首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mutation (Cam7) to the single endogenous calmodulin gene of Drosophila generates a mutant protein with valine 91 changed to glycine (V91G D-CaM). This mutation produces a unique pupal lethal phenotype distinct from that of a null mutation. Genetic studies indicate that the phenotype reflects deregulation of calcium fluxes within the larval muscles, leading to hypercontraction followed by muscle failure. We investigated the biochemical properties of V91G D-CaM. The effects of the mutation on free CaM are minor: Calcium binding, and overall secondary and tertiary structure are indistinguishable from those of wild type. A slight destabilization of the C-terminal domain is detectable in the calcium-free (apo-) form, and the calcium-bound (holo-) form has a somewhat lower surface hydrophobicity. These findings reinforce the indications from the in vivo work that interaction with a specific CaM target(s) underlies the mutant defects. In particular, defective regulation of ryanodine receptor (RyR) channels was indicated by genetic interaction analysis. Studies described here establish that the putative CaM binding region of the Drosophila RyR (D-RyR) binds wild-type D-CaM comparably to the equivalent CaM-RyR interactions seen for the mammalian skeletal muscle RyR channel isoform (RYR1). The V91G mutation weakens the interaction of both apo- and holo-D-CaM with this binding region, and decreases the enhancement of the calcium-binding affinity of CaM that is detectable in the presence of the RyR target peptide. The predicted functional consequences of these changes are consonant with the in vivo phenotype, and indicate that D-RyR is one, if not the major, target affected by the V91G mutation in CaM.  相似文献   

2.
The ubiquitous calcium-binding protein calmodulin (CaM) has been implicated in the development and function of the nervous system in a variety of eukaryotic organisms. We have generated mutations in the single Drosophila Calmodulin (Cam) gene and examined the effects of these mutations on behavior, synaptic transmission at the larval neuromuscular junction, and structure of the larval motor nerve terminal. Flies hemizygous for Cam3c1, a mutation in the first Ca2+-binding site, exhibit behavioral, neurophysiological, and neuroanatomical abnormalities. In particular, adults exhibit defects in locomotion, coordination, and flight. Larvae exhibit increased neurotransmitter release from the motor nerve terminal at low [Ca2+] in the presence of the K+ channel-blocking drug quinidine. In addition, synaptic bouton structure at motor nerve terminals is altered. These effects are distinct from those produced by altering the activity of the CaM target enzymes CaM-activated kinase II (CaMKII) and CaM-activated adenylyl cyclase (CaMAC). Furthermore, previous in vitro studies of mutant Cam3c1 demonstrated that although its Ca2+ affinity is decreased, Cam3c1 protein can activate CaMKII, CaMAC, and CaM-activated phosphatase calcineurin in a manner similar to wild-type CaM. Thus, the Cam3c1 mutation might affect Ca2+ buffering or interfere with the activation or inhibition of a CaM target distinct from CaMKII or CaMAC.  相似文献   

3.
Calmodulin (CaM) is an essential component of calcium signaling in multicellular organisms. We used null mutations of the Drosophila CaM gene (Cam) in combination with clonal analysis and immunolocalization to examine the effects of loss of Cam function in the ovarian germline and developing embryo. These studies have uncovered unexpected and striking movements of CaM protein within these tissues. In the ovary, evidence for transfer of CaM from an external source, across plasma membranes, into the germline cells was obtained. In late embryogenesis, maternally derived CaM protein relocalizes dramatically within the nervous system of both wildtype and Cam null embryos-a process that may also involve movement across cell membranes. These findings indicate dynamic, unsuspected elements to the in vivo functions of CaM in the whole organism.  相似文献   

4.
Calcium activates the ATPase activity of tissue-purified myosin V, but not that of shorter expressed constructs. Here, we resolve this discrepancy by comparing an expressed full-length myosin V (dFull) to three shorter constructs. Only dFull has low ATPase activity in EGTA, and significantly higher activity in calcium. Based on hydrodynamic data and electron microscopic images, the inhibited state is due to a compact conformation that is possible only with the whole molecule. The paradoxical finding that dFull moved actin in EGTA suggests that binding of the molecule to the substratum turns it on, perhaps mimicking cargo activation. Calcium slows, but does not stop the rate of actin movement if excess calmodulin (CaM) is present. Without excess CaM, calcium binding to the high affinity sites dissociates CaM and stops motility. We propose that a folded-to-extended conformational change that is controlled by calcium and CaM, and probably by cargo binding itself, regulates myosin V's ability to transport cargo in the cell.  相似文献   

5.
The intracellular Ca2+ sensor calmodulin (CaM) regulates the cardiac Ca2+ release channel/ryanodine receptor 2 (RyR2), and mutations in CaM cause arrhythmias such as catecholaminergic polymorphic ventricular tachycardia (CPVT) and long QT syndrome. Here, we investigated the effect of CaM mutations causing CPVT (N53I), long QT syndrome (D95V and D129G), or both (CaM N97S) on RyR2-mediated Ca2+ release. All mutations increased Ca2+ release and rendered RyR2 more susceptible to store overload-induced Ca2+ release (SOICR) by lowering the threshold of store Ca2+ content at which SOICR occurred and the threshold at which SOICR terminated. To obtain mechanistic insights, we investigated the Ca2+ binding of the N- and C-terminal domains (N- and C-domain) of CaM in the presence of a peptide corresponding to the CaM-binding domain of RyR2. The N53I mutation decreased the affinity of Ca2+ binding to the N-domain of CaM, relative to CaM WT, but did not affect the C-domain. Conversely, mutations N97S, D95V, and D129G had little or no effect on Ca2+ binding to the N-domain but markedly decreased the affinity of the C-domain for Ca2+. These results suggest that mutations D95V, N97S, and D129G alter the interaction between CaM and the CaMBD and thus RyR2 regulation. Because the N53I mutation minimally affected Ca2+ binding to the C-domain, it must cause aberrant regulation via a different mechanism. These results support aberrant RyR2 regulation as the disease mechanism for CPVT associated with CaM mutations and shows that CaM mutations not associated with CPVT can also affect RyR2. A model for the CaM-RyR2 interaction, where the Ca2+-saturated C-domain is constitutively bound to RyR2 and the N-domain senses increases in Ca2+ concentration, is proposed.  相似文献   

6.
As a calcium-sensing protein, calmodulin acts as a transducer of the intracellular calcium signal for a variety of cellular responses. Although calcium is an important regulator of neuronal survival during development of the nervous system and is also implicated in the pathogenesis of neurodegenerative disorders, it is not known if calmodulin mediates these actions of calcium. To determine the role of calmodulin in regulating neuronal survival and death, we overexpressed calmodulin with mutations in all four Ca(2+)-binding sites (CaM(1-4)) or with disabled C-terminal Ca(2+)-binding sites (CaM(3,4)) in cultured neocortical neurons by adenoviral gene transfer. Long-term neuronal survival was decreased in neurons overexpressing CaM(1-4) and CaM(3,4), which could not be rescued by brain-derived neurotrophic factor (BDNF). The basal level of Akt kinase activation was decreased, and the ability of BDNF to activate Akt was completely abolished in neurons overexpressing CaM(1-4) or CaM(3,4). In contrast, BDNF-induced activation of p42/44 MAPKs was unaffected by calmodulin mutations. Treatment of neurons with calmodulin antagonists and a phosphatidylinositol 3-kinase inhibitor blocked the ability of BDNF to prevent neuronal death, whereas inhibitors of calcium/ calmodulin-dependent protein kinase II did not. Our findings demonstrate a pivotal role for calmodulin in survival signaling by BDNF in developing neocortical neurons by activating a transduction pathway involving phosphatidylinositol 3-kinase and Akt. In addition, our findings show that the C-terminal Ca(2+)-binding sites are critical for calmodulin-mediated cell survival signaling.  相似文献   

7.
The calcium/calmodulin-dependent activation of nitric-oxide synthase (NOS) and its production of nitric oxide (NO) play a key regulatory role in plant and animal cell function. SCaM-1 is a plant calmodulin (CaM) isoform that is 91% identical to mammalian CaM (wild type CaM (wtCaM)) and a selective competitive antagonist of NOS (Cho, M. J., Vaghy, P. L., Kondo, R., Lee, S. H., Davis, J. P., Rehl, R., Heo, W. D., and Johnson, J. D. (1998) Biochemistry 37, 15593-15597). We have used site-directed mutagenesis to show that a point mutation, involving the substitution of valine for methionine at position 144, is responsible for SCaM-1's inhibition of mammalian NOS. An M144V mutation in wild type CaM produced a mutant (M144V) which exhibited nearly identical inhibition of NOS's NO production and NADPH oxidation, with a similar K(i) (approximately 15 nM) as SCaM-1. A V144M back mutation in SCaM-1 significantly restored its ability to activate NOS's catalytic functions. The length of the hydrophobic amino acid side chain at position 144 appears to be critical for NOS activation, since M144L and M144F activated NOS while M144V and M144C did not. Despite their competitive antagonism of NOS, M144V, like SCaM-1, exhibited a similar dose-dependent activation of phosphodiesterase and calcineurin as wtCaM. SCaM-1 and M144V produced greater inhibition of NOS's oxygenase domain function (NO production) than its reductase domain functions (NADPH oxidation and cytochrome c reduction). Thus, CaM's methionine 144 plays a critical role the activation of NOS, presumably by influencing the function of NOS's oxygenase domain.  相似文献   

8.
9.
The oxidation of methionines in calmodulin (CaM) can affect the activity of calcium pumps and channels to modulate the amplitude and duration of calcium signals. We have therefore investigated the possible oxidation of CaM in skeletal muscle and its effect on the CaM-dependent regulation of the RyR1 calcium release channel. Taking advantage of characteristic reductions in electrophoretic mobility determined by SDS-PAGE, we find that approximately two methionines are oxidized in CaM from skeletal muscle. The functional effect of CaM oxidation on the open probability of the RyR1 calcium release channel was assessed through measurements of [3H]ryanodine binding using a heavy sarcoplasmic reticulum preparation enriched in RyR1. There is a biphasic regulation of RyR1 by unoxidized CaM, in which calcium-activated CaM acts to enhance the calcium sensitivity of channel closure, while apo-CaM functions to enhance channel activity at resting calcium levels. We find that physiological levels of CaM oxidation preferentially weaken the CaM-dependent inhibition of the RyR1 calcium release channel observed at activating micromolar levels of calcium. In contrast, the oxidation of CaM resulted in minimal functional changes in the CaM-dependent activation of RyR1 at resting nanomolar calcium levels. Oxidation does not significantly affect the high-affinity binding of calcium-activated CaM to the CaM-binding sequence of RyR1; rather, methionine oxidation disrupts interdomain interactions between the opposing domains of CaM in complex with the CaM-binding sequence of RyR1 that normally function as part of a conformational switch associated with RyR1 inhibition. These results suggest that the oxidation of CaM can contribute to observed elevations in intracellular calcium levels in response to conditions of oxidative stress observed during biological aging. We suggest that the sensitivity of RyR1 channel activity to CaM oxidation may function as part of an adaptive cellular response that enhances the duration of calcium transients to promote enhanced contractility.  相似文献   

10.
Calcium-, calmodulin-dependent phosphorylation of cardiac sarcoplasmic reticulum increases the rate of calcium transport. The complex dependence of calmodulin-dependent phosphoester formation on free calcium and total calmodulin concentrations can be satisfactorily explained by assuming that CaM X (Ca2+)4 is the sole calmodulin-calcium species which activates the calcium-, calmodulin-dependent, membrane-bound protein kinase. The apparent dissociation constant of the E X CaM X (Ca2+)4 complex determined from the calcium dependence of calmodulin-dependent phosphoester formation over a 100-fold range of total calmodulin concentrations (0.01-1 microM) was 0.9 nM; the respective apparent dissociation constant at 0.8 mM free calcium, 1 mM free magnesium with low calmodulin concentrations (0.1-50 nM) was 2.60 nM. These results are in good agreement with the apparent dissociation constant of 2.54 nM of high affinity calmodulin binding determined by 125I-labelled calmodulin binding to sarcoplasmic reticulum fractions at 1 mM free calcium, 1 mM free magnesium and total calmodulin concentration ranging from 0.1 to 150 nM, i.e. conditions where approximately 98% of the total calmodulin is present as CaM X (Ca2+)4. The apparent dissociation constant of the calcium-free calmodulin-enzyme complex (E X CaM) is at least 100-fold greater than the apparent dissociation constant of the E X CaM X (Ca2+)4 complex, as judged from non-saturation 125I-labelled calmodulin binding at total calmodulin concentrations of up to 150 nM, in the absence of calcium.  相似文献   

11.
低剂量Staurosporine可以使正常细胞可逆地阻断于G1期,但对肿瘤细胞的周期运行不发生任何影响。本文利用显微光度术,测定了单个细胞内Ca~(2 )、活化钙调素和总钙调素的含量,结果表明:5ng/mL staurosporine作用于细胞18h,使正常细胞2BS G1和S期总CaM含量降低;而BGC-823细胞各周期时相总钙调素含量不发生改变;钙活化钙调素增加。Staurosporine阻断2BS细胞于G1期而不影响BGC-823的周期运行可能与Stauro-Sporine使2BS G1期细胞的钙调素降低以及抑制了2BS细胞的P~(107)磷酸化有关。  相似文献   

12.
Calmodulin (CAM) is recognized as a major intermediary in intracellular calcium signaling, but as yet little is known of its role in developmental and behavioral processes. We have generated and studied mutations to the endogenous Cam gene of Drosophila melanogaster that change single amino acids within the protein coding region. One of these mutations produces a striking pupal lethal phenotype involving failure of head eversion. Various mutant combinations produce specific patterns of ectopic wing vein formation or melanotic scabs on the cuticle. Anaphase chromosome bridging is also seen as a maternal effect during the early embryonic nuclear divisions. In addition, specific behavioral defects such as poor climbing and flightlessness are detected among these mutants. Comparisons with other Drosophila mutant phenotypes suggests potential CAM targets that may mediate these developmental and behavioral effects, and analysis of the CAM crystal structure suggests the structural consequences of the individual mutations.  相似文献   

13.
The long neck of unconventional myosin V is composed of six tandem "IQ motifs," which are fully occupied by calmodulin (CaM) in the absence of calcium. Calcium regulates the activity, the folded-to-extended conformational transition, and the processive run length of myosin V, and thus, it is important to understand how calcium affects CaM binding to the IQ motifs. Here we used electron cryomicroscopy together with computer-based docking of crystal structures into three-dimensional reconstructions of actin decorated with a motor domain-two IQ complex to provide an atomic model of myosin V in the presence of calcium. Calcium causes a major rearrangement of the bound CaMs, dissociation of CaM bound to IQ motif 2, and propagated changes in the motor domain. Tryptophan fluorescence spectroscopy showed that calcium-CaM binds to IQ motifs 1, 3, and 5 in a different conformation than apoCaM. Proteolytic cleavage was consistent with CaM preferentially dissociating from the second IQ motif. The enzymatic and mechanical functions of myosin V can, therefore, be modulated both by calcium-dependent conformational changes of bound CaM as well as by CaM dissociation.  相似文献   

14.
Previous studies have demonstrated a calcium-dependent interaction of calmodulin (CaM) and Fas that is regulated during Fas-induced apoptosis in several cell lines, including cholangiocarcinoma, Jurkat cells, and osteoclasts. The binding of CaM and Fas has been identified on residues 231-254 of Fas; the V254N point mutation decreases the CaM/Fas binding, and the C-terminal deletion mutation increases the CaM/Fas binding. Recent studies have shown that CaM is recruited into the Fas-mediated death-inducing signaling complex (DISC) in a calcium-dependent manner. However, the molecular mechanisms whereby Fas mutations and CaM/Fas binding might regulate Fas-mediated DISC formation are unknown. In this study we investigated the binding thermodynamics and conformation of the CaM/Fas complexes with combined explicit solvent molecular-dynamics simulations and implicit solvent binding free-energy calculations. The binding free-energy analysis demonstrated that the Fas V254N point mutation reduced its binding affinity with CaM. In contrast, the Fas mutant with the deletion of the 15 amino acid at the C-terminus increased its binding to CaM. These observations are consistent with previous findings from biochemical studies. Conformational analyses further showed that the Fas V254N mutation resulted in an unstable conformation, whereas the C-terminal deletion mutation stabilized the Fas conformation, and both mutations resulted in changes of the degree of correlation between the motions of the residues in Fas. Analysis of the CaM/Fas complex revealed that CaM/Fas binding stabilized the conformation of both CaM and Fas and changed the degree of correlated motion of the residues of CaM and Fas. The results presented here provide structural evidence for the roles of Fas mutations and CaM/Fas binding in Fas-induced DISC formation. Understanding the molecular mechanisms of CaM/Fas binding in Fas-mediated DISC formation should provide important insights into the function of Fas mutations and CaM in regulating Fas-mediated apoptosis.  相似文献   

15.
Death-associated protein kinase is a calcium/calmodulin serine/threonine kinase, which positively mediates programmed cell death in a variety of systems. Here we addressed its mode of regulation and identified a mechanism that restrains its apoptotic function in growing cells and enables its activation during cell death. It involves autophosphorylation of Ser(308) within the calmodulin (CaM)-regulatory domain, which occurs at basal state, in the absence of Ca(2+)/CaM, and is inversely correlated with substrate phosphorylation. This type of phosphorylation takes place in growing cells and is strongly reduced upon their exposure to the apoptotic stimulus of C(6)-ceramide. The substitution of Ser(308) to alanine, which mimics the ceramide-induced dephosphorylation at this site, increases Ca(2+)/CaM-independent substrate phosphorylation as well as binding and overall sensitivity of the kinase to CaM. At the cellular level, it strongly enhances the death-promoting activity of the kinase. Conversely, mutation to aspartic acid reduces the binding of the protein to CaM and abrogates almost completely the death-promoting function of the protein. These results are consistent with a molecular model in which phosphorylation on Ser(308) stabilizes a locked conformation of the CaM-regulatory domain within the catalytic cleft and simultaneously also interferes with CaM binding. We propose that this unique mechanism of auto-inhibition evolved to impose a locking device, which keeps death-associated protein kinase silent in healthy cells and ensures its activation only in response to apoptotic signals.  相似文献   

16.
Voltage-gated sodium channels maintain the electrical cadence and stability of neurons and muscle cells by selectively controlling the transmembrane passage of their namesake ion. The degree to which these channels contribute to cellular excitability can be managed therapeutically or fine-tuned by endogenous ligands. Intracellular calcium, for instance, modulates sodium channel inactivation, the process by which sodium conductance is negatively regulated. We explored the molecular basis for this effect by investigating the interaction between the ubiquitous calcium binding protein calmodulin (CaM) and the putative sodium channel inactivation gate composed of the cytosolic linker between homologous channel domains III and IV (DIII-IV). Experiments using isothermal titration calorimetry show that CaM binds to a novel double tyrosine motif in the center of the DIII-IV linker in a calcium-dependent manner, N-terminal to a region previously reported to be a CaM binding site. An alanine scan of aromatic residues in recombinant DIII-DIV linker peptides shows that whereas multiple side chains contribute to CaM binding, two tyrosines (Tyr1494 and Tyr1495) play a crucial role in binding the CaM C-lobe. The functional relevance of these observations was then ascertained through electrophysiological measurement of sodium channel inactivation gating in the presence and absence of calcium. Experiments on patch-clamped transfected tsA201 cells show that only the Y1494A mutation of the five sites tested renders sodium channel steady-state inactivation insensitive to cytosolic calcium. The results demonstrate that calcium-dependent calmodulin binding to the sodium channel inactivation gate double tyrosine motif is required for calcium regulation of the cardiac sodium channel.  相似文献   

17.
Changes in activity-dependent calcium flux through voltage-gated calcium channels (Ca(V)s) drive two self-regulatory calcium-dependent feedback processes that require interaction between Ca(2+)/calmodulin (Ca(2+)/CaM) and a Ca(V) channel consensus isoleucine-glutamine (IQ) motif: calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF). Here, we report the high-resolution structure of the Ca(2+)/CaM-Ca(V)1.2 IQ domain complex. The IQ domain engages hydrophobic pockets in the N-terminal and C-terminal Ca(2+)/CaM lobes through sets of conserved 'aromatic anchors.' Ca(2+)/N lobe adopts two conformations that suggest inherent conformational plasticity at the Ca(2+)/N lobe-IQ domain interface. Titration calorimetry experiments reveal competition between the lobes for IQ domain sites. Electrophysiological examination of Ca(2+)/N lobe aromatic anchors uncovers their role in Ca(V)1.2 CDF. Together, our data suggest that Ca(V) subtype differences in CDI and CDF are tuned by changes in IQ domain anchoring positions and establish a framework for understanding CaM lobe-specific regulation of Ca(V)s.  相似文献   

18.
19.
The three-dimensional structure of the complex between calmodulin (CaM) and a peptide corresponding to the N-terminal portion of the CaM-binding domain of the plasma membrane calcium pump, the peptide C20W, has been solved by heteronuclear three-dimensional nuclear magnetic resonance (NMR) spectroscopy. The structure calculation is based on a total of 1808 intramolecular NOEs and 49 intermolecular NOEs between the peptide C20W and calmodulin from heteronuclear-filtered NOESY spectra and a half-filtered experiment, respectively. Chemical shift differences between free Ca(2+)-saturated CaM and its complex with C20W as well as the structure calculation reveal that C20W binds solely to the C-terminal half of CaM. In addition, comparison of the methyl resonances of the nine assigned methionine residues of free Ca(2+)-saturated CaM with those of the CaM/C20W complex revealed a significant difference between the N-terminal and the C-terminal domain; i.e., resonances in the N-terminal domain of the complex were much more similar to those reported for free CaM in contrast to those in the C-terminal half which were significantly different not only from the resonances of free CaM but also from those reported for the CaM/M13 complex. As a consequence, the global structure of the CaM/C20W complex is unusual, i.e., different from other peptide calmodulin complexes, since we find no indication for a collapsed structure. The fine modulation in the peptide protein interface shows a number of differences to the CaM/M13 complex studied by Ikura et al. [Ikura, M., Clore, G. M., Gronenborn, A. M., Zhu, G., Klee, C. B., and Bax, A. (1992) Science 256, 632-638]. The unusual binding mode to only the C-terminal half of CaM is in agreement with the biochemical observation that the calcium pump can be activated by the C-terminal half of CaM alone [Guerini, D., Krebs, J., and Carafoli, E. (1984) J. Biol. Chem. 259, 15172-15177].  相似文献   

20.
Calmodulin (CaM) is an EF-hand Ca(II)-binding protein involved in the regulation of many important biological processes. To date, there is a wealth of information available concerning studies to obtain site-specific calcium binding affinities of CaM, and further to estimate the cooperativity of calcium binding using mutational studies, peptide models, and proteolytic fragmentation. In this paper, we will discuss the energetics of calcium binding and the strong relationship between calcium binding cooperativity and conformational change. We then explain the difficulty of studying key determinants of calcium binding affinity of CaM due to the large change of calcium binding affinity upon mutation. Subsequently, we will introduce "grafting" as a novel approach to obtain the site-specific metal binding properties of calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号