首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of the sarcoplasmic reticulum (SR) vesicles with succinic anhydride in concentration of 1-2 mM modifies about 20% of amino groups. It increases initial rate and changes the pH-dependence of the passive influx of Ca2+ into vesicles and does not affect either Ca(2+)-binding or maximal passive Ca(2+)-loading of the SR vesicles. It is supposed that this effect may be caused by modification of the Ca-channel gating behaviour as a result of replacement of positive surface amino groups by carboxyl groups.  相似文献   

2.
Limited labeling of amino groups with fluorescamine in fragmented sarcoplasmic reticulum vesicles inhibits Ca2+-ATPase activity and Ca2+ transport. Under the labeling conditions used, 80% of the label reacts with phosphatidylethanolamine and 20% with the Ca2+-ATPase polypeptide. This degree of labeling does not result in vesicular disruption or in loss of vesicular proteins and does not increase the membrane permeability to Ca2+. Fluorescamine labeling of a purified Ca2+-ATPase devoid of aminophospholipids also inhibits Ca2+-ATPase activity, suggesting that labeling of lysine residues of the enzyme polypeptide is responsible for the inhibition of Ca2+-ATPase activity in sarcoplasmic reticulum. Fluorescamine labeling interferes with phosphoenzyme formation and decomposition in both the native vesicles and the purified enzyme; addition of ATP during labeling, and with less effectiveness ADP or AMP, protects both partial reaction steps. Addition of a nonhydrolyzable ATP analog protects phosphoenzyme formation but not decomposition. The inhibition of Ca2+ transport but not of Ca2+-ATPase occurs in sarcoplasmic reticulum vesicles labeled in the presence of ATP, indicating that the transport reaction is uncoupled from the Ca2+-ATPase reaction. The inhibition of Ca2+ transport but not of Ca2+-ATPase activity is also found in sarcoplasmic reticulum vesicles in which only phosphatidylethanolamine has reacted with fluorescamine. Furthermore, the extent of labeling of phosphatidylethanolamine is correlated with the inhibition of Ca2+ transport rates. The inhibition of Ca2+ transport is a reflection of the inhibition of Ca2+ translocation and is not due to an increase in Ca2+ efflux. We propose that labeling of phosphatidylethanolamine perturbs the lipid environment around the enzyme, producing a specific defect in the Ca2+ translocation reaction.  相似文献   

3.
Ca 2+ uptake in reconstituted sarcoplasmic reticulum vesicles   总被引:3,自引:0,他引:3  
The reconstitution of functional sarcoplasmic reticulum vesicles capable of Ca2+ transport has been achieved. Sarcoplasmic reticulum vesicles are first solubilized with deoxycholate and then reassembled into membranous vesicles by removal of the detergent using dialysis. The Ca2+ pump protein can, by itself, be reconstituted to form membranous vesicles capable of energized Ca2+ binding and uptake. The lipid content of the reconstituted vesicles is about the same as that of the original sarcoplasmic reticulum vesicles. The reconstituted vesicles have an elevated ATPase activity. Ca2+ binding and uptake in the presence of ATP are restored to about 25% and 50%, respectively.  相似文献   

4.
The influence of chemical modification on the morphology of crystalline ATPase aggregates was analyzed in sarcoplasmic reticulum (SR) vesicles. The Ca2+-ATPase forms monomer-type (P1) type crystals in the E1 and dimer-type (P2) crystals in the E2 conformation. The P1 type crystals are induced by Ca2+ or lanthanides; P2 type crystals are observed in Ca2+-free media in the presence of vanadate or inorganic phosphate. P1- and P2-type Ca2+-ATPase crystals do not coexist in significant amounts in native sarcoplasmic reticulum membrane. The crystallization of Ca2+-ATPase in the E2 conformation is inhibited by guanidino-group reagents (2,3-butanedione and phenylglyoxal), SH-group reagents, phospholipases C or A2, and detergents, together with inhibition of ATPase activity. Amino-group reagents (fluorescein 5′-isothiocyanate, pyridoxal phosphate and fluorescamine) inhibit ATPase activity but do not interfere with the crystallization of Ca2+-ATPase induced by vanadate. In fluorescamine-treated sarcoplasmic reticulum the vanadate-induced crystals contain significant P1-type regions in addition to the dominant P2 form.  相似文献   

5.
Tryptic modification appears to potentiate activation of the Ca2+ channels of isolated sarcoplasmic reticulum vesicles. In the presence of 1 mM free Mg2+ we observe that: 1) cAMP and doxorubicin activation of passive efflux from tryptically modified vesicles is approximately 20-fold greater than from native SR. 2) Ruthenium red inhibits Ca2+ efflux from modified vesicles. 3) The binding affinities and Hill coefficients of activation of efflux by cAMP and doxorubicin are the same in modified vesicles as in native vesicles. 4) Proteolysis stimulates passive efflux from heavy SR much more than from light SR. 5) Stimulation of cAMP- and doxorubicin-activated Ca2+ release is biphasic, whereas Hg2+-activated Ca2+ efflux is monophasic. 6) In the absence of Mg2+, the Ca2+ dependence of cAMP-activated efflux from tryptically modified vesicles is similar to that of native vesicles, with peak efflux rates occurring between approximately 1 and 10 microM Ca2+. 7) The Mg2+ dependence of efflux from modified vesicles is similar to that of native vesicles. 8) SDS-polyacrylamide gels indicate that the Ca2+, Mg2+-ATPase and the high molecular weight ryanodine receptor are both cleaved faster than the stimulation of efflux.  相似文献   

6.
Ca2+ uptake and membrane potential in sarcoplasmic reticulum vesicles   总被引:2,自引:0,他引:2  
The rate of calcium uptake by sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle was stimulated by inside-negative membrane potential generated by K+ gradients in the presence of valinomycin. The increase in the calcium transport rate was accompanied by a proportional increase in the rate of calcium-dependent ATP hydrolysis, without significant change in the steady state level of the phosphorylated enzyme intermediate. Changes in the sarcoplasmic reticulum membrane potential during calcium transport were monitored with the optical probe, 3,3'-diethylthiadicarbocyanine. The decrease in the absorbance of 3,3'-diethylthiadicarbocyanine at 660 nm following generation of inside-negative membrane potential was reversed during ATP-induced calcium uptake. These observations support an electrogenic mechanism for the transport of calcium by the sarcoplasmic reticulum.  相似文献   

7.
Sarcoplasmic reticulum vesicles are used here as model membrane system to question the hypothesis of enhancement of permeability of cations by anesthetics, particularly that of Ca2+ and of Mg2+. The effects of dibucaine (up to 800 microM), tetracaine (up to 2 mM), lidocaine (up to 10 mM) and procaine (up to 10 mM) on the permeability of these membranes to Ca2+ and Mg2+ have been measured. We have used an experimental approach based on the light scattering method (Kometani, T. and Kasai, M. (1978) J. Membrane Biol. 41, 295-308). It has been found that all the local anesthetics cited above markedly increase the permeability of sarcoplasmic reticulum vesicles to Mg2+ and, in the concentration range tested herein, only dibucaine and tetracaine increase the permeability to Ca2+. The kinetic analysis of the time dependence of the light-scattering data after the osmotic shock shows that, in the absence of local anesthetics, the Mg2+ influx can be described as proceeding through a unique type of channel. However, Ca2+ influx appears to involve two channel of different kinetic properties. Because the relative fraction of both types of Ca2+ channel is similar to the average ratio between light and heavy vesicles in unfractionated sarcoplasmic reticulum, we suggest that each type of channel can be preferentially located in one of these fractions. The determined rate constants for Ca2+ permeability through both types of channel are 0.77 +/- 0.08 min-1 (fast channels) and 0.025 +/- 0.005 min-1 (slow channels) and that for Mg2+ is 0.08 +/- 0.02 min-1. These results agree with data obtained by other groups using different experimental approaches. Dibucaine and tetracaine significantly alter the rate of Mg2+ and Ca2+ influx through the slow channels. In addition, these two local anesthetics also produce the effect that the Mg2+ influx cannot be described with only one exponential process, thus suggesting a differential effect on vesicles of different density. The increase of Ca2+ and Mg2+ permeability by dibucaine and by tetracaine is found at concentrations of these drugs that do not produce a noticeable inhibition of the (Ca2+ + Mg2+)-ATPase activity of sarcoplasmic reticulum vesicles.  相似文献   

8.
9.
Characterization of the putative Ca2+-gated Ca2+ channel of sarcoplasmic reticulum, which is thought to mediate Ca2+-induced Ca2+ release, was carried out in order to elucidate the mechanism of Ca2+-induced Ca2+ release. Heavy and light fractions of fragmented sarcoplasmic reticulum isolated from rabbit skeletal muscle were loaded passively with Ca2+, and then passive Ca2+ efflux was measured under various conditions. The fast phase of the Ca2+ efflux depended on the extravesicular free Ca2+ concentration and was assigned to the Ca2+ efflux through the Ca2+-gated Ca2+ channel. Vesicles with the Ca2+-gated Ca2+ channels comprised about 85% of the heavy fraction and about 40% of the light fraction. The amount of Ca2+ loaded in FSR was found to be much larger than that estimated on the basis of vesicle inner volume and the equilibration of intravesicular with extravesicular Ca2+, indicating Ca2+ binding inside FSR. Taking this fact into account, the Ca2+ efflux curve was quantitatively analyzed and the dependence of the Ca2+ efflux rate constant on the extravesicular free Ca2+ concentration was determined. The Ca2+ efflux was maximal, with the rate constant of 0.75 s-1, when the extravesicular free Ca2+ was at 3 microM. Caffeine increased the affinity for Ca2+ of Ca2+-binding sites for opening the channel with only a slight change in the maximum rate of Ca2+ efflux. Mg2+ inhibited the Ca2+ binding to the sites for opening the channel while procaine seemed to inhibit the Ca2+ efflux by blocking the ionophore moiety of the channel.  相似文献   

10.
The data presented in this paper concern a kinetic study of the calcium uptake by sarcoplasmic reticulum vesicles and of the hydrolysis of the substrates which support the process. The results show that substrates which are different from ATP, acetylphosphate, and carbamylphosphate are able to support calcium transport. The technique used to follow the process allows us to detect continuously the changes in the concentration of the calcium present in the external medium. In our experimental conditions the calcium uptake supported by all the high energy substrates tested proceeds for several seconds at a constant rate, presumably corresponding to the “steady state” of the process; furthermore the calcium transport is clearly Ca2+ and Mg2+ dependent: the lowering of the Ca+ concentration in the medium from 10?4 to 10?5m causes a remarkable reduction of the V of the calcium transport and an apparent increase of the affinity of the sarcoplasmic reticulum vesicles for the acylphosphates; in the absence of Mg2+, none of the substrates is able to support the calcium uptake which increases in the presence of rising amounts of Mg2+ in the reaction medium. Furthermore, both the calcium transport and the substrate hydrolysis appear to follow the Michaelis-Menten kinetics in the presence of acylphosphates but not in the presence of ATP. The hydrolytic activity of sarcoplasmic reticulum vesicles on ATP and acylphosphates reveals a clear Mg2+ dependence; furthermore, in the absence of free Ca2+ and in the presence of 5 mm Mg2+, the high energy substrates tested reveal a different susceptibility to the hydrolitic attack by sarcoplasmic reticulum vesicles.  相似文献   

11.
Ca2+ ATPase molecules in sarcoplasmic reticulum, isolated from rabbit skeletal muscle, have been induced to crystallize into two-dimensional arrays by incubating the vesicles with phospholipase A2 and dialysing against dilute Tris/HCl buffer. These crystals differ in shape and size from those produced by treatment of the sarcoplasmic reticulum vesicles with Na3VO4. However, the unit-cell dimensions of both types of crystals are similar. The differences in shape and size are presumably due to differences in the mechanisms of crystal formation induced by treatment with phospholipase and Na3VO4.  相似文献   

12.
Basing on the data available in literature and authors' investigations the mechanism of local alkalization of the myoplasm by proton efflux attended by Ca2+ influx is mic reticulum and may be the main link in the process of electrochemical coupling in the skeletal and cardiac muscle cells. Experimental evidence for participation of Ca2(+)-ATPase in the passive transport of calcium through sarcoplasmic membrane is given.  相似文献   

13.
The initial rate of passive Ca2+ influx into "heavy" and "light" fractions of sarcoplasmic reticulum (SR) vesicles increases in the presence of univalent cation chlorides. Stimulation of passive Ca2+ influx decreases in the following order: KCl + valinomycin-KSCN- + valinomycin greater than KSI = NaCl greater than choline chloride. K-gluconate + valinomycin and K-gluconate have no effect on the passive Ca2+ influx into SR vesicles. It is supposed that KCl-stimulation of passive Ca2+ influx into SR vesicles under conditions used may be caused by depolarization of the SR membrane.  相似文献   

14.
Sarcoplasmic reticulum vesicles of rabbit skeletal muscle are able to accumulate Ca2+ or Sr2+ at the expense of ATP hydrolysis. Depending on the conditions used, vesicles loaded with Ca2+ can catalyze either an ATP in equilibrium Pi exchange or the synthesis of ATP from ADP and Pi. Both reactions are impaired in vesicles loaded with Sr2+. The Sr2+ concentration required for half-maximal ATPase activity increases from 2 microM to 60-70 microM when the Mg2+ concentration is raised from 0.5 to 50 mM. The enzyme is phosphorylated by ATP in the presence of Sr2+. The steady state level of phosphoenzyme varies depending on both the Sr2+ and Mg2+ concentrations in the medium. Phosphorylation of the enzyme by Pi is inhibited by both Ca2+ and Sr2+. In the presence of 2 and 20 mM Mg2+, half-maximal inhibition is attained in the presence of 4 and 8 microM Ca2+ or in the presence of 0.24 mM and more than 2 mM Sr2+, respectively. After the addition of Sr2+, the phosphoenzyme is cleaved with two different rate constants, 0.5-1.5 s-1 and 10-18 s-1. The fraction of phosphoenzyme cleaved at a slow rate is smaller the higher the Sr2+ concentration in the medium. Ca2+ inhibition of enzyme phosphorylation by Pi is overcome by the addition of ITP. This is not observed when Ca2+ is replaced by Sr2+.  相似文献   

15.
C Sumbilla  G Inesi 《FEBS letters》1987,210(1):31-36
A radioactive tracer and rapid filtration method was applied to the study of Ca2+ release from sarcoplasmic reticulum (SR) vesicles which were preloaded passively (equilibration with millimolar Ca2+) or actively (in the presence of ATP or acetyl phosphate). The method allows complete substitution of the loading mixture with release medium in constant flow, and time resolution between 0.01 and 10.0 s. Net release can be clearly distinguished from isotope exchange. The latter is prominent in longitudinal SR vesicles. Net Ca2+ release is observed only from cisternal SR vesicles, is Ca2+ (micromolar) dependent, and is accelerated by inactive ATP analogues, or ATP itself, even in the presence of Mg2+. Net release has a strong pH dependence (between 6 and 7), and very little temperature dependence (consistent with a passive channel). In media of physiological significance (1 mM ATP, 1 mM magnesium, and free Ca2+ in the micromolar range), net Ca2+ release proceeds with a rate constant of approx. 100 s-1.  相似文献   

16.
During the excitation of muscle the estimated rate of Ca2+ release from sarcoplasmic reticulum may increase 10(3)- to 10(4)-fold compared with relaxed muscle or isolated sarcoplasmic reticulum in vitro, implying a major change in the calcium permeability of the sarcoplasmic reticulum membrane. As a first step in the assessment of the role of various membrane constituents in the regulation of calcium fluxes, the contribution of phospholipids to the definition of calcium permeability was studied in model systems. The rate of calcium release from vesicles prepared from pure phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositides, cardiolipin, and extracted microsomal lipids is in the range of 10(-15) to 10(18) mol of calcium/cm2/s. This rate is several orders of magnitude lower than the passive calcium outflux from isolated sarcoplasmic reticulum membranes. The permeability to Ca2+ is influenced by fatty acid composition and net charge and it is markedly increased with increasing temperature or after the addition of local anesthetics.  相似文献   

17.
18.
19.
The passive Ca2+ permeability of fragmented sarcoplasmic reticulum membranes is 10(4) to 10(61 times greater than that of liposomes prepared from natural or synthetic phospholipids. The contribution of membrane proteins to the Ca2+ permeability was studied by incorporating the purified [Ca2+ + Mg2+]-activated ATPase into bilayer membranes prepared from different phospholipids. The incorporation of the Ca2+ transport ATPase into the lipid phase increased its Ca2+ permeability to levels approaching that of sarcoplasmic reticulum membranes. The permeability change may arise from a reordering of the structure of the lipid phase in the environment of the protein or could represent a specific property of the protein itself. The calcium-binding protein of sarcoplasmic reticulum did not produce a similar effect. The increased rate of Ca2+ release from reconstituted ATPase vesicles is not a carrier-mediated process as indicated by the linear dependence of the Ca2+ efflux upon the gradient of Ca2+ concentration and by the absence of competition and countertransport between Ca2+ and other divalent metal ions. The increased Ca2+ permeability upon incorporation of the transport ATPase into the lipid phase is accompanied by similar increase in the permeability of the vesicles for sucrose, Na+, choline, and SO42- indicating that the transport ATPase does not act as a specific Ca2+ channel. Native sarcoplasmic reticulum membranes are asymmetric structures and the 75-A particles seen by freeze-etch electron microscopy are located primarily in the outer fracture face. In reconstituted ATPase vesicles the distribution of the particles between the two fracture faces is even, indicating that complete structural reconstitution was not achieved. The Ca2+ transport activity of reconstituted ATPase vesicles is also much less than that of fragmented sarcoplasmic reticulum. The density of the 40-A surface particles visible after negative staining of native or reconstituted vesicles is greater than that of the intramembranous particles and the relationship between these two structures remains to be established.  相似文献   

20.
'Monovanadate' containing mainly monomeric, dimeric and tetrameric vanadate species or 'decavanadate', containing mainly decameric vanadate species inhibits the passive and the active efflux of Ca2+ through the sarcoplasmic reticulum calcium pump. When the efflux of Ca2+ by sarcoplasmic reticulum vesicles is not associated with ATP synthesis both vanadate solutions inhibit the passive efflux of Ca2+. However, only 'decavanadate' exerts noticeable effects when the efflux of Ca2+ is associated with ATP synthesis being the active efflux of Ca2+ almost completely inhibited by decameric species concentration as low as 40 microM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号