Recent evidence indicates that the transactivation of estrogen receptor alpha (ERalpha) requires estrogen-dependent receptor ubiquitination and degradation. Here we show that estrogen-unbound (unliganded) ERalpha is also ubiquitinated and degraded through a ubiquitin-proteasome pathway. To investigate this ubiquitin-proteasome pathway, we purified the ubiquitin ligase complex for unliganded ERalpha and identified a protein complex containing the carboxyl terminus of Hsc70-interacting protein (CHIP). CHIP preferentially bound to misfolded ERalpha and ubiquitinated it to induce degradation. Ligand binding to the receptor induced the dissociation of CHIP from ERalpha. In CHIP-/- cells, the degradation of unliganded ERalpha was abrogated; however, estrogen-induced degradation was observed to the same extent as in CHIP+/+ cells. Our findings suggest that ERalpha is regulated by two independent ubiquitin-proteasome pathways, which are switched by ligand binding to ERalpha. One pathway is necessary for the transactivation of the receptor and the other is involved in the quality control of the receptor. 相似文献
Exposure of goat uterine nuclei to estradiol in vitro results in an immediate exit of ribonucleoproteins (RNP) from the nuclei to the medium. This RNP exit appears to be mediated by an estrogen receptor localized in small nuclear ribonucleoproteins containing U1 and U2 snRNA. Available evidence indicates that the estrogen receptor involved is not the ERalpha, but an alternative form, which is also a 66 kDa protein. This is the nuclear estrogen receptor II (nER-II) that has no DNA-binding capacity. The transport is estrogen-specific since non-estrogenic steroids do not stimulate the transport of the RNP where the receptor is localized. 相似文献
Three proteins of a goat uterine small nuclear ribonucleoprotein (snRNP) fraction, which bind to nuclear estrogen receptor-II (nER-II) have been isolated and purified. These are the p32, p55, and p60 of which p32 is the major nER-II binding protein. Indirect evidence reveals that p32 binds to the nuclear export signal (NES) on the nER-II. nER-II is a snRNA binding protein while p32 does not bind to the RNA. nER-II along with p32 and p55 form an effective Mg(++)ATPase complex, the activation of which appears to be the immediate reason behind the RNP exit from the nuclei following estradiol exposure. The three nER-II binding proteins bind to the nuclear pore complex; nER-II does not possess this property. 相似文献
There is a wealth of information regarding the import and export of nuclear proteins in general. Nevertheless, the available data that deals with the nucleocytoplasmic movement of steroid hormone receptors remains highly limited. Some research findings reported during the past five years have succeeded in identifying proteins related to the movement of estrogen receptor from the cytoplasm to the nucleus. What is striking in these findings is the facilitatory role of estradiol in the transport process. A similar conclusion has been drawn from the studies on the plasma membrane-to nucleus movement of the alternative form of estrogen receptor, the non-activated estrogen receptor (naER). The internalization of naER from the plasma membrane takes place only in the presence of estradiol. While the gene regulatory functions of ER appear to get terminated following its ubiquitinization within the nucleus, the naER, through its deglycosylated form, the nuclear estrogen receptor II (nER II) continues to remain functional even beyond its existence within the nucleus. Recent studies have indicated the possibility that the estrogen receptor that regulates the nucleo cytoplasmic transport of m RNP is the nERII. This appears to be the result of the interaction between nERII and three proteins belonging to a group of small nuclear ribonucleo proteins (snRNP). The interaction of nERII with two of this protein appears to activate the inherent Mg2+ ATPase activity of the complex, which leads to the exit of the RNP through the nuclear pore complex. 相似文献
Insulin‐like growth factor‐1 (IGF‐1) is a neuroprotective growth factor that promotes neuronal survival by inhibition of apoptosis. To examine whether IGF‐1 exerts cytoprotective effects against extracellular inflammatory stimulation, ventral spinal cord 4.1 (VSC4.1) motoneuron cells were treated with interferon‐gamma (IFN‐γ). Our data demonstrated apoptotic changes, increased calpain:calpastatin and Bax:Bcl‐2 ratios, and expression of apoptosis‐related proteases (caspase‐3 and ‐12) in motoneurons rendered by IFN‐γ in a dose‐dependent manner. Post‐treatment with IGF‐1 attenuated these changes. In addition, IGF‐1 treatment of motoneurons exposed to IFN‐γ decreased expression of inflammatory markers (cyclooxygenase‐2 and nuclear factor‐kappa B:inhibitor of kappa B ratio). Furthermore, IGF‐1 attenuated the loss of expression of IGF‐1 receptors (IGF‐1Rα and IGF‐1Rβ) and estrogen receptors (ERα and ERβ) induced by IFN‐γ. To determine whether the protective effects of IGF‐1 are associated with ERs, ERs antagonist ICI and selective siRNA targeted against ERα and ERβ were used in VSC4.1 motoneurons. Distinctive morphological changes were observed following siRNA knockdown of ERα and ERβ. In particular, apoptotic cell death assessed by TUNEL assay was enhanced in both ERα and ERβ‐silenced VSC4.1 motoneurons following IFN‐γ and IGF‐1 exposure. These results suggest that IGF‐1 protects motoneurons from inflammatory insult by a mechanism involving pivotal interactions with ERα and ERβ.
Bisphenol A and its derivatives are recognized as endocrine disruptors based on their complex effects on estrogen receptor (ER) signaling. While the effects of bisphenol derivatives on ERα have been thoroughly evaluated, how these chemicals affect ERβ signaling is less well understood. Herein, we sought to identify novel ERβ ligands using a radioligand competitive binding assay to screen a chemical library of bisphenol derivatives. Many of the compounds identified showed intriguing dual activities as both ERα agonists and ERβ antagonists. Docking simulations of these compounds and ERβ suggested that they bound not only to the canonical binding site of ERβ but also to the coactivator binding site located on the surface of the receptor, suggesting that they act as coactivator-binding inhibitors (CBIs). Receptor–ligand binding experiments using WT and mutated ERβ support the presence of a second ligand-interaction position at the coactivator-binding site in ERβ, and direct binding experiments of ERβ and a coactivator peptide confirmed that these compounds act as CBIs. Our study is the first to propose that bisphenol derivatives act as CBIs, presenting critical insight for the future development of ER signaling–based drugs and their potential to function as endocrine disruptors. 相似文献
The effects of exogenous histone H1 on estrogen receptor status of human breast cancer MCF 7 cells were investigated in presence and absence of estrogen. Exogenous histone H1 was significantly cytotoxic in a dose- and time-dependent manner. Cell cycle analysis revealed a significant increase in the percentage of cell accumulation in G0/G1 phase. In histone H1-treated cells, a significant decrease in the estrogen receptor content and an increase in the dissociation constant (KD) of ER was observed compared to control. 相似文献