首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Soon after fertilization, vertebrate embryos grow very rapidly. Thus, early in gestation, a sizeable yet underdeveloped organism requires circulating blood. This need dictates the early appearance of a contractile heart, which is the first functional organ in both the avian and mammalian embryo. The heart arises from paired mesodermal regions within the anterior half of the embryo. As development proceeds, these bilateral precardiac fields merge at the midline to give rise to the primary heart tube. How specific areas of nondifferentiated mesoderm organize into myocardial tissue has been a question that has long intrigued developmental biologists. In recent years, the regulation of Wnt signal transduction has been implicated as an important event that initiates cardiac development. While initial reports in Drosophila and the bird had implicated Wnt proteins as promoters of cardiac tissue formation, subsequent findings that the WNT inhibitors Dkk1 and crescent possess cardiac-inducing activities led to the contrary hypothesis that WNTs actively inhibit cardiogenesis. This seeming contradiction has been resolved, in part, by more recent information indicating that Wnts stimulate multiple signal transduction pathways. In this review, we will examine what is presently known about the importance of regulated Wnt activity for the formation of the heart and the development of the myocardium and discuss this information in context of the emerging complexity of Wnt signal transduction.  相似文献   

2.
It is unknown whether nutritional deficiencies affect the morphology and function of structural cells, such as epithelial cells, and modify the susceptibility to viral infections. We developed an in vitro system of differentiated human bronchial epithelial cells (BEC) grown either under selenium-adequate (Se+) or selenium-deficient (Se–) conditions, to determine whether selenium deficiency impairs host defense responses at the level of the epithelium. Se– BECs had normal SOD activity, but decreased activity of the selenium-dependent enzyme GPX1. Interestingly, catalase activity was also decreased in Se– BECs. Both Se– and Se+ BECs differentiated into a mucociliary epithelium; however, Se– BEC demonstrated increased mucus production and increased Muc5AC mRNA levels. This effect was also seen in Se+ BEC treated with 3-aminotriazole, an inhibitor of catalase activity, suggesting an association between catalase activity and mucus production. Both Se– and Se+ were infected with influenza A/Bangkok/1/79 and examined 24 h postinfection. Influenza-induced IL-6 production was greater while influenza-induced IP-10 production was lower in Se– BECs. In addition, influenza-induced apoptosis was greater in Se– BEC as compared to the Se+ BECs. These data demonstrate that selenium deficiency has a significant impact on the morphology and influenza-induced host defense responses in human airway epithelial cells.  相似文献   

3.
4.
5.
Insulin processing and signal transduction in rat adipocytes   总被引:1,自引:0,他引:1  
A glycine-HCl buffer (glycine, 50 mM/NaCl, 0.15 M/HCl, pH 3.5) was used to strip insulin bound to adipocyte cell surfaces. Adipocytes retained their integrity in the glycine buffer and their binding capacity for [125I]iodoinsulin could be completely recovered on transfer of the cells to physiological media. At 37 degrees C, [125I]iodoinsulin binds rapidly to plasma membrane receptors; maximal binding occurs within 10 min. At this temperature, the initial binding is followed by rapid internalization, degradation of the hormone and subsequent loss of label. Insulin treatment, at 37 degrees C, induced internalization of 37% of the plasma membrane insulin receptors. Phenylarsine oxide (PAO), a confirmed inhibitor of protein internalization, allowed insulin binding but completely inhibited degradation of the hormone. Monensin, a carboxylic ionophore which impairs uncoupling hormone-receptor complexes, effectively restricted insulin degradation over short time periods (less than 30 min). Addition of monensin to insulin-stimulated cells did not impair D-glucose uptake. It has previously been reported that PAO inhibits hexose transport through the direct interaction with the glucose transporters and low concentrations of PAO (1 microM) transiently inhibit insulin-stimulated glucose uptake. This recovery phenomenon was again observed when PAO was added to insulin-stimulated, monensin-treated adipocytes. The data suggests that lysosomal degradation of insulin is not requisite for signal transduction.  相似文献   

6.
By a contact-dependent surface interaction, the measles virus (MV) glycoprotein complex induces a pronounced inhibition of T-cell proliferation. We now show that MV directly interacts with glycosphingolipid-enriched membrane microdomains on human primary T cells and alters recruitment and segregation of membrane proximal signaling components. Contact-dependent interference with T-cell receptor-stimulated tyrosine phosphorylation and Ca mobilization is a late event seen 24 h after MV treatment. In contrast, stimulated recruitment of pleckstrin homology domain-containing proteins such as Akt and Vav is inhibited early after MV contact, as is segregation of the activated Akt kinase from rafts. Tyrosine phosphorylation of the regulatory subunit of the phosphatidylinositol 3-kinase (PI3K), p85, is apparently normal then, yet this protein fails to partition to the lipid raft fraction, and this is associated with stable expression of its negative regulator Cbl-b. Thus, by interaction with lipid rafts, MV contact initially targets recruitment of PI3K by preventing stimulated Cbl-b degradation and activation of PI3K-dependent signaling components.  相似文献   

7.
There is substantial evidence that hyperammonemia is one of the main factors contributing to the neurological alterations found in hepatic encephalopathy. The mechanisms by which chronic moderate hyperammonemia affects brain function involves alterations in neurotransmission at different steps. This article reviews the effects of hyperammonemia on phosphorylation of key brain proteins involved in neurotransmission (the microtubule-associated protein (MAP-2), Na+/K+-ATPase and NMDA receptors). The physiological function of these proteins is modulated by phosphorylation and its altered phosphorylation in hyperammonemia may contribute to impairment of neurotransmission. The effects of chronic hyperammonemia on signal transduction pathways associated to glutamate receptors, such as the glutamate-nitric oxide (NO)-cGMP pathway, are also reviewed. The possible contribution of the impairment of this pathway in brain in vivo to the neurological alterations present in patients with hepatic encephalopathy is discussed.  相似文献   

8.
Accumulated evidence from prospective studies, intervention trials and studies on animal models of cancer have suggested a strong inverse correlation between selenium intake and cancer incidence. Several putative mechanisms have been suggested to mediate the chemopreventive activities of selenium: of these, the inhibition of cellular proliferation and the induction of apoptosis are particularly attractive. The mitogen activated protein kinase (MAPK) pathways are known to be important regulators of cell death and our recent work has focused on the involvement of these pathways in selenium-induced apoptosis in primary cultures of oral cancers and corresponding normal mucosa derived from biopsy material. Using this system, the oral carcinoma cells were found to have enhanced sensitivity to apoptosis when treated with certain selenium compounds compared to normal oral mucosa. Induction of Fas ligand was associated with selenium-induced apoptosis. Signal transduction studies suggests that selenium induces several changes in the MAPK signalling pathways but functional intervention/inhibitor studies indicate that activation of the JNK pathway seems to be most important.  相似文献   

9.
植物体内的BRs生物合成突变或者感受BRs失调导致植物矮化。本文介绍了BRs的生物合成途径和感受途径相关的基因及其突变型,从分子水平上阐述了这些矮化类型与BRs的关系,并就BRs促进细胞伸长的机制作了一些探讨。  相似文献   

10.
Zinc as a possible mediator of signal transduction in T lymphocytes   总被引:1,自引:0,他引:1  
Our recent findings indicate that phorbol esters, the specific activators of protein kinase C induce the translocation of heavy metals (mostly: zinc) from the nucleus and mitochondria to the cytosol and microsomes of T lymphocytes. Phorbol ester treatment impairs the action of Ca-ionophores, this effect is mediated by intracellular heavy metal ions (most probably: by zinc). Zinc activates cytosolic protein kinase C, increases its affinity towards phorbol esters and contributes to its binding to plasma membranes. These results suggest that zinc may play a role in the "cross-talk" of second messengers and hence in signal transduction in T lymphocytes.  相似文献   

11.
12.
Phosphorylation of endogeneous phosholipids of rat liver mitochondrial fractions with γ[32P]ATP revealed formation of all the known inositol phospholipids, such as phosphatidylinositol, phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. Additionally, a new inositol phospholipid was detected. Incorporation of [3H]-labelled insositol followed a similar profile. Enzymatic experiments indicated that the new lipid could possibly be phosphatidylinositol trisphosphate. The presence of phosphoinositides-generated second messengers such as diacylglycerol and inositol trisphosphate was also confirmed. Protein kinase C, which acts as mediator between second messengers and nuclear factors, was also found to be present in mitochondria in significant amount. These results suggest that phosphoinositide signal transduction pathway is operative in rat liver mitochondria.  相似文献   

13.
The objective of this study was to investigate the effects of iodine (I(2)) and/or selenium (Se) deficiency on thyroid hormones and hepatic xenobiotic metabolizing enzyme systems using a triple animal model. Three-week-old male Wistar rats were fed for seven weeks. Se deficiency was introduced by a diet containing <0.005 mg/kg Se, and I(2) deficiency was produced by sodium perchlorate containing drinking water. The levels of plasma thyroid hormones [total T(4) (TT(4)), total T(3) (TT(3))], thyroid stimulating hormone (TSH); total microsomal cytochrome P450 (CYP450) and cytochrome b5 (CYP b5) levels; activities of microsomal NADPH-cytochrome P450 reductase (P450R), microsomal aniline hydroxylase (CYP2E1), microsomal 7-ethoxyresorufin O-deethylase (EROD), microsomal 7-pentoxyresorufin O-depentylase (PROD) and cytosolic glutathione S-transferase (GST) were determined. In I(2) deficiency total CYP450 levels, activities of CYP2E1, EROD and GST decreased, and CYP b5 content increased significantly. In Se-deficient rats, total CYP450 level and CYP2E1 activity increased, and EROD and GST activities and CYP b5 level decreased significantly. In combined I(2) and Se deficiency, except for CYP450 content and CYP2E1 activity, all enzyme activities and CYP b5 content decreased significantly compared to control group. Overall results of this study have suggested that metabolism of xenobiotics as well as endogenous compounds is affected by Se and I(2) status.  相似文献   

14.
Impaired immune function in dietary zinc (Zn) deficiency is characterized in part by reduced lymphocyte numbers (lymphopenia) and depressed cell-mediated (T lymphocyte) immune function, however, the causative mechanisms at the molecular level have not been elucidated. This paper will focus on the role of dietary Zn in T lymphocyte signal transduction, and specifically, the early Zn-dependent steps for phosphorylation and the putative Zn-finger proteins or Zn-metalloenzymes that may be part of the molecular mechanism for explaining immune dysfunction in Zn deficiency. One of the major recent findings is that murine splenic T lymphocyte p56lck expression is elevated in dietary Zn deficiency and caloric deficiency. Based on the known functions of p56lck, it is proposed that elevated p56lck may contribute to altered thymocyte maturation, apoptosis, and lymphopenia in dietary Zn deficiency and other malnutrition syndromes.  相似文献   

15.
16.
17.
Selenium deficiency causes oxidative stress and impairs steroidogenesis in vitro. Leptin is closely related to the hypothalamo-pituitary-adrenal (HPA) axis. Leptin inhibits the HPA axis at the central level while corticosteroids have been shown to stimulate leptin secretion in most studies. We hypothesized that oxidative stress impairs adrenal steroidogenesis and decreases leptin production in vivo. The goal of this study was to investigate in rats the effects of selenium deficiency and oxidative stress on adrenal function and on leptin concentrations. Weanling rats were fed a selenium-deficient (Se-) or selenium-sufficient (Se+) diet for 4-10 weeks. Selenium deficiency caused a marked decrease in liver (> or = 99%) and adrenal (> or = 81%) glutathione peroxidase (GPx) activities. Selenium deficiency did not affect basal and short-term adrenocorticotropin (ACTH) stimulated corticosterone or leptin concentrations. In contrast, after long-term ACTH stimulation, selenium deficiency caused a doubling in adrenal isoprostane content and blunted the increase in corticosterone and leptin concentrations observed in Se+ animals. Plasma leptin concentrations were 50% lower in Se- compared to Se+ animals following long-term ACTH. Our results suggest that oxidative stress causes a decrease in circulating corticosterone in response to ACTH, and, as a consequence, a decrease in plasma leptin concentrations.  相似文献   

18.
Interleukin 2 (IL-2) production and recognition are clearly involved in the age-associated proliferative defect of mitogen-stimulated T lymphocytes. The external signal delivered by mitogens is transmitted across the membrane via the release of two messenger molecules, diacylglycerol and inositol 1,4,5-trisphosphate (IP3), involved in the activation of protein kinase C (PK-C) and the elevation of cytosolic free Ca2+. In that Ca2+ mobilization and PK-C activation appear to be crucial events in the production of IL-2 and the expression of IL-2 receptors, a defect in transmembrane signaling would result in decreased synthesis and response to IL-2. We therefore examined PK-C activity and translocation, generation of inositol 1,4,5-trisphosphate, and cytosolic Ca2+ levels as a function of age in murine G0 T lymphocytes before and after exposure to mitogenic doses of concanavalin A (Con A). The basal levels and distribution of PK-C before and after direct activation of the enzyme by 2 or 20 nM phorbol myristate acetate were comparable in both age groups indicating no inherent age-associated functional defect in the enzyme. However, the Con A-induced PK-C translocation was reduced by 50% in cells from 24-mo-old animals. The Con A stimulation of G0 T lymphocytes increased free cytoplasmic Ca2+ concentration ([Ca2+]i) and the production of inositol phosphates to the same level, irrespective of the age of the donor. However, basal levels of both of these second messengers were consistently higher in lymphocytes derived from old mice. As a result, the net increase in inositol phosphates and [Ca2+]i was reduced by approximately the same extent as that observed for the translocation of PK-C. These results clearly point to an age-associated defect in the generation of phosphoinositide-derived second messengers and indicate that an alteration in signal transduction plays a primary role in the age-related impairment of the mitogen-induced, IL-2-mediated proliferative response of T lymphocytes.  相似文献   

19.
20.
Gangliosides, sialic acid containing glycosphigolipids, are ubiquitous constituents of cell plasma membranes. Each cell type shows a peculiar ganglioside expression pattern. In human T lymphocytes monosialoganglioside GM3 represents the main ganglioside constituent of cell plasma membrane where it is concentrated in glycosphingolipid-enriched microdomains (GEM). The presence of tyrosine kinase receptors, mono- (Ras, Rap) and heterotrimeric G proteins, Src-like tyrosine kinases (lck, lyn, fyn), PKC isozymes, glycosylphosphatidylinositol (GPI)-anchored proteins and, after T cell activation, the Syk-family kinase Zap-70, prompts these portions of the plasma membrane to be considered as “glycosignaling domains.” In particular, during T cell activation and/or other dynamic functions of the cell, such as apoptosis, key signaling molecules are recruited to these microdomains, where they strictly interact with GM3. The association of transducer proteins with GM3 in microdomains suggests that this ganglioside is the main marker of GEM in human lymphocytes and is a component of a cell plasma membrane multimolecular signaling complex involved in cell-cell interaction, signal transduction, and cell activation. Published in 2004. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号