (NRBCs) from maternal blood for decades. Because no fetal cell-specific antibody has been described so far, the present study focused on the development of monoclonal antibodies (mAbs) to antigens that are expressed exclusively on fetal NRBCs.Methods: Mice were immunized with fetal erythroid cell membranes and hybridomas screened for Abs using a multi-parameter fluorescence-activated cell sorting (FACS). Selected mAbs were evaluated by comparative FACS analysis involving Abs known to bind erythroid cell surface markers (CD71, CD36, CD34), antigen-i, galactose, or glycophorin-A (GPA). Specificity was further confirmed by extensive immunohistological and immunocytological analyses of NRBCs from umbilical cord blood and fetal and adult cells from liver, bone marrow, peripheral blood, and lymphoid tissues.Results: Screening of 690 hybridomas yielded three clones of which Abs from 4B8 and 4B9 clones demonstrated the desired specificity for a novel antigenic structure expressed on fetal erythroblast cell membranes. The antigenic structure identified is different from known surface markers (CD36, CD71, GPA, antigen-i, and galactose), and is not present on circulating adult erythroid cells, except for occasional detectability in adult bone marrow cells.Conclusions:The new mAbs specifically bind the same or highly overlapping epitopes of a surface antigen that is almost exclusively expressed on fetal erythroid cells. The high specificity of the mAbs should facilitate development of simple methods for reliable isolation of fetal NRBCs and their use in non-invasive prenatal diagnosis of fetal genetic status.  相似文献   

2.
To establish a role of erythropoietin (Epo) in regulation of fetal and neonatal erythropoiesis, plasma erythroid colony-stimulating activity (ECSA) in developing mice was measured by an erythroid colony-forming assay using fetal mouse liver cells. The ECSA in fetal and neonatal plasmas showed dose-response curves parallel to standard Epo curve and additive effects with standard Epo on the colony formation. Most of the plasma ECSA was neutralized by an anti-Epo monoclonal antibody. These results suggest that the plasma ECSA detected by the present bioassay is predominantly due to Epo. On day 12-14 of gestation, the plasma ECSA levels were at the highest values; thereafter the levels oscillated up to the age of 4 weeks. The packed cell volume (PCV) also oscillated, but with the reverse phase. Oscillation in PCV was associated with the growth. There was an inverse relationship between plasma ECSA and PCV levels throughout the prenatal and early postnatal periods. The results indicate that erythropoiesis in fetal and neonatal mice is regulated mainly on the basis of PCV-ECSA feedback control mechanism.  相似文献   

3.
Isolation and short-term culture of mouse splenic erythroblastic islands   总被引:1,自引:0,他引:1  
We isolated and cultured erythroblastic islands (EI) from the spleens of phlebotomized mice using a combination of collagenase digestion, unit gravity sedimentation, and Percoll density gradients separation. The isolated EI were composed of surrounding erythroid cells and central stromal macrophages (M phi), which were identified by Forssman antigen. While 60% of the erythroblasts incorporated bromodeoxyuridine, the M phi did not. EI could be maintained on a plastic dish for a short period in the presence of erythropoietin. Two hours later, the central M phi spread well and bound to erythroblasts via cytoplasmic processes. One day later, erythropoietic activity on the M phi surface continued, although their processes had retracted. Some EI showed synchronized expansion of erythroblasts and others showed differentiation to reticulocytes. Two days later, about 50% of the EI still showed erythropoietic activity and most erythroblasts differentiated to the orthochromatic stage. On the other hand, the M phi secreted colony-stimulating activity during the culture. It was infrequently observed that erythroid and myeloid populations simultaneously expanded on a central M phi. These results indicate that this EI culture system is useful for studying interactions between the stomal M phi and hematopoietic cells.  相似文献   

4.
K Nocka  J Buck  E Levi    P Besmer 《The EMBO journal》1990,9(10):3287-3294
The c-kit proto-oncogene encodes a transmembrane tyrosine kinase receptor for an unidentified ligand and is allelic with the murine white-spotting locus (W). W mutations affect melanogenesis, gametogenesis and hematopoiesis during development and in adult life. Cellular targets of W mutations in hematopoiesis include distinct cell populations in the erythroid and mast cell lineages as well as stem cells. In the absence of interleukin-3 (IL-3) mast cells derived from normal mice but not from W mutant mice can be maintained by co-culture with 3T3 fibroblasts. Based on the defective proliferative response of W mast cells in the 3T3 fibroblast co-culture system it had been proposed that fibroblasts produce the c-kit ligand. We have used a mast cell proliferation assay to purify a 30 kd protein, designated KL, from conditioned medium of Balb/3T3 fibroblasts to apparent homogeneity. KL stimulates the proliferation of normal bone marrow derived mast cells but not mast cells from W mice, although both normal and mutant mast cells respond similarly to IL-3. Connective tissue-type mast cells derived from the peritoneal cavity of normal mice were found to express a high level of c-kit protein on their surface and to proliferate in response to KL. The effect of KL on erythroid progenitor cells was investigated as well. In combination with erythropoietin, KL was found to stimulate early erythroid progenitors (BFU-E) from fetal liver and spleen cells but not from bone marrow cells of adult mice and from fetal liver cells of W/W mice.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
When fetal calf liver erythroid cells were incubated in the presence of small amounts of progesterone (10(-7)-10(-8) M), the hemoglobin synthesis in these cells was significantly increased. The increase in the amount of radioactivity in de novo synthesized hemoglobins could be demonstrated when techniques such as isoelectric focusing, chromatography on DEAE-cellulose and gel chromatography on Sephadex G-100 were used to isolate the hemoglobin fraction. Using the latter technique, it was shown that the synthesis of cytoplasmic non-hemoglobin proteins in erythroid-cell lysates was also stimulated by progesterone. The presence of hepatocytes in culture nullified the hormone action. It was necessary that progesterone was present during the first hours of culture. Delayed addition of the steroid to the cells had no effect on hemoglobin synthesis. Erythropoietin was necessary to obtain stimulation by progesterone. These results suggest that the target cell of the hormone is an erythropoietin-sensitive cell. High concentrations of progesterone (10(-4) M) strongly inhibited hemoglobin synthesis in fetal calf erythroid cells. Culture of cells under this condition, however, gives rise to a cell population that preferentially synthesizes adult hemoglobin. Our results suggest that in the erythropoietic calf liver, high concentrations of progesterone may preferentially stimulate adult hemoglobin synthesis, or that those cells which have a high capacity to synthesize adult hemoglobins are less sensitive to toxic concentrations of the hormone. The effects of stimulation of hemoglobin synthesis in fetal calf erythroid cells occur at hormone concentrations that suggest a possible physiological role of progesterone in fetal, and eventually also in maternal, erythropoiesis.  相似文献   

6.
A rat monoclonal antibody, YBM/42, directed against mouse leukocyte common antigen, was used for the analysis and separation of hemopoietic progenitor cells from mouse bone marrow and fetal liver. Cells were fractionated on a FACS-II cell sorter and the resulting subpopulations examined for their morphology and ability to form colonies in agar (for day 7 colonies) and methylcellulose (for day 2 erythroid clones). The antibody bound to all leukocytes, including blast cells and day 7 hemopoietic progenitor cells (day 7 colony forming cells, CFC), but not to erythrocytes or nucleated erythroid cells. This antibody can be used to advantage to enrich for early progenitor cells from mouse fetal liver, in which the majority of cells (70%) are nucleated erythroid cells. In day 12 fetal liver, approximately 10% of all cells bind this antibody strongly and, of these approximately 70% are blast cells. Contained within this positive population are 95% of all day 7 CFC. In the most enriched fraction about 20% of the cells formed day 7 colonies. This represents a 25-fold enrichment over unsorted fetal liver. The negative fractions contain 94% of all cells forming erythroid clones (≥8 cells) on day 2 of culture (day 2 CFU-E). In the most enriched fraction, 20% of the cells are day 2 CFU-E. Day 7 CFC can therefore be well separated from day 2 CFU-E, with good recovery of both cell types, by use of a single label. Day 7 colony forming cells were classified as granulocyte (G-CFC), macrophage (M-CFC), mixed granulocyte/macrophage (GM-CFC), pure erythroid (E), or mixed erythroid (Emix). A high enrichment for multipotential cells is achieved and constitues 3–5% of cells in the most enriched fraction. Most types of day 7 CFC could not be separated with YMB/42, but GM-CFC and M-CFC exhibit a broader distribution than the other CFC with regard to fluorescence intensity. This implicit heterogeneity in GM-CFC and M-CFC is further substantiated by the finding that myeloid progenitors in the different FACS fractions also share a differential reactivity to different sources of growth factors.  相似文献   

7.
alpha-Fetoprotein and the synthesis of heme associated with hemoglobin were measured simultaneously in short-term cultures of human fetal liver cells to correlate the relationship of alpha-fetoprotein to erythroid cell function. Both synthetic processes decreased exponentially during the first 5 days of culture. The use of media supplemented with different batches of fetal calf serum and porcine portal vein serum indicated that the optimal conditions for the production of alpha-fetoprotein were different from those required for the synthesis of heme associated with hemoglobin. Moreover, the alpha-fetoprotein-producing cells could be separated from erythroid cells after velocity sedimentation in Ficoll gradients. Although it is well known that erythropoiesis and alpha-fetoprotein production occur simultaneously during ontogenesis, alpha-fetoprotein itself (0.01-100 micron g/ml) did not stimulate heme synthesis in liver erythroid cells. Erythropoietin did not stimulate alpha-fetoprotein production. It is concluded that there is no cause-effect relationship between alpha-fetoprotein production and erythroid cell fuction in human fetal liver cells and that the two processes occur independently in different cell types.  相似文献   

8.
The platelet glycoprotein IIb (alpha(IIb); CD41) constitutes the alpha subunit of a highly expressed platelet surface integrin protein. We demonstrate that CD41 serves as the earliest marker of primitive erythroid progenitor cells in the embryonic day 7 (E7.0) yolk sac and high-level expression identifies essentially all E8.25 yolk sac definitive hematopoietic progenitors. Some definitive hematopoietic progenitor cells in the fetal liver and bone marrow also express CD41. Hematopoietic stem cell competitive repopulating ability is present in CD41(dim) and CD41(lo/-) cells isolated from bone marrow and fetal liver cells, however, activity is enriched in the CD41(lo/-) cells. CD41(bright) yolk sac definitive progenitor cells co-express CD61 and bind fibrinogen, demonstrating receptor function. Thus, CD41 expression marks the onset of primitive and definitive hematopoiesis in the murine embryo and persists as a marker of some stem and progenitor cell populations in the fetal liver and adult marrow, suggesting novel roles for this integrin.  相似文献   

9.
Mouse stromal cell lines (FLS lines), established from the livers of 13-day gestation mouse fetus, supported the proliferation and differentiation of the erythroid progenitor cells from mouse fetal livers and bone marrow in a semisolid medium in the presence of erythropoietin. A large erythroid colony of over 1000 benzidine-positive erythroid cells was developed from a single erythroid progenitor cell on the FLS cell layer after 4 days of culture. When in close contact with the layer, the erythroid progenitor cells divided rapidly with an average generation time of 9.6 h and mature erythroid cells, including enucleated erythrocytes, were produced. The present studies demonstrate that the microenvironment created by the stromal cells can support the rapid expansion of erythropoietic cell population in the fetal liver of mice.  相似文献   

10.
A murine retrovirus (MRSV) containing the src gene of Rous sarcoma virus has been shown to cause an erythroproliferative disease in mice (S. M. Anderson and E. M. Scolnick, J. Virol. 46:594-605, 1983). We now demonstrate that this same virus can transform erythroid progenitor cells in vitro. Infection of fetal liver cells or spleen and bone marrow cells from phenylhydrazine-treated adult mice gave rise to colonies of erythroid cells which grew in methylcellulose under conditions not favorable for the growth of normal erythroid cells. The presence of pp60src in the transformed erythroid cells was demonstrated by an immune complex protein kinase assay. The time course of appearance and subsequent differentiation of erythroid colonies indicated that the target cell for MRSV was a 6- to 8-day burst-forming unit. Differentiation of the erythroid progenitors was not blocked by the presence of pp60src, and the cells retained sensitivity to the hormone erythropoietin. In fact, the transformed cells exhibited increased hormone sensitivity since the number, the size, and the extent of hemoglobinization of the colonies were all increased by the addition of small amounts of erythropoietin. MRSV was not susceptible to restriction by the Fv-2 locus, as MRSV could transform hematopoietic cells from C57BL/6 mice. These results indicate that (i) the erythroid proliferation observed in vivo is caused by a direct effect of MRSV on erythroid progenitors and (ii) the transformed erythroid precursors acquire a growth advantage over uninfected cells without losing the ability to differentiate and respond to physiologic regulators.  相似文献   

11.
Human C-reactive protein (CRP) is known to activate mouse macrophages (M phi) to a tumoricidal state and to serve as an opsonin for M phi. Therefore, cell surface receptors for CRP on mouse M phi were characterized and their relationship to the IgG FcR determined. The specific binding of 125I-CRP to resident or elicited mouse M phi was saturable, reversible, and involved both a high and a low affinity receptor population. Binding of CRP to the mouse M phi cell lines PU5 1.8 and J774 was nearly identical to that observed with peritoneal M phi. The high affinity receptor population had a calculated K of 10 nM and a receptor density of approximately 10(5) sites per cell. Mouse Ig of the IgG2a, IgG2b, or IgG1 isotypes inhibited binding of 125I-CRP to PU5 1.8 cells at concentrations five-fold greater than that of the homologous ligand. In the converse experiment, unlabeled CRP failed to inhibit specific binding of 125I-labeled IgG2a, IgG2b or IgG1. Isolation of CRP binding proteins from surface iodinated PU5 1.8 cells by ligand-affinity chromatography or chemical cross-linking yielded a major protein band of 57 to 60 kDa which appeared to be distinct from the IgG1/IgG2b FcR (FcR-II) membrane proteins. Removal of radiolabeled IgG2b/IgG1 binding membrane proteins by affinity chromatography did not remove CRP-binding proteins. The rat mAb 2.4G2 which inhibits binding of radiolabeled mouse IgG2b, did not inhibit the binding of CRP. A rat polyclonal antiserum to CRP-binding membrane proteins of PU5 1.8 cells inhibited 125I-CRP binding, but not 125IgG2b binding. The rat polyclonal antibody reacted with two 57 to 60 kDa membrane proteins from PU5 1.8 cells that appear to be of a similar size on Western blots. The 125I-CRP was internalized via endosomes and intact CRP subunits could be detected intracellularly. The findings suggest that binding of CRP occurs through a receptor that is distinct from the IgG FcRs, but that CRP-R activity may be influenced by an association with an IgG FcR.  相似文献   

12.
S Masuda  Y Hisada  R Sasaki 《FEBS letters》1992,298(2-3):169-172
Erythropoietin (EPO) stimulates proliferation and differentiation of late erythroid precursor cells (CFU-E) and thereby determines the rate of erythropoiesis. Liver is the major erythropoietic site in a fetus. We dealt with developmental changes in CFU-E and EPO receptor (EPO-R) of fetal mouse liver. The affinity of the EPO-R to EPO was unchanged during fetal development. The population size of CFU-E, the number of EPO-R per liver cell, and EPO-R mRNA decreased as gestation proceeded, in a pattern indicating that the expression of EPO-R on erythroid precursor cells in fetal mouse liver is governed mostly by the process of mRNA production.  相似文献   

13.
Proteinase-complexed alpha 2-macroglobulin (alpha 2M) could be shown to interfere with T cell proliferation in response to antigen presented by autologous antigen-pulsed monocytes (M phi) (antigen-induced M phi-T cell interaction, MTI). Addition of alpha 2M-trypsin (alpha 2M X T) complexes to cultures of T cells and antigen-pulsed M phi led to a dose-dependent decrease of T cell proliferation (up to 91% inhibition of the T cell response), whereas the same concentrations of free (native) alpha 2M had no effect on antigen-induced MTI. The observed interference with MTI could be attributed to residual enzymic activity of the alpha 2M X T complex. Addition of aprotinin, a low Mr protein proteinase inhibitor able to penetrate to the enzyme entrapped within the alpha 2M molecule and thus bind to and inactivate the enzyme's active site, resulted in a reversal of the alpha 2M X T-induced biological effect. Inactivation of the enzyme's active site within alpha 2M X T was monitored by a decrease in the hydrolytic activity of the complex. Kinetic studies (addition of alpha 2M X T 24 to 48 hr after culture onset was shown to be still inhibitory) indicated an effect at the level of the T cell or its mediators, but an overnight incubation of T cells with alpha 2M X T did not alter these cells' capacity to proliferate in response to an antigenic stimulus. An additional effect of alpha 2M X T on the antigen-presenting cell cannot be ruled out at present. However, alpha 2M X T did not alter the percentage of monocytes expressing HLA-DR, -DP, and -DQ or interfere with interleukin 1 release if added to M phi at concentrations that significantly inhibited MTI. Furthermore, incubation of M phi with alpha 2M X T for 1 hr before antigen pulsing had no effect on the M phi antigen presenting capacity.  相似文献   

14.
The role of accessory cells (AC) in the initiation of mitogen-induced T cell proliferation was examined by comparing the effect of intact macrophages (M phi) with that of 4-beta-phorbol 12-myristate 13-acetate (PMA). In high-density cultures, purified guinea pig T cells failed to proliferate in response to stimulation with phytohemagglutinin (PHA), concanavalin A (Con A), or PMA alone. The addition of M phi to PHA or Con A but not PMA-stimulated cultures restored T cell proliferation. The addition of PMA to high-density T cell cultures stimulated with PHA or Con A also permitted [3H]thymidine incorporation, but was less effective than intact M phi in this regard. This action of PMA was dependent on the small number of AC contaminating the T cell cultures as evidenced by the finding that PMA could not support mitogen responsiveness of T cells that had been depleted of Ia-bearing cells by planning, even when these cells were cultured at high density. When PMA was added to T cell cultures supported by optimal numbers of M phi, catalase-reversible suppression of responses was noted. Even in cultures containing catalase, PMA failed to enhance responsiveness above that supported by optimal numbers of M phi. A low-density culture system was used to examine in greater detail the possibility that PMA could completely substitute for M phi in promoting T cells activation. In low-density cultures, mitogen-induced T cell proliferation required intact M phi. PMA could not support responses even in cultures supplemented with interleukin 1-containing M phi supernatants or purified interleukin 2 alone or in combination. Similar results were found in high-density cultures of T cells depleted of Ia-bearing cells. These results support a model of T cell activation in which AC play at least two distinct roles. The initiation of the response requires a signal conveyed by an intact M phi, which cannot be provided by either a M phi supernatant factor or PMA. The response can be amplified by additional M phi or M phi supernatant factors. PMA can substitute for M phi in this regard and can provide the signal necessary for amplification of T cell proliferation supported by small numbers of intact AC.  相似文献   

15.

Background  

We recently developed a new method to induce human stem cells (hESCs) differentiation into hematopoietic progenitors by cell extract treatment. Here, we report an efficient strategy to generate erythroid progenitors from hESCs using cell extract from human fetal liver tissue (hFLT) with cytokines. Human embryoid bodies (hEBs) obtained of human H1 hESCs were treated with cell extract from hFLT and co-cultured with human fetal liver stromal cells (hFLSCs) feeder to induce hematopoietic cells. After the 11 days of treatment, hEBs were isolated and transplanted into liquid medium with hematopoietic cytokines for erythroid differentiation. Characteristics of the erythroid cells were analyzed by flow cytometry, Wright-Giemsa staining, real-time RT-PCR and related functional assays.  相似文献   

16.
17.
Normal and malignant CD5+ B lymphocytes can develop macrophage-like characteristics. One stimulus of this phenotypic shift is culture of normal mouse splenic B lymphocytes with splenic fibroblasts or their conditioned media. These biphenotypic B/macrophage (B/M phi) cells simultaneously display macrophage characteristics, such as phagocytosis and F4/80 expression, while retaining B cell features, including expression of surface Ig, CD5, B220, and rearranged Ig genes. The present study investigated the fibroblast-secreted factor that promotes this phenotypic change from B cell to B/M phi cell. RT-PCR analysis demonstrated that mRNA for M-CSF is produced by splenic fibroblasts. Recombinant M-CSF (CSF-1) could replace fibroblast-conditioned medium to elicit the development and survival of B/M phi cells from splenic B lymphocytes. In addition, neutralization of fibroblast-secreted M-CSF with specific mAbs abrogated the ability of conditioned supernatants to promote outgrowth of B/M phi cells. The transition from B lymphocyte to B/M phi cell was marked by the kinetic appearance of mRNA for the M-CSF receptor, c-fms, at day 3 following culture initiation. These results demonstrate that M-CSF is important in the development and physiology of mouse B/M phi cells and potentially in the growth of human biphenotypic hematological malignancies. Interestingly, the presence of IFN-gamma in splenic B lymphocyte cultures abrogated the effect of fibroblast-conditioned medium or M-CSF on outgrowth of B/M phi cells. Furthermore, these findings suggest that a Th1 microenvironment favored by typical macrophages is detrimental to the outgrowth of B/M phi cells.  相似文献   

18.
Several human melanoma cell lines produced tissue-type plasminogen activator (t-PA), as detected by zymography and immunocapture assay of culture media and cell lysates. Urokinase (u-PA) was found at only less than or equal to 1% the level of t-PA. Acid eluates of the cell surface indicated that the melanoma cells had t-PA bound on their surface, but no u-PA, and also had a very low capacity to bind exogenous u-PA. After incubation of the melanoma cells with 10% plasminogen-depleted fetal calf serum and human plasminogen, bound plasmin activity could be eluted from the cell surface with tranexamic acid, an analogue of lysine. This indicated that plasminogen was activated on the cell surface. The cell-surface plasmin formation was inhibited by an anti-catalytic monoclonal antibody to human t-PA, and not by an anti-catalytic antibody to u-PA. The melanoma cells also synthesized and secreted alpha 2-macroglobulin (alpha 2M), as shown by alpha 2M-specific mRNA in Northern blotting and detection of alpha 2M protein in conditioned cell culture media. The media were found to inhibit u-PA but not t-PA. This inhibition was related to their alpha 2M content, and immunoabsorption of alpha 2M removed the inhibitory activity. These studies suggest that t-PA can bind to the surface of melanoma cells and generate surface-bound plasmin. Because t-PA and cell-bound plasmin are unaffected by alpha 2M, t-PA may, in the case of melanoma cells, serve an analogous function to u-PA in supporting tumor cell invasion.  相似文献   

19.
We created a monoclonal antibody, designated EB1 (IgM, kappa), that reacts with erythroblasts by fusion of P3-X63-Ag8.653 with splenocytes of rats immunized with erythroblastic islands isolated from mice spleens. Western blotting revealed that EB1 reacted with the band 3 protein of the erythrocytic membrane. It stained erythrocytes and erythroblasts, forming clusters in the bone marrow, splenic red pulp, and fetal liver, but did not stain other tissues in the cryostat sections. The EB1 antigen was detected during dimethyl sulfoxide-induced differentiation of murine erythroleukemia cells. Immunoelectron microscopy revealed that the EB1 antigen was expressed from the basophilic erythroblasts during normal erythroid differentiation. Preferential segregation of the EB1 antigen on the cell membrane of the nucleating erythroblasts was not observed. These results suggest that EB1 is specific for erythrocyte band 3 protein and may be useful for studying erythroid cell differentiation.  相似文献   

20.
Extracts of human fetal intestine contain factors that can stimulate or inhibit thymidine incorporation into fetal bovine erythroid cells. An inhibitory factor was purified to homogeneity by gel-permeation and reversed-phase high performance liquid chromatography. The inhibitory action was due to cell lysis. The first 25 amino acids of the N-terminal segment were identical to the human lung and pancreatic phospholipase A2. The isolated protein released arachidonic acid from 2-arachidonyl phosphatidylcholine. Porcine phospholipase A2 had the same effects as the intestinal protein, including its tissue-specific lysis of fetal bovine liver erythroid cells. No decrease of thymidine incorporation was seen in fetal bovine intestinal cells, 3T3 cells, or K562 cells incubated with the porcine enzyme. No release of hemoglobin or cell lysis was observed with human erythrocytes or fetal bovine erythrocytes. Porcine and bee phospholipases, which have low sequence homology, are nearly equipotent in inhibiting thymidine incorporation, whereas melittin and beta-bungarotoxin were less active than the pancreatic enzyme. These results support the tissue-specific effects observed with other phospholipases A2. The high sensitivity of liver erythroid cells towards some phospholipases A2 suggest that these enzymes may be involved in the elimination of hepatic erythroid cells at the end of gestation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号